JPH0278804A - Control device for water level in feed water heater - Google Patents

Control device for water level in feed water heater

Info

Publication number
JPH0278804A
JPH0278804A JP22941088A JP22941088A JPH0278804A JP H0278804 A JPH0278804 A JP H0278804A JP 22941088 A JP22941088 A JP 22941088A JP 22941088 A JP22941088 A JP 22941088A JP H0278804 A JPH0278804 A JP H0278804A
Authority
JP
Japan
Prior art keywords
drain
feed water
void amount
control device
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22941088A
Other languages
Japanese (ja)
Inventor
Yoshisuke Ishizaki
石崎 義介
Haruhiko Uno
宇野 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP22941088A priority Critical patent/JPH0278804A/en
Publication of JPH0278804A publication Critical patent/JPH0278804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent production of a sudden fluctuation in a level in a high pressure feed water heater by a method wherein drain flush occurring due to a drop in a generator load or a delay in a drain temperature drop when a plant is in a transient state is computed as a void amount, and the opening of a regulating valve is regulated in response to the computed void amount. CONSTITUTION:A temperature detector 15 and a pressure detector 16 are connected to a drain line 5 connected to a high pressure feed water heater 4, and detecting signals from the two detectors 15 and 16 are inputted to a void amount computing control device 17 togetherwith a detecting signal from a level detector 11. The openings of regulators 6, 7, and 9 are controlled by means of a control signal from the void amount computing control device 17. Namely, upon the occurrence of a state in which a plant load is dropped and a feed water temperature is reduced to generate drain flush, a void amount is computed by the void amount computing control device 17, a valve opening command signal is outputted, by means of the signal, the regulating valves 6, 7, and 9 are opened to respective proper openings, and a rapid increase in a level in a high pressure feed water heater is prevented from occurring.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蒸気タービンがらの抽気によって給水を加熱
する給水加熱器の水位制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a water level control device for a feed water heater that heats feed water by using air extracted from a steam turbine.

(従来の技術) 一般に、蒸気タービンプラントにおいては、ボイラへの
給水をタービン抽気または前段ドレンにより加熱してプ
ラントの熱効率を高めるため、給水系統に複数段の給水
加熱器が設けられている。
(Prior Art) Generally, in a steam turbine plant, a water supply system is provided with a plurality of stages of feed water heaters in order to increase the thermal efficiency of the plant by heating the water supplied to the boiler using turbine bleed air or pre-stage drain.

第3図は脱気器貯水タンク内の復水を給水ポンプによっ
てボイラに供給する給水系統の概略系統図であって、脱
気器1に接続された脱気器貯水タンク2内に貯溜された
復水は、給水ポンプ3によって昇圧された後、複数の高
圧給水加熱器4(図においてはその一つのみを示す)−
を経て図示しないボイラに供給される。
FIG. 3 is a schematic diagram of a water supply system that supplies condensate in a deaerator water storage tank to a boiler using a water supply pump. After the condensate is pressurized by the feedwater pump 3, it is passed through a plurality of high-pressure feedwater heaters 4 (only one of which is shown in the figure).
The water is then supplied to a boiler (not shown).

上記高圧給水加熱器4には蒸気タービンの抽気および前
段給水加熱器からのドレンが供給され、そこで給水との
熱交換が行なわれる。そして、上記熱交換によって発生
したドレンはドレンライン5を経て次段の高圧給水加熱
器に送られる。また、上記ドレンライン5は、第1の調
節弁6を介して脱気器1に、また第2の調節弁7を介し
て低圧給水加熱器8に、さらに第3の調節弁9を介して
復水器10に接続されている。
The high-pressure feedwater heater 4 is supplied with steam turbine bleed air and drain from the pre-stage feedwater heater, where it exchanges heat with the feedwater. The drain generated by the heat exchange is sent to the next high-pressure feed water heater via the drain line 5. Further, the drain line 5 is connected to the deaerator 1 via the first regulating valve 6, to the low pressure feed water heater 8 via the second regulating valve 7, and further via the third regulating valve 9. It is connected to the condenser 10.

