JPS6041656B2 - Method for oxidizing (poly)oxyethylene ether compounds - Google Patents

Method for oxidizing (poly)oxyethylene ether compounds

Info

Publication number
JPS6041656B2
JPS6041656B2 JP52152705A JP15270577A JPS6041656B2 JP S6041656 B2 JPS6041656 B2 JP S6041656B2 JP 52152705 A JP52152705 A JP 52152705A JP 15270577 A JP15270577 A JP 15270577A JP S6041656 B2 JPS6041656 B2 JP S6041656B2
Authority
JP
Japan
Prior art keywords
group
platinum
catalyst
reaction
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52152705A
Other languages
Japanese (ja)
Other versions
JPS5484523A (en
Inventor
久 斎藤
守章 野末
秀光 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP52152705A priority Critical patent/JPS6041656B2/en
Publication of JPS5484523A publication Critical patent/JPS5484523A/en
Publication of JPS6041656B2 publication Critical patent/JPS6041656B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は(ポリ)オキシエチレンエーテル化合物の末
端の水酸基を非アルカリ性水溶液中て改良された白金炭
素触媒の存在下分子状酸素を用いて酸化する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for oxidizing the terminal hydroxyl group of a (poly)oxyethylene ether compound using molecular oxygen in the presence of an improved platinum carbon catalyst in a non-alkaline aqueous solution.

(ポリ)オキシエチレンエーテル化合物の末端の水酸
基がカルボン酸で置換された化合物、たとえばポリオキ
シエチレンアルキルエーテル酢酸、ポリオキシエチレン
アルキルフェニルエーテル酢酸、およびそれらの塩は界
面活性剤、帯電防止剤、染色助剤などとして多くの分野
で利用される。
Compounds in which the terminal hydroxyl group of a (poly)oxyethylene ether compound is substituted with a carboxylic acid, such as polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl phenyl ether acetic acid, and their salts are used as surfactants, antistatic agents, and dyes. It is used in many fields as an auxiliary agent.

(ポリ)オキシエチレンエーテル化合物から(ポリ)
オキシエチレンアルキルエーテル酢酸を得るには、アル
カリの存在下(ポリ)オキシエチレンアルキルエーテル
の末端の水酸基とモノクロル酢酸とを反応させる方法、
および(ポリ)オキシエチレンエーテル化合物を白金触
媒を用いて酸素で酸化し生成する酸をアルカリで中和し
ながら常にpH7以上で反応させる方法(米国特許第3
、342、858号)などが知られている。
(Poly) From oxyethylene ether compound (Poly)
Oxyethylene alkyl ether acetic acid can be obtained by reacting the terminal hydroxyl group of (poly)oxyethylene alkyl ether with monochloroacetic acid in the presence of an alkali;
and a method in which a (poly)oxyethylene ether compound is oxidized with oxygen using a platinum catalyst, and the resulting acid is constantly reacted at pH 7 or higher while neutralizing it with an alkali (U.S. Patent No. 3)
, 342, 858), etc. are known.

これらの方法はいずれも得られる生成物が塩のタイプで
あり、直接遊離の酸として得るためには脱塩などの精製
工程が必要となりはん雑である。本発明らは、(ポリ)
オキシエチレンエーテル化合物のエーテル結合を切断す
ることなく、経済的に分子状酸素で、(ポリ)オキシエ
チレンエーテル化合物を酸化する方法について鋭意研究
し本発明を完成した。
In all of these methods, the product obtained is a salt type, and obtaining the product directly as a free acid requires a purification process such as desalting, which is complicated. The present inventors (poly)
The present invention was completed through extensive research into a method for economically oxidizing (poly)oxyethylene ether compounds with molecular oxygen without cutting the ether bonds of the oxyethylene ether compounds.

すなわち本発明は、(ポリ)オキシエチレンエーテル化
合物を酸性ないし中性反応条件下においても活性が強力
である改良された白金炭素触媒の存在下、分子状酸素を
用いて非アルカリ性水溶液中で前記(ポリ)オキシエチ
レンエーテル化合物を酸化する方法に関するものてある
That is, the present invention provides the method for treating a (poly)oxyethylene ether compound in a non-alkaline aqueous solution using molecular oxygen in the presence of an improved platinum carbon catalyst that is highly active even under acidic to neutral reaction conditions. This article relates to a method for oxidizing poly)oxyethylene ether compounds.

本発明者らは本願発明出願前に(ポリ)オキシエチレン
エーテル化合物の非アルカリ性水溶液を白金炭素触媒を
用いて酸化する方法について特許出願(特願昭52−1
459冊号)したが、本願発明は触媒を改良しその活性
および活性の持続性を強化した触媒を用いる方法に関す
るものである。
Prior to filing the present invention, the present inventors filed a patent application for a method for oxidizing a non-alkaline aqueous solution of a (poly)oxyethylene ether compound using a platinum carbon catalyst (Japanese Patent Application No. 52-11).
However, the present invention relates to a method of using a catalyst which has been improved to have enhanced activity and durability of the activity.

本発明の一実施態様を示せば、蓄圧器、圧力調整器、反
応ガス導入口、温度計、圧力計、攪拌機を装備した反応
容器中に(ポリ)オキシエチレンアキルエーテルの水溶
液と後述する白金炭素触媒を加え反応ガス導入口から酸
素または酸素含有ガスを吹き込み、常圧ないし加圧でこ
の溶液を60ないし150′Cに保ちつつ攪拌しながら
酸化反応を行う。反応が進行するに従つて酸素の消費が
みられ、酸素の消費量から反応の進行状況を確認する。
反応終了後触媒を?別すれば直接遊離の酸として(ポリ
)オキシエチレンアルキルエーテル酢酸の水溶液が得ら
れる。多くの工業的な用途には触媒を酒別したまま、ま
たは濃縮して用いること.ができる。本発明方法の出発
物質てある(ポリ)オキシエチレンエーテル化合物は一
般式(式中Rは炭素数1ないし30のアルキルあるい.
はアルクニル基、シクロアルキル基、アリール基または
アルキルアリール基で、nは1ないし30の整数)で示
されるものである。
In one embodiment of the present invention, an aqueous solution of (poly)oxyethylene alkyl ether and platinum carbon as described below are placed in a reaction vessel equipped with a pressure accumulator, a pressure regulator, a reaction gas inlet, a thermometer, a pressure gauge, and a stirrer. A catalyst is added and oxygen or an oxygen-containing gas is blown into the solution through the reaction gas inlet, and the oxidation reaction is carried out with stirring while maintaining the solution at a temperature of 60 to 150'C under normal or increased pressure. As the reaction progresses, oxygen consumption is observed, and the progress of the reaction is confirmed from the amount of oxygen consumed.
Catalyst after reaction? Otherwise, an aqueous solution of (poly)oxyethylene alkyl ether acetic acid is obtained directly as the free acid. For many industrial applications, the catalyst must be used in its distilled form or concentrated. I can do it. The (poly)oxyethylene ether compound which is the starting material for the method of the present invention has the general formula (wherein R is alkyl having 1 to 30 carbon atoms or .
is an alknyl group, a cycloalkyl group, an aryl group or an alkylaryl group, where n is an integer of 1 to 30).

これらのものにはたとえばエチレングリコ−モノメチル
エーテル、エチレ・ングリコールモノフエニルエーテル
、ジエチレングリコールモノブチルエーテルのような通
常溶剤として広く利用されるもの、およびポリエチレン
グリコールラウリルエーテル、ポリエチレングリコール
ノニルフェノールエーテルのような界面活性剤として広
く利用される物質などがある。本発明で用いられる触媒
は活性炭に白金化合物を担持させる際、活性炭をアルカ
リ金属の水酸化物、炭酸塩、重炭酸塩およびアルカリ土
金属の水酸化物からなる群より選ばれる少なくとも1種
を含む水に懸濁液のPHを8以上としこの中に塩化白金
酸のような白金塩の水溶液を滴下し、途中PHが8以下
となるときは必要に応じてアルカリを追加・しながら白
金を活性炭に完全に吸着させる。次いで活性炭に吸着さ
れた白金化合物をホルマリン、ギ酸、ナトリウムボロハ
イドライドなどの還元剤を加えて還元した後充分水洗し
、そのまままたは乾燥して酸化反応に供する。本発明に
用いる白金炭素触媒の白金の担持量は、活性炭に対し白
金金属として1ないし1鍾量パーセント好ましくは2な
いし6重量パーセントである。
These include those widely used as ordinary solvents such as ethylene glycol monomethyl ether, ethylene glycol monophenyl ether, diethylene glycol monobutyl ether, and surfactants such as polyethylene glycol lauryl ether and polyethylene glycol nonylphenol ether. There are substances that are widely used as agents. When supporting a platinum compound on activated carbon, the catalyst used in the present invention contains at least one selected from the group consisting of alkali metal hydroxides, carbonates, bicarbonates, and alkaline earth metal hydroxides. Adjust the pH of the suspension in water to 8 or higher, drop an aqueous solution of platinum salt such as chloroplatinic acid into the water, and if the PH drops to 8 or lower during the process, add alkali as needed and mix the platinum with activated carbon. completely absorb. Next, the platinum compound adsorbed on the activated carbon is reduced by adding a reducing agent such as formalin, formic acid, or sodium borohydride, and then thoroughly washed with water and subjected to an oxidation reaction as it is or after drying. The amount of platinum supported in the platinum-carbon catalyst used in the present invention is 1 to 1 weight percent, preferably 2 to 6 weight percent, as platinum metal based on the activated carbon.

本発明方法で用いる触媒の担体は活性炭が好ましく、ア
ルミナ、シリカ、シリカアルミナなどの担体はエーテル
結合の切断を促進したりあるいは反応速度が遅く本発明
方法には不適当な担体てある。
The catalyst carrier used in the method of the present invention is preferably activated carbon, and carriers such as alumina, silica, and silica-alumina are unsuitable for the method of the present invention because they promote the cleavage of ether bonds or have a slow reaction rate.

本発明方法において用いる触媒の調製に際し、活性炭の
PH8以上のアルカリ性懸濁液に用いるアルカリはナト
リウム、カリウム、リチウムなどのアルカリ金属の水酸
化物、炭酸塩、重炭酸塩または水酸化バリウムなどのア
ルカリ土金属の水酸化物で、アンモニアは不適当てある
When preparing the catalyst used in the method of the present invention, the alkali used in the alkaline suspension of activated carbon with a pH of 8 or higher is an alkali such as an alkali metal hydroxide such as sodium, potassium, or lithium, carbonate, bicarbonate, or barium hydroxide. Ammonia is an unsuitable hydroxide of earth metals.

その使用量は塩化白金酸を完全に活性炭に吸着させた後
もその懸濁液のPHが8以上であるアルカリを必要とす
る。出発物質は水溶液として反応に供することが好まし
く、その水溶液中の濃度は反応温度ての飽和溶解度以下
であればいずれの濃度でも差支えないが、通常好ましく
は10ないし5鍾量パーセントである。
The amount of alkali used is such that the pH of the suspension is 8 or higher even after chloroplatinic acid is completely adsorbed on activated carbon. The starting material is preferably subjected to the reaction as an aqueous solution, and the concentration in the aqueous solution may be any concentration as long as it is below the saturation solubility at the reaction temperature, but is usually preferably 10 to 5 percent by weight.