ところで、上記高圧給水加熱器4内の水位は水位検出器
11によって検出されており、その水位が通常標準水位
(N、 W、  L)以上になると第1の調節計12に
よって第1の調節弁6が開方向に制御され、ドレンが脱
気器3へ排出される。また、排出量が上記第1の調節弁
6だけでは不足し、水位が通常標準水位子α(N、 W
、 L十α)になると、第2の調節計13により第2の
調節弁7が開方向に制御され、ドレンが低圧給水加熱器
8に排出される。さらに、第1の調節弁6、および第2
の調節弁7の両方を開いてもドレン排出量が不足し、通
常標準水位子β(N、 W、、 L+β)になると、第
3の調節計14によって第3の調節弁9が開方向に制御
され、ドレンが復水器10に排出される。このようにし
て、給水加熱器内の水位は常にN、 W、 LSN、 
W、 L+α、N、 W、 L+βに制御される。
By the way, the water level in the high-pressure feed water heater 4 is detected by a water level detector 11, and when the water level exceeds the normal standard water level (N, W, L), a first controller 12 turns on the first control valve. 6 is controlled in the open direction, and drain is discharged to the deaerator 3. In addition, the discharge amount is insufficient by the first control valve 6 alone, and the water level is normally lower than the standard water level α (N, W
, L0α), the second control valve 7 is controlled in the opening direction by the second controller 13, and the drain is discharged to the low-pressure feed water heater 8. Furthermore, the first control valve 6 and the second
Even if both of the control valves 7 are opened, the amount of drain discharged is insufficient, and when the normal water level reaches β (N, W, , L + β), the third control valve 9 is moved in the opening direction by the third controller 14. The condensate is discharged into the condenser 10 under controlled conditions. In this way, the water level in the feed water heater is always N, W, LSN,
Controlled by W, L+α, N, W, L+β.

(発明が解決しようとする課題) ところが、蒸気タービンプラントがプラント停止等で定
格運転から発電負荷を急降下させる必要が生じたような
場合には、負荷降下に伴ない高圧給水加熱器の器内圧力
は抽気圧力の降下に比例して降下して行くが、脱気器貯
水タンク2に貯水された給水の温度は降下するのが遅い
ため、給水と熱交換するドレンの温度もその降下が遅く
なる。
(Problem to be Solved by the Invention) However, when a steam turbine plant has to suddenly reduce the power generation load from rated operation due to plant shutdown, etc., the internal pressure of the high-pressure feed water heater decreases due to the load drop. decreases in proportion to the decrease in bleed pressure, but since the temperature of the feed water stored in the deaerator water storage tank 2 falls slowly, the temperature of the drain that exchanges heat with the feed water also falls slowly. .

したがって、高圧給水加熱器4から脱気器1に排出され
るドレンがフラッシュ現象を起こすことがある。
Therefore, the drain discharged from the high-pressure feed water heater 4 to the deaerator 1 may cause a flash phenomenon.

すなわち、第4図に示すように、負荷Wが降下するとそ
れに対応して給水加熱器内圧力Pも降下する。そしてこ
の器内圧力Pが降下すれば、同様にドレン飽和温度T1
も降下していく。
That is, as shown in FIG. 4, when the load W decreases, the feed water heater internal pressure P also decreases correspondingly. If this internal pressure P decreases, the drain saturation temperature T1
is also descending.

ところが、給水は脱気器貯水タンクに多量に貯水されて
いるため、負荷降下が始まっても給水温度T2はt秒間
遅れて降下が始まる。したが7て、給水と熱交換するこ
とによって温度が降下するドレンの温度T も給水温度
T2と同様な温度降下現象を示す。そしてドレン温度T
3とドレンの飽和温度TIと交わるドレンフラッシュ発
生点aよリドレンのフラッシュ現象が始まる。
However, since a large amount of feed water is stored in the deaerator water storage tank, even if the load starts to drop, the feed water temperature T2 starts to drop after a delay of t seconds. Therefore, the temperature T of the drain whose temperature drops by exchanging heat with the feed water also exhibits the same temperature drop phenomenon as the feed water temperature T2. and drain temperature T
The re-drain flash phenomenon begins at the drain flash generation point a, where 3 and the drain saturation temperature TI intersect.

しかして、このようにしてドレンのフラッシュが発生す
ると第1の調節弁6によるドレン排出の調節が乱れ、給
水加熱器ドレン水位が急上昇し、水位高の警報が発生し
たり、またそのあおりで水位低の警報が発生したりして
、水位制御系が大きく乱れることがある等の問題がある
However, when a drain flush occurs in this way, the control of drain discharge by the first control valve 6 is disturbed, and the water level of the feed water heater drain rises rapidly, causing a high water level alarm and There are problems such as a low level warning being generated and the water level control system being greatly disturbed.