なおアルキル基が長くエチレンオキサイド付加モル数の
少ない水に難溶性の出発物質は、必要によりアセトンや
ジオキサンなどと水の混合溶媒に溶解して反応に供する
こともできる。本発明に使用する白金炭素触媒の使用量
は所望する反応速度、経済性などを考慮して決めれはよ
いが通常原料に対して5ないし1唾量パーセントの範囲
が適当である。
Note that a starting material having a long alkyl group and a small number of moles of ethylene oxide added and hardly soluble in water can be dissolved in a mixed solvent of acetone, dioxane, etc. and water and subjected to the reaction, if necessary. The amount of the platinum-carbon catalyst used in the present invention can be determined in consideration of the desired reaction rate, economic efficiency, etc., but it is generally appropriate to range from 5 to 1 percent by volume based on the raw materials.

本発明方法て使用する酸化剤は酸素または酸素含有ガス
であり、その圧力は常圧ないし加圧で、酸素のみを用い
るときは常圧で充分反応するが、空気を用いた場合は特
に上限はないが5ないし20k91dの加圧下で反応さ
せることが望ましい。本発明方法において反応温度は反
応速度に影響し50ないし200゜C好ましくは60な
いし150℃である。本発明方法において非アルカリ性
水溶液とは、反応当初酸またはアルカリを添加せず、ま
た反応中アルカリを添加することなく進行させるもので
ある。
The oxidizing agent used in the method of the present invention is oxygen or an oxygen-containing gas, and its pressure is normal pressure to increased pressure.When oxygen alone is used, the reaction is sufficient at normal pressure, but when air is used, there is no particular upper limit. However, it is preferable to carry out the reaction under a pressure of 5 to 20k91d. In the method of the present invention, the reaction temperature affects the reaction rate and is 50 to 200°C, preferably 60 to 150°C. In the method of the present invention, a non-alkaline aqueous solution is one in which an acid or alkali is not added at the beginning of the reaction, and the reaction proceeds without adding an alkali during the reaction.

従つて本反応の反応系は反応開始前中性であつたものが
生成する酸によつて醸性雰囲気となる。本発明者らは (1)本発明方法で用いる触媒 (2)水に活性炭を懸濁させ、この中へ塩化白金酸水溶
液を加えて中性ないし酸性下で活性炭へ塩化白金酸を吸
着させた後、ホルマリンと炭酸ナトリウムで還元するア
ルコール酸化用触媒(比較例1で説明)(3)硝酸処理
を施こした活性炭を水に懸濁させこの中へ塩化白金酸を
加えて中性ないし酸性下で活性炭へ塩化白金酸を吸着さ
せた後、ヒドラジンと炭酸ナトリウムで還元する触媒(
比較例2で説明)について各々5%担持白金炭素触媒を
調製し、活性炭上の白金金属のX線回折による白金(1
11)面の半値巾から求めた平均粒子径と、およびこれ
らの触媒を用い後記する実施例1に準じてポリオキシア
ルキルエーテルを酸化させたときの反応時間および転化
率を求め、触媒による反応の違いについて検討した。
Therefore, the reaction system of this reaction, which was neutral before the start of the reaction, becomes a fermenting atmosphere due to the generated acid. The present inventors (1) catalyst used in the method of the present invention (2) activated carbon was suspended in water, and an aqueous solution of chloroplatinic acid was added thereto to adsorb the chloroplatinic acid onto the activated carbon under neutral or acidic conditions. After that, a catalyst for alcohol oxidation is reduced with formalin and sodium carbonate (explained in Comparative Example 1). After adsorbing chloroplatinic acid onto activated carbon, a catalyst (
Platinum (1
11) Determine the average particle diameter determined from the half width of the surface, and the reaction time and conversion rate when polyoxyalkyl ether is oxidized using these catalysts according to Example 1 described later, and calculate the reaction rate with the catalyst. We considered the differences.

その結果は実施例および比較例で詳述するが、本発明で
用いる触媒はいずれも白金の平均粒子径がアモルファス
ないし50A以下、反応時間4ないし5時間前後で転化
率90%以上を示すのに対し(2),(3)による触媒
については白金の平均粒子、反応時間、転化率がそれぞ
れで反応速度が遅く転化率が約60〜70%で事実上反
応が停止した。
The results will be explained in detail in Examples and Comparative Examples, but all of the catalysts used in the present invention have an average platinum particle size of amorphous or less than 50A, and show a conversion rate of 90% or more at a reaction time of about 4 to 5 hours. On the other hand, the catalysts (2) and (3) had slow reaction rates depending on the average platinum particles, reaction time, and conversion rate, and the reaction virtually stopped at a conversion rate of about 60 to 70%.

さらに本発明方法によつて得られる触媒の特徴はエチレ
ングリコール単位が多い場合特に顕著な効果が認められ
る。
Furthermore, the catalyst obtained by the method of the present invention has a particularly remarkable effect when it contains a large number of ethylene glycol units.

たとえば、市販のポリオキシエチレンドデシルエーテル
のエチレングリコール単位が平均5のものは約1から8
までエチレングリコール単位が分布しており、本発明方
法による触媒を用いてポリオキシエチレンアルキルエー
テルを酸化するとエーテル結合を切断することなしに、
更に驚くべきことにエチレングリコール単位の数に関係
なく末端の水酸基を酸化して高収率でポリオキシエチレ
ンアルキルエーテル酢酸とすることが可能である。とこ
ろが前記触媒(2),(3)を用いてポリオキシエチレ
ンアルキルエーテルを酸化すると工・・・テル結合が切
断されたエチレングリコール、ジエチレングリコール、
トリエチレングリコールなどを副生し、しかもエチレン
グリコール単位が4ないし8と大きくなるに従つて末端
の水酸基は全く酸化されないか、非常に酸化されにくく
なる傾向が認められる。またこのような低活性の触媒を
用いて転化率を高めるために130℃以上の反応温度で
ポリオキシエチレンアルキルエーテルを酸化しても、反
応が途中で停止し転化率を70%以上に高めることは困
難で、しかもエーテル結合の切断を促進する結果であつ
た。従つてポリオキシエチレンエーテル化合物の酸化に
エーテル結合を切断させず、しかも高転化率で選択性に
すぐれた高活性な触媒を得るためには、活性炭をPH8
以上のアルカリ水溶液に懸濁した後塩化白金酸を活性炭
に吸着させることが必要である。
For example, commercially available polyoxyethylene dodecyl ether with an average of 5 ethylene glycol units has about 1 to 8
When polyoxyethylene alkyl ether is oxidized using the catalyst according to the method of the present invention, ethylene glycol units are distributed up to
Furthermore, it is surprisingly possible to oxidize the terminal hydroxyl group to obtain polyoxyethylene alkyl ether acetic acid in high yield regardless of the number of ethylene glycol units. However, when polyoxyethylene alkyl ether is oxidized using the catalysts (2) and (3), ethylene glycol, diethylene glycol, and
Triethylene glycol and the like are produced as by-products, and as the number of ethylene glycol units increases from 4 to 8, the terminal hydroxyl group tends to be either not oxidized at all or becomes extremely difficult to oxidize. Furthermore, even if polyoxyethylene alkyl ether is oxidized at a reaction temperature of 130°C or higher to increase the conversion rate using such a low-activity catalyst, the reaction will stop midway and the conversion rate will increase to 70% or higher. This was difficult, and the result was that the cleavage of the ether bond was promoted. Therefore, in order to obtain a highly active catalyst with a high conversion rate and excellent selectivity without breaking the ether bond during the oxidation of polyoxyethylene ether compounds, it is necessary to use activated carbon at a pH of 8.
It is necessary to adsorb the chloroplatinic acid onto activated carbon after suspending it in the above aqueous alkaline solution.

さらに本発明方法によりポリオキシエチレンエーテルの
酸化を行うときは後述する実施例から明らかなように触
媒の寿命が非常に長く、高価な白金触媒を使用するにも
かかわらず製品に対する触媒の占めるコストを低減させ
ることができる。
Furthermore, when polyoxyethylene ether is oxidized by the method of the present invention, the life of the catalyst is very long, as is clear from the examples described later, and even though an expensive platinum catalyst is used, the cost of the catalyst in the product is reduced. can be reduced.

従.つて本発明方法は工業的実施が容易であり、かつ経
済性にすぐれた方法である。以下実施例について詳細に
説明する。
Follow. Therefore, the method of the present invention is easy to implement industrially and is highly economical. Examples will be described in detail below.

実施例1 白金5.0yを王水に溶解し残存する酸を蒸発乾ノ固し
て得た塩化白金酸を5%塩酸水溶液100m1中に溶解
した。
Example 1 Chloroplatinic acid obtained by dissolving 5.0 y of platinum in aqua regia and evaporating the remaining acid to dryness was dissolved in 100 ml of a 5% aqueous hydrochloric acid solution.

市販活性炭(武田薬品(株)製)95yを114規定炭
酸ナトリウム水溶液1′中に懸濁させ(この懸濁液のP
Hは約11)、この中へ前記塩化白金酸の全量を攪拌し
ながら10分間で滴下した後室温て1時間、さらに80
±5℃に加温して2時間攪拌を継続し活性炭に塩化白金
酸を完全に吸着させた。(このときの懸濁のPHは約1
0)ついで葵%ホルマリン水溶液10mtを加えて1時
間80±5℃に保つて還元し、沖過水洗後乾燥して5%
白金炭素触媒を得た。この触媒のX線回折から求めた白
金の(111)面はアモルファスを示した。この触媒1
0.0yと市販ポリオキシエチレン(5モル)ドデシル
エーテル(商品名エマレツクス705:日本エマルジョ
ン(株)製)100yを含む水溶液400mLとを蓄圧
器、ガス導入口および出口、温度計、圧力計を装備した
電磁誘導攪拌式1.5eオートクレーブ中に加えた。
Commercially available activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd.) 95y was suspended in 1' of a 114 N sodium carbonate aqueous solution (the P of this suspension was
H is about 11), into which the entire amount of chloroplatinic acid was added dropwise over 10 minutes with stirring, and then at room temperature for 1 hour,
The mixture was heated to ±5°C and stirred for 2 hours to completely adsorb chloroplatinic acid onto the activated carbon. (The pH of the suspension at this time is approximately 1
0) Next, 10 mt of Aoi% formalin aqueous solution was added and kept at 80±5°C for 1 hour to reduce, and after washing with water, it was dried to 5%
A platinum carbon catalyst was obtained. The (111) plane of platinum determined from X-ray diffraction of this catalyst was amorphous. This catalyst 1
Equipped with a pressure accumulator, a gas inlet and outlet, a thermometer, and a pressure gauge. The mixture was added to a 1.5e autoclave with electromagnetic induction stirring.