本発明はこのような点に鑑み、上述の如きドレンフラッ
シュによる給水加熱器水位変動を防止し、発電機負荷降
下時およびプラント過渡変化時に安定な制御を行なうこ
とができる給水加熱器水位制御装置を得ることを目的と
する。
In view of these points, the present invention provides a feedwater heater water level control device that can prevent feedwater heater water level fluctuations due to drain flush as described above and perform stable control during generator load drops and plant transient changes. The purpose is to obtain.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、蒸気タービンからの抽気によって給水を加熱
する給水加熱器を有する蒸気タービンプラントの給水加
熱器水位制御装置において、発電機負荷降下時或はプラ
ント過渡状態時におけるドレン温度の降下遅れから発生
するドレンフラッシュをボイド量としてボイド量演算器
によって演算し、その演算されたボイド量に対応して弁
制御装置により給水加熱器に付設されたバックアップ用
調節弁の開度を調節するようにしたことを特徴とする。
(Means for Solving the Problems) The present invention provides a feedwater heater water level control device for a steam turbine plant having a feedwater heater that heats feedwater using extracted air from a steam turbine. The drain flash that occurs due to the delay in the drop in drain temperature during operation is calculated as a void amount by a void amount calculator, and the back-up control valve attached to the feed water heater is controlled by the valve control device in accordance with the calculated void amount. It is characterized by adjusting the opening degree.

(作 用) 発電機負荷降下時或はプラント過渡状態時に高圧給水加
熱器器内圧力が減少すると、そのときドレン温度および
ドレン圧力によってドレン温度の降下遅れから発生する
ドレンフラッシュがボイド量として演算され、その演算
によって得られた弁開度指令値によって調節弁が開方向
に制御され、高圧給水加熱器水位の急上昇が防止される
(Function) When the pressure inside the high-pressure feed water heater decreases when the generator load drops or the plant is in a transient state, the drain flash that occurs due to the delay in the drain temperature drop due to the drain temperature and drain pressure is calculated as the void amount. The control valve is controlled in the opening direction by the valve opening command value obtained by the calculation, and a sudden rise in the water level of the high pressure feed water heater is prevented.

(実施例) 以下、第1図および第2図を参照して本発明の実施例に
ついて説明する。なお、第1図中第3図と同一部分には
同一符号を付しその詳細な説明は省略する。  6 第1図において、高圧給水加熱器4に接続されたドレン
ライン5には、温度検出器15および圧力検出器16が
接続されており、上記雨検出器15.16からの検出信
号が、水位検出器11からの検出信号とともに、ボイド
量演算制御装置17に入力され、上記ボイド量演算制御
装置17からの制御信号によって、第1の調節計6、第
2の調節計7および第3の調節計9の開度制御が行なわ
れるようにしである。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. Note that the same parts in FIG. 1 as in FIG. 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted. 6 In FIG. 1, a temperature detector 15 and a pressure detector 16 are connected to the drain line 5 connected to the high-pressure feed water heater 4, and the detection signals from the rain detectors 15 and 16 are used to detect the water level. The detection signal from the detector 11 is input to the void amount calculation control device 17, and the control signal from the void amount calculation control device 17 controls the first controller 6, the second controller 7, and the third controller. A total of nine opening degree controls are performed.

すなわち、プラント負荷が降下し始め、給水温度が低下
してドレンフラッシュが発生するような状態になると、
ボイド量演算制御装置17によってボイド量が演算され
弁開度指令信号が出力され、その弁開度指令信号によっ
て各調節弁6. 7. 9が適当な開度に開らかれ、こ
れによって高圧給水加熱器水位の急上昇が防止され、制
御系の乱れの発生が防止される。
In other words, when the plant load begins to drop and the feed water temperature drops, causing a drain flush,
The void amount calculation control device 17 calculates the void amount and outputs a valve opening command signal, and the valve opening command signal is used for each control valve 6. 7. 9 is opened to an appropriate opening degree, thereby preventing a sudden rise in the water level of the high pressure feed water heater and preventing disturbances in the control system.

第2図は、上記ボイド量演算制御装置17の構成を示す
ブロック図であって、温度検出器15からの検出信号が
関数発生器20において比エンタルピに変換され、その
出力信号がフラッシュ率演算器21に入力される。
FIG. 2 is a block diagram showing the configuration of the void amount calculation and control device 17, in which the detection signal from the temperature detector 15 is converted into specific enthalpy in the function generator 20, and the output signal is sent to the flash rate calculation and control device. 21.

また、圧力検出器16からの検出信号は加算器22で静
水頭と比較され、その圧力信号が関数発生器23におい
て飽和水の比エンタルピに変換され、その出力信号が上
記フラッシュ率演算器21に入力される。上記圧力信号
はさらに関数発生器24で飽和蒸気の比エンタルピに変
換され、その出力信号も上記フラッシュ率演算器21に
入力される。
Further, the detection signal from the pressure detector 16 is compared with the static water head in the adder 22, the pressure signal is converted into the specific enthalpy of saturated water in the function generator 23, and the output signal is sent to the flash rate calculator 21. is input. The pressure signal is further converted into specific enthalpy of saturated steam by the function generator 24, and its output signal is also input to the flash rate calculator 21.

フラッシュ率演算器21ではドレン温度の比エンタルピ
、飽和水の比エンタルピ、および飽和蒸気の比エンタル
ピによってフラッシュ率が演算され、このフラッシュ率
信号がボイド率演算器25に入力される。
The flash rate calculator 21 calculates a flash rate based on the specific enthalpy of the drain temperature, the specific enthalpy of saturated water, and the specific enthalpy of saturated steam, and this flash rate signal is input to the void rate calculator 25.

一方、前記圧力信号は関数発生器26によって蒸気の比
容積に変換され、また関数発生器27によってドレンの
比容積に変換され、蒸気の比容積およびドレンの比容積
信1号も上記ボイド率演算器25に入力される。
On the other hand, the pressure signal is converted into a specific volume of steam by the function generator 26, and is also converted into a specific volume of drain by the function generator 27, and the specific volume of steam and the specific volume of drain signal 1 are also calculated by the above-mentioned void ratio calculation. The signal is input to the device 25.

ボイド率演算器25では、上記関数発生器26゜27で
変換された蒸気の比容積とドレンの比容積およびフラッ
シュ率演算器21からの出力信号によってボイド率が演
算される。
The void ratio calculator 25 calculates the void ratio based on the specific volume of steam and drain converted by the function generators 26 and 27, and the output signal from the flash ratio calculator 21.

また、発電機負荷信号が関数発生器28に入力され、そ
こでドレン量に換算され、そのドレン量信号と前記ボイ
ド率演算器25からのボイド率信号とによってボイド量
演算器29でボイド量が演算される。
Further, the generator load signal is input to the function generator 28, where it is converted into a drain amount, and the void amount is calculated by the void amount calculator 29 based on the drain amount signal and the void ratio signal from the void ratio calculator 25. be done.

さらに、前記温度検出器15からの検出信号は関数発生
器30にも入力されており、ここで飽和圧力に変換され
、この飽和圧力信号と前記圧力検出器16によって得ら
れた圧力信号とによって、補正差圧演算器31において
補正差圧が演算され、この補正差圧信号が弁容量演算器
32に入力される。
Further, the detection signal from the temperature detector 15 is also input to a function generator 30, where it is converted into a saturated pressure, and by this saturated pressure signal and the pressure signal obtained by the pressure detector 16, A corrected differential pressure is calculated in the corrected differential pressure calculator 31, and this corrected differential pressure signal is input to the valve capacity calculator 32.

一方、前記温度検出器15からの温度信号が関数発生器
33でドレンの比重に変換され、そのドレン比重信号も
上記弁容量演算器32に入力され、そこで前記補正差圧
信号とともに弁容量が演算される。
On the other hand, the temperature signal from the temperature detector 15 is converted into a drain specific gravity by a function generator 33, and the drain specific gravity signal is also input to the valve capacity calculator 32, where the valve capacity is calculated together with the corrected differential pressure signal. be done.

そして、この弁容量信号が光制御装置34に入力され、
その弁制御装置34からの弁開度指令信号が各調節弁7
,9に出力され、各調節弁7,9の開度が制御される。
This valve capacity signal is then input to the light control device 34,
The valve opening command signal from the valve control device 34 is transmitted to each control valve 7.
, 9, and the opening degree of each control valve 7, 9 is controlled.