このオートクレーブ中に蓄圧器、圧力調整器を通して窒
素ガスを加えて2kg/C7lfとし、次いて酸素を加
えて全圧を7.0k91cIL恒圧とし攪拌しながら1
00±5゜Cに保つて反応させた。反応が進行するに従
つて酸素の吸収がみられ反応開始から3.峙間後に約9
8%の理論量の酸素を消費して酸素の吸収速度が遅くな
つた。反応時間4時間て反応を終了し、オートクレーブ
を冷却した後反応生成物を取出し、触媒を沖別して乳白
色の水溶液を得た。この全量を濃縮乾燥して微黄色の液
体98yを得た。このものの一部を採取して分析した結
果、酸価、122人ヒドロキシル価10.0の値を得た
。またこのものの一部をジアゾメタンにより得たメチル
エステル誘導体およびトリメチルシリル化剤により得た
トリメチルシリル誘導体をガスクロマトグラフィーによ
り分析した結果、分解生成物であるグリコール酸、ジグ
リコール酸は検出されず、エチレングリコール、ジエチ
レングリコールは痕跡量であり、相当する原料と同組成
のエチレングリコール単位が1ないし8に分布するポリ
オキシエチレンドデシルエーテル酢酸を認めた。なお原
料(ヒドロキシル価131)のポリオキシエチレンドデ
シルエーテル酢酸への転化率は約92%で、ポリオキシ
エチレンドデシルエーテルのエーテル結合は切断される
ことなく末端の水酸基はカルボン酸に変換されたことが
認められた。実施例2 実施例1で得た5%白金炭素触媒10.0fと市販ポリ
オキシエチレン(24モル)ドデシル(商品名エマレツ
クス724:日本エマルジョン(株)製)100yを含
む水溶液407711を実施例1に準じて酸化反応を行
つたところ、反応時間4時間で約90%の理論量の酸素
を吸収して酸素吸収速度が遅くなつた。
Nitrogen gas was added into this autoclave through a pressure accumulator and a pressure regulator to give a pressure of 2 kg/C7lf, and then oxygen was added to bring the total pressure to a constant pressure of 7.0 k91 cIL while stirring.
The reaction was maintained at 00±5°C. As the reaction progresses, oxygen absorption is observed, and 3. Approximately 9 minutes after Chima
The rate of oxygen uptake slowed down, consuming 8% of the theoretical amount of oxygen. After a reaction time of 4 hours, the reaction was completed, and after cooling the autoclave, the reaction product was taken out and the catalyst was removed to obtain a milky white aqueous solution. The entire amount was concentrated and dried to obtain a slightly yellow liquid 98y. As a result of collecting and analyzing a portion of this material, an acid value and a hydroxyl value of 10.0 were obtained. In addition, as a result of gas chromatography analysis of a part of this product, a methyl ester derivative obtained with diazomethane and a trimethylsilyl derivative obtained with a trimethylsilylation agent, glycolic acid and diglycolic acid, which are decomposition products, were not detected, but ethylene glycol, Diethylene glycol was present in trace amounts, and polyoxyethylene dodecyl ether acetic acid having the same composition as the corresponding raw material and having ethylene glycol units distributed from 1 to 8 was observed. The conversion rate of the raw material (hydroxyl value 131) to polyoxyethylene dodecyl ether acetic acid was approximately 92%, indicating that the terminal hydroxyl group was converted to carboxylic acid without breaking the ether bond of polyoxyethylene dodecyl ether. Admitted. Example 2 An aqueous solution 407711 containing 10.0f of the 5% platinum carbon catalyst obtained in Example 1 and 100y of commercially available polyoxyethylene (24 mol) dodecyl (trade name Emalex 724, manufactured by Nippon Emulsion Co., Ltd.) was added to Example 1. When an oxidation reaction was carried out in the same manner, about 90% of the theoretical amount of oxygen was absorbed in a reaction time of 4 hours, and the oxygen absorption rate became slow.

反応時間5時間で反応を終了し反応生成物をとり出し、
触媒を枦別して得られる乳白色の水溶液を濃縮乾燥して
100yの白色固体を得た。このものの化学分析値は酸
価48.へヒドロキシル価10.0てあつた。原料(ヒ
ドロキシル価57.1)のポリオキシエチレンドデシル
エーテル酢酸への転化率は約82%であつた。実施例3 実施例1で得た5%白金炭素触媒10.0yとポリオキ
シエチレン(7.5モル)アルキルフェニルエーテル(
商品名NIKKOLNP−7.5:日光ケミカルズ(株
)製)100yを含む水溶液400m1を実施例1に準
じて酸化反応を行つた結果、反応時間4時間て終了した
The reaction was completed after a reaction time of 5 hours, and the reaction product was taken out.
The milky white aqueous solution obtained by separating the catalyst was concentrated and dried to obtain a 100y white solid. The chemical analysis value of this substance is acid value 48. The hehydroxyl number was 10.0. The conversion rate of the raw material (hydroxyl number 57.1) to polyoxyethylene dodecyl ether acetic acid was about 82%. Example 3 10.0y of the 5% platinum carbon catalyst obtained in Example 1 and polyoxyethylene (7.5 mol) alkyl phenyl ether (
400 ml of an aqueous solution containing 100y (trade name: NIKKOLNP-7.5, manufactured by Nikko Chemicals Co., Ltd.) was subjected to an oxidation reaction according to Example 1, and the reaction was completed in 4 hours.

反応生成物をとり出し、触媒を沖別して得られる乳白色
の水溶液を濃縮し100qの淡黄色の液体を得た。この
ものの化学分析値は酸価103.0ヒドロキシル価8.
0で、原料(ヒドロキシル価108.1)のポリオキシ
アルキルフェニルエーテル酢酸への転化率は約93%て
あつた。実施例4 実施例1における5%白金炭素触媒を得た際の114規
定水酸化ナトリウム水溶液114規定水酸化バリウム水
溶液、および38%ホルマリン10m1を30%ナトリ
ウムボロハイドライド水溶液10m1に代える他は実施
例1に準じて白金炭素触媒を得た。
The reaction product was taken out and the catalyst was removed, and the resulting milky white aqueous solution was concentrated to obtain 100q of pale yellow liquid. The chemical analysis value of this product is acid value 103.0 and hydroxyl value 8.
0, and the conversion rate of the raw material (hydroxyl number 108.1) to polyoxyalkylphenyl ether acetic acid was about 93%. Example 4 Example 1 except that the 114N aqueous sodium hydroxide solution 114N barium hydroxide aqueous solution and 10ml of 38% formalin used in obtaining the 5% platinum carbon catalyst in Example 1 were replaced with 10ml of a 30% sodium borohydride aqueous solution. A platinum carbon catalyst was obtained according to .

この触媒のX線回折より求めた白金の平均粒子径は40
Aであつた。この触媒10.0yを用いてジエチレング
リコールモノエチルエーテル100yを含む水溶液40
0m1を実施例1に準じて酸化したところ6時間で反応
が終了した。
The average particle diameter of platinum determined by X-ray diffraction of this catalyst was 40
It was A. Using 10.0 y of this catalyst, 40 y of an aqueous solution containing 100 y of diethylene glycol monoethyl ether was prepared.
When 0ml was oxidized according to Example 1, the reaction was completed in 6 hours.

反応終了後触媒を淵別して得られた無色透明な反応液を
濃縮して108qの無色透明な液体を得た。このものの
化学分析値は酸価348.ヒドロキシル価37.6であ
つた。このものの一部をジアゾメタンにより得たメチル
エステル誘導体、およびトリメチルシリル化剤により得
たトリメチルシリル誘導体をガスクロマトグラフィーに
より分析した結果、痕跡量のグリコール酸を検出した他
は、分解生成物と考えられる酢酸、エトキシ酢酸、エチ
レングリコール、ジエチレングリコールなどは検出され
ず、少量の原料とオキシエチレンエチルエーテル酢酸で
あり分解反応はほとんど認められなかつた。原料(ヒド
ロキシル価418)のオキシエチレンエチルエーテル酢
酸への転化率91.0%、オキシエチレンエチルエーテ
ル酢酸の収率89.8%であつた。実施例5 実施例1で反応終了後反応生成物から沖別して得た触媒
をそのま)用いて実施例1に準じて2回目の反応に使用
した。
After the reaction was completed, the catalyst was filtered off, and the resulting colorless and transparent reaction liquid was concentrated to obtain 108q of colorless and transparent liquid. The chemical analysis value of this substance is acid value 348. The hydroxyl value was 37.6. As a result of gas chromatography analysis of a methyl ester derivative obtained from a portion of this product using diazomethane and a trimethylsilyl derivative obtained using a trimethylsilylation agent, trace amounts of glycolic acid were detected, as well as acetic acid and acetic acid, which are thought to be decomposition products. Ethoxy acetic acid, ethylene glycol, diethylene glycol, etc. were not detected, and since it was only a small amount of raw material and oxyethylene ethyl ether acetic acid, almost no decomposition reaction was observed. The conversion rate of the raw material (hydroxyl number 418) to oxyethylene ethyl ether acetic acid was 91.0%, and the yield of oxyethylene ethyl ether acetic acid was 89.8%. Example 5 The catalyst obtained by separating the reaction product from the reaction product after the completion of the reaction in Example 1 was used as it was in the second reaction according to Example 1.

さらに3回目以降も同様に50回反復使用して反応させ
触媒の耐久性試験を行ない第1表の結果を得た。この結
果から本発明方法は触媒の繰返し使用が50回以上可能
で、50回目でも反応時間が延びず触媒の耐久性に優れ
かつエーテル結合を切断することなしにポリオキシエチ
レンアルキルエーテルを酸化することが可能であり、経
済性の高い方法であることが認められた。比較例1 NeWerMeth0ds0fPreparative
0rganicChemistryV0I,■第327
頁に準じた触媒調製法。
Further, from the third time onwards, the reaction was repeated 50 times and the durability test of the catalyst was conducted, and the results shown in Table 1 were obtained. These results show that the method of the present invention allows the catalyst to be used repeatedly 50 times or more, the reaction time does not increase even after the 50th use, the catalyst has excellent durability, and polyoxyethylene alkyl ether can be oxidized without breaking the ether bond. It was recognized that this method is possible and highly economical. Comparative example 1 NewerMeth0ds0fPreparative
0rganicChemistryV0I, ■ No. 327
Catalyst preparation method according to page.

活性炭95qを白金金属として5y含む塩化白金酸水溶
液600m1中に懸濁した。
95q of activated carbon was suspended in 600 ml of an aqueous solution of chloroplatinic acid containing 5y of platinum metal.

この懸濁液を攪拌しながら114規定炭酸ナトリウム水
溶液で中性にした後加熱し80±5℃に保つて38%ホ
ルマリン水溶液55mLを時折114規定炭酸ナトリウ
ム水溶液を加えてPHを7ないし8に保ちながら4紛間
にわたつて滴下した。さらにこの懸濁液を80±5℃に
て2時間保つた後冷却し触媒を枦別した。触媒を充分水
洗後乾燥して5%白金炭素触媒を得た。この触媒のX線
回折による白金の平均粒子径は84Aであつた。この触
媒10.0ダを用いて実施例1に準じてポリオキシエチ
レン(5モル)ドデシルエーテルを酸化した。
This suspension was neutralized with a 114N aqueous sodium carbonate solution while stirring, then heated and kept at 80±5°C. 55mL of a 38% formalin aqueous solution was occasionally added with a 114N aqueous sodium carbonate solution to keep the pH at 7 to 8. While doing so, it was dripped over 4 times. Further, this suspension was kept at 80±5° C. for 2 hours, then cooled and the catalyst was separated. The catalyst was thoroughly washed with water and dried to obtain a 5% platinum carbon catalyst. The average particle diameter of platinum in this catalyst was determined by X-ray diffraction to be 84A. Using 10.0 Da of this catalyst, polyoxyethylene (5 mol) dodecyl ether was oxidized according to Example 1.