これにより、高圧給水加熱器水位は発電機負荷の降下お
よび過渡現象に関係なく、常に安定した制御が得られる
As a result, stable control of the high-pressure feedwater heater water level can be obtained at all times, regardless of generator load drops and transient phenomena.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては発電機負荷降下
時或はプラント過渡状態時におけるドレン温度の降下遅
れから発生するドレンフラッシュをボイド量として演算
し、その演算されたボイド量に対応して調節弁の開度を
調節するようにしたので、高圧給水加熱器の水位の急激
な変動を防止することができ、プラント負荷降下時にお
ける高圧給水加熱器水位制御を安定した状態に保持する
ことができる。
As explained above, in the present invention, the drain flash that occurs due to a delay in lowering the drain temperature during a generator load drop or a transient state of the plant is calculated as a void amount, and the amount of voids is adjusted according to the calculated void amount. By adjusting the opening degree of the valve, it is possible to prevent sudden fluctuations in the water level of the high-pressure feedwater heater, and it is possible to maintain stable water level control of the high-pressure feedwater heater when the plant load drops. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の給水加熱器水位制御装置の概略系統図
、第2図はボイドMke1算制御装置のブロック図、第
3図は従来の給水加熱器水位制御装置の概略系統図、第
4図は作動説明図である。 1・・・脱気器、2・・・脱気器貯水タンク、3・・・
給水ポンプ、4・・・高圧給水加熱器、5・・・ドレン
ライン、6・・・第1の調節弁、7・・・第2の調節弁
、9・・・第3の調節弁、15・・温度検出器、16・
・・圧力検出器、2ユ・・・フラッシュ率演算器、25
・・・ボイド率演算器、29・・・ボイド量演算器、3
2・・・弁容量演算器。 出願人代理人  佐  藤  −雄 第1図 第3図
FIG. 1 is a schematic system diagram of the feed water heater water level control device of the present invention, FIG. 2 is a block diagram of the void Mke1 calculation control device, FIG. 3 is a schematic system diagram of the conventional feed water heater water level control device, and FIG. The figure is an explanatory diagram of the operation. 1... Deaerator, 2... Deaerator water storage tank, 3...
Water supply pump, 4... High pressure water heater, 5... Drain line, 6... First control valve, 7... Second control valve, 9... Third control valve, 15・・Temperature detector, 16・
...Pressure detector, 2 u...Flash rate calculator, 25
...Void ratio calculator, 29...Void amount calculator, 3
2...Valve capacity calculator. Applicant's agent Mr. Sato Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンからの抽気によって給水を加熱する給水加
熱器を有する蒸気タービンプラントの給水加熱器水位制
御装置において、発電機負荷降下時或はプラント過渡状
態時におけるドレン温度の降下遅れから発生するドレン
フラッシュをボイド量として演算するボイド量演算器と
、そのボイド量演算器によって演算されたボイド量に対
応して、上記給水加熱器に付設されたバックアップ用調
節弁の開度を調節する弁制御装置を有することを特徴と
する、給水加熱器水位制御装置。
In a feedwater heater water level control system for a steam turbine plant that has a feedwater heater that heats the feedwater using extracted air from the steam turbine, the drain flash that occurs due to a delay in the drop in drain temperature during a generator load drop or during a transient state of the plant is controlled. It has a void amount calculator that calculates the void amount, and a valve control device that adjusts the opening degree of the backup control valve attached to the feed water heater in accordance with the void amount calculated by the void amount calculator. A feed water heater water level control device characterized by:
JP22941088A 1988-09-13 1988-09-13 Control device for water level in feed water heater Pending JPH0278804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22941088A JPH0278804A (en) 1988-09-13 1988-09-13 Control device for water level in feed water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22941088A JPH0278804A (en) 1988-09-13 1988-09-13 Control device for water level in feed water heater

Publications (1)

Publication Number Publication Date
JPH0278804A true JPH0278804A (en) 1990-03-19

Family

ID=16891783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22941088A Pending JPH0278804A (en) 1988-09-13 1988-09-13 Control device for water level in feed water heater

Country Status (1)

Country Link
JP (1) JPH0278804A (en)

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JPS6314004A (en) Feedwater-heater drain pressure controller for steam turbineplant
JP2809977B2 (en) Control device
JP2001108201A (en) Multiple pressure waste heat boiler
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JPS60201008A (en) Method and apparatus for controlling operation of plant
JPH0278804A (en) Control device for water level in feed water heater
JP3435450B2 (en) Turbine bypass valve control device
JP2575482B2 (en) Deaerator pressure control system in steam turbine cycle
JPS61116184A (en) Control device of by-pass valve
JP3747253B2 (en) Thermal power plant protection system
JPS6032082B2 (en) Feed water temperature control device
JPH0241720B2 (en)
JPS5981402A (en) Controller for water level of deaerator
JPS6158903A (en) Turbine controller for nuclear reactor
JPS6217121B2 (en)
JPS61138007A (en) Controller for water level and pressure of deaerator
JPS59110810A (en) Water level control device for steam turbine degasifier
JPH06129208A (en) Composite cycle plant
JPS5888505A (en) Temperature dropping controller for turbine bypass system
JPS6066004A (en) Cooling system of power generator
JPS5928803B2 (en) Nuclear plant steam temperature control device
JPS6235592B2 (en)
JPH02176302A (en) Drain water level controller