反応時間6時間で酸素吸収量が理論量の約70%で反応
は完全に停止した。反応液から触媒をp別して得られる
乳白金の反応液を濃縮し淡黄色の液体99yを得た。こ
のものの化学分析値は酸価90.1、ヒドロキシル価4
1.9で原料のポリオキシエチレンドデシル酢酸への転
化率は約錫%であつた。このものの一部をジアゾメタン
により得たメチルエステル誘導体およびトリメチルシリ
ル化剤によりトリメチルシリル誘導体をガスクロマトグ
ラフィーにより分析した結果、ポリオキシエチレンドデ
シルエーテルのエチレングリコール単位が増すに従つて
ポリオキシエチレンドデシルエーテル酢酸の生成割合が
少なく、逆に未反応原料の残存する割合が多かつた。ま
た、分解生成物のエチレングリコール、ジエチレングリ
コール等も副生した。したがつて、この触媒はエーテル
結合を切断しやすくしかもエチレングリコール単位が比
較的大きいポリオキシエチレンアルキルエーテルの末端
の水酸基を酸化しにくいことが認められた。比較例2触
媒便覧、第557頁、地人書館(1967年発行)に準
じて触媒を調製した。
After a reaction time of 6 hours, the amount of oxygen absorbed was approximately 70% of the theoretical amount and the reaction was completely stopped. The milky platinum reaction solution obtained by removing the catalyst from the reaction solution was concentrated to obtain a pale yellow liquid 99y. The chemical analysis values of this substance are acid value 90.1 and hydroxyl value 4.
1.9, the conversion rate of the raw material to polyoxyethylene dodecyl acetic acid was about tin%. As a result of gas chromatography analysis of a methyl ester derivative obtained from a portion of this product using diazomethane and a trimethylsilyl derivative obtained using a trimethylsilylation agent, it was found that as the ethylene glycol unit of polyoxyethylene dodecyl ether increases, polyoxyethylene dodecyl ether acetic acid is formed. The ratio was low, and conversely, the remaining ratio of unreacted raw materials was high. In addition, decomposition products such as ethylene glycol and diethylene glycol were also produced as by-products. Therefore, it was found that this catalyst easily cleaves ether bonds and is difficult to oxidize the terminal hydroxyl group of polyoxyethylene alkyl ether having a relatively large ethylene glycol unit. Comparative Example 2 A catalyst was prepared according to Catalyst Handbook, page 557, Jijinshokan (published in 1967).

活性炭95yを10%硝酸水溶液1′中に懸濁し2時間
煮沸処理した後活性炭を淵別し、硝酸根が検出されなく
なるまで充分水洗した。この硝酸処理を施した活性炭を
1eの水中に懸濁させ、白金金属として5f1含む塩化
白金酸水溶液25m1を加え50±5℃で4時間攪拌し
ながら塩化白金酸を活性炭上に完全に吸着させた。つい
で放冷し114規定炭酸ナトリウム溶液100mtを加
えアルカリ性とし50%ヒドラジン水加物30m1を加
えた後、この懸濁液を80±5℃とし還元を完了した。
触媒を淵別し充分に熱水で水洗し乾燥して5%白金炭素
触媒を得た。この触媒のX線回折による白金の平均粒子
径は75Aであつた。この触媒10.0qを用いて実施
例1と同様にしてポリオキシ(5モル)ドデシルエーテ
ル(エマレツクス705)を酸化した。
Activated carbon 95y was suspended in a 10% nitric acid aqueous solution 1' and boiled for 2 hours, then the activated carbon was separated and thoroughly washed with water until no nitrate radicals were detected. This nitric acid-treated activated carbon was suspended in 1e of water, and 25ml of a chloroplatinic acid aqueous solution containing 5f1 as platinum metal was added and stirred at 50±5°C for 4 hours to completely adsorb chloroplatinic acid onto the activated carbon. . Then, the suspension was left to cool, and 100 mt of 114N sodium carbonate solution was added to make it alkaline. After adding 30 ml of 50% hydrazine hydrate, the suspension was heated to 80±5°C to complete the reduction.
The catalyst was separated, thoroughly washed with hot water, and dried to obtain a 5% platinum carbon catalyst. The average particle diameter of platinum in this catalyst was determined to be 75A by X-ray diffraction. Polyoxy (5 mol) dodecyl ether (Emarex 705) was oxidized in the same manner as in Example 1 using 10.0 q of this catalyst.

反応時間7時間で酸素の吸収量が理論量の約64%に達
したところで酸素の吸収が完全に停止した。反応液から
触媒を淵別し乳白色の反応液を得、この全量を濃縮して
淡黄色の液体99yを得た。このものの化学分析値は酸
価81.3、ヒドロキシル価48.2で原料のポリオキ
シエチレンアルキルエーテル酢酸への転化率は約関%で
あつた。比較例3 比較例1で得た触媒10.0qを用いて実施例1におけ
る反応温度100±5℃を130±5℃に代える他は実
施例1に準じてポリオキシエチレン(5モル)ドデシル
エーテルを酸化した。
When the amount of oxygen absorbed reached about 64% of the theoretical amount after a reaction time of 7 hours, the absorption of oxygen completely stopped. The catalyst was filtered out from the reaction solution to obtain a milky white reaction solution, and the entire amount was concentrated to obtain pale yellow liquid 99y. The chemical analysis values of this product were that the acid value was 81.3 and the hydroxyl value was 48.2, and the conversion rate to the raw material polyoxyethylene alkyl ether acetic acid was about 1%. Comparative Example 3 Polyoxyethylene (5 mol) dodecyl ether was prepared in the same manner as in Example 1 except that 10.0 q of the catalyst obtained in Comparative Example 1 was used and the reaction temperature in Example 1 was changed from 100±5°C to 130±5°C. was oxidized.

Claims (1)

【特許請求の範囲】 1 白金炭素触媒の存在下、分子状酸素を用いて非アル
カリ性水溶液中で一般式R−O−(CH_2CH_2O
)nH 式中Rは、炭素数1ないし30のアルキル基、アルケニ
ル基、シクロアルキル基、アリール基およびアルキルア
リール基からなる群より選ばれ、nは1ないし30の整
数)で示される(ポリ)オキシエチレンエーテル化合物
の未端のヒドロキシエチル基を酸化して相当するカルボ
ン酸とするに際し、アルカリ金属の水酸化物、炭酸塩、
重炭酸塩およびアルカリ土金属の水酸化物からなる群よ
り選ばれる少なくとも1種を含むpH8以上の水溶液中
に懸濁した活性炭の白金塩を吸着させた後還元して得ら
れる白金炭素触媒を用いて反応させることを特徴とする
(ポリ)オキシエチレンエーテル化合物の酸化方法。 2 白金炭素触媒の調製に際し、アルカリ金属がナトリ
ウム、カリウムおよびリチウムからなる群より選ばれる
少なくともひとつである特許請求の範囲第1項記載の方
法。 3 白金炭素触媒の調製に際し、アルカリ土金属がバリ
ウムである特許請求の範囲第1項記載の方法。 4 白金炭素触媒の調製に際し、還元剤が、ホルマリン
、ギ酸およびナトリウムボロハイドライドからなる群よ
り選ばれる少なくともひとつである特許請求の範囲第1
項記載の方法。
[Claims] 1. In the presence of a platinum carbon catalyst, molecular oxygen is used to convert the general formula R-O-(CH_2CH_2O) into a non-alkaline aqueous solution.
) nH in the formula, R is selected from the group consisting of an alkyl group having 1 to 30 carbon atoms, an alkenyl group, a cycloalkyl group, an aryl group, and an alkylaryl group, and n is an integer of 1 to 30) (poly) When oxidizing the terminal hydroxyethyl group of an oxyethylene ether compound to form the corresponding carboxylic acid, alkali metal hydroxides, carbonates,
Using a platinum carbon catalyst obtained by adsorbing a platinum salt on activated carbon suspended in an aqueous solution with a pH of 8 or more containing at least one selected from the group consisting of bicarbonates and hydroxides of alkaline earth metals, and then reducing the resultant mixture. A method for oxidizing a (poly)oxyethylene ether compound, the method comprising: reacting a (poly)oxyethylene ether compound. 2. The method according to claim 1, wherein the alkali metal used in preparing the platinum-carbon catalyst is at least one selected from the group consisting of sodium, potassium, and lithium. 3. The method according to claim 1, wherein the alkaline earth metal in preparing the platinum carbon catalyst is barium. 4. Claim 1, wherein the reducing agent is at least one selected from the group consisting of formalin, formic acid, and sodium borohydride in the preparation of the platinum carbon catalyst.
The method described in section.
JP52152705A 1977-12-19 1977-12-19 Method for oxidizing (poly)oxyethylene ether compounds Expired JPS6041656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52152705A JPS6041656B2 (en) 1977-12-19 1977-12-19 Method for oxidizing (poly)oxyethylene ether compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52152705A JPS6041656B2 (en) 1977-12-19 1977-12-19 Method for oxidizing (poly)oxyethylene ether compounds

Publications (2)

Publication Number Publication Date
JPS5484523A JPS5484523A (en) 1979-07-05
JPS6041656B2 true JPS6041656B2 (en) 1985-09-18

Family

ID=15546335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52152705A Expired JPS6041656B2 (en) 1977-12-19 1977-12-19 Method for oxidizing (poly)oxyethylene ether compounds

Country Status (1)

Country Link
JP (1) JPS6041656B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552513B2 (en) * 1987-12-04 1996-11-13 川研ファインケミカル株式会社 Method for oxidizing (poly) oxyethylene alkyl ether compound
JP5520339B2 (en) * 2011-06-10 2014-06-11 花王株式会社 Process for producing polyoxyalkylene alkyl ether acetic acid
EP2719678B1 (en) * 2011-06-10 2015-11-18 Kao Corporation Method for manufacturing polyoxyethylene alkyl ether acetic acid
JP2013107868A (en) * 2011-10-27 2013-06-06 Kao Corp Method for manufacturing polyoxyalkylene ether acetic acid

Also Published As

Publication number Publication date
JPS5484523A (en) 1979-07-05

Similar Documents

Publication Publication Date Title
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
US3342858A (en) Preparation of alkoxy-alkanoic acids by the oxidation of alkoxy-alkanols
CN101863800B (en) Method for synthesizing carbamate, catalyst applicable to method and preparation method and use thereof
US4118589A (en) Process for preparing oxalic acid and esters of same
US3700605A (en) Catalysts
CA1070708A (en) Process for oxidation of monosaccharides
JPS6041656B2 (en) Method for oxidizing (poly)oxyethylene ether compounds
JP3373472B2 (en) Catalyst for acyloxylation reaction and its use
JP2903187B2 (en) Method for producing (poly) oxyethylene alkyl ether acetic acid
JPS62198641A (en) Production of carboxylic acid salt
CA1101882A (en) Process for producing salts of pyruvic acid
EP1112775B1 (en) Catalyst for the preparation of allyl acetate
JPS6040453B2 (en) Method for producing polyethylene glycolic acid
SU576937A3 (en) Method of preparing mono-o-b-oxoethyl-7-rutine
JP3103500B2 (en) Method for producing carboxylic acid ester
JP2552513B2 (en) Method for oxidizing (poly) oxyethylene alkyl ether compound
JPS6010016B2 (en) Method for producing hydroxyacetic acid
JPH0153863B2 (en)
JPH09221452A (en) Production of carboxylate
JPS584704B2 (en) Method for producing methyl methacrylate
JPS6221789B2 (en)
JPH09255626A (en) Production of aromatic carboxylic acid ester
JPS62198649A (en) Production of carboxylic acid salt
JPS59205343A (en) Production of monosaccharide oxide
JPH11140013A (en) Production of oxalacetic acid