JPS5928803B2 - Nuclear plant steam temperature control device - Google Patents

Nuclear plant steam temperature control device

Info

Publication number
JPS5928803B2
JPS5928803B2 JP51051865A JP5186576A JPS5928803B2 JP S5928803 B2 JPS5928803 B2 JP S5928803B2 JP 51051865 A JP51051865 A JP 51051865A JP 5186576 A JP5186576 A JP 5186576A JP S5928803 B2 JPS5928803 B2 JP S5928803B2
Authority
JP
Japan
Prior art keywords
steam
pressure
evaporator
circulation system
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51051865A
Other languages
Japanese (ja)
Other versions
JPS52134996A (en
Inventor
晴喜 森本
敏勝 藤原
良一 村田
堅三 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP51051865A priority Critical patent/JPS5928803B2/en
Publication of JPS52134996A publication Critical patent/JPS52134996A/en
Publication of JPS5928803B2 publication Critical patent/JPS5928803B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は原子カプラントの蒸気温度、特に蒸発器出口の
蒸気温度を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the vapor temperature of an atomic couplant, in particular the vapor temperature at the evaporator outlet.

原子カプラント例えば高速増殖炉プラントにおいて通常
負荷(30係〜100%)運転の制御方式はすでにかな
りの検討がなされ一応の方式が得られているようである
が、起動・停止(0係〜30係負荷)に対しては、はと
んど未着手の状態にあり積極的な制御を加えたものは見
かけられない。
A control system for normal load (30% to 100%) operation in nuclear couplers, for example, fast breeder reactor plants, has already been extensively studied and a certain method has been developed, but for start-up and shutdown (0% to 30%) As for load), this has not been done yet, and no active control has been applied.

この理由は起動・停止時のように蒸気圧力の大幅な変化
がある場合にはその変化が沸騰の状況に多大の影響を及
ぼし不都合な結果をまねくためである。
The reason for this is that if there is a large change in steam pressure, such as during startup or shutdown, that change will have a great effect on the boiling situation, leading to unfavorable results.

例えば、起動時には起動時間を短かくするためにまず蒸
発器出口の蒸気を早い時機に過熱蒸気とする必要がある
For example, at startup, it is necessary to convert the steam at the evaporator outlet into superheated steam as soon as possible in order to shorten the startup time.

それには、初め圧力を低い状態にして被加熱流体の飽和
温度を下げて2次ナトリウムとの温度差を大きくするこ
とによって入熱を増やし定格の圧力まで徐々に増圧して
行(方法が考えられるが次のような問題があって充分な
効果が得られないのが現状である。
To do this, the pressure is initially kept low, then the saturation temperature of the fluid to be heated is lowered and the temperature difference between it and the secondary sodium is increased, thereby increasing the heat input and gradually increasing the pressure to the rated pressure. However, the current situation is that sufficient effects cannot be obtained due to the following problems.

いま、蒸発器内の圧力が上がると(一般に60〜170
ataの範囲にある)その圧力に対応する飽和水エン
タルピが比例的に上昇し、最初あるエンタルピで飽和域
に入っていた蒸気が昇圧により減温し、はなはだしい場
合には再びサブクール域に戻ってしまうという現象が生
じ、蒸発器出口以降の配管や過熱器、タービン等に腐食
や熱サイクル疲労破壊を発生させるという不具合を生ず
る。
Now, when the pressure inside the evaporator increases (generally 60 to 170
The enthalpy of saturated water corresponding to the pressure (in the range of ATA) increases proportionally, and the steam that was initially in the saturated region at a certain enthalpy will cool down due to the increase in pressure, and in extreme cases it will return to the subcooled region again. This phenomenon occurs, causing problems such as corrosion and thermal cycle fatigue failure in piping, superheaters, turbines, etc. after the evaporator outlet.

又、停止時には蒸気圧力を減少させるとかえって、蒸気
発生量や蒸気温度が増大し、起動時と同様な不具合が発
生する。
Furthermore, when the steam pressure is reduced when the steam generator is stopped, the amount of steam generated and the steam temperature increase, causing the same problems as when the steam generator is started.

本発明は、前記したような予想される不具合を発生させ
ずにプラントを効率よくかつ迅速に起動、停止させるた
めになされたものである。
The present invention has been made in order to efficiently and quickly start and stop a plant without causing the above-mentioned expected problems.

すなわち本発明は蒸発器と循環ポンプとを通る熱媒体循
環系および同熱媒体循環系に対応して前記蒸発器を通る
蒸気循環系を有する原子カプラントに於て、前記循環ポ
ンプに制御器を付設し、同制御器に加算器を経由して連
絡する流量信号発生器を設け、前記蒸気循環系に設けた
蒸気圧力制御装置の圧力設定器を調節器を経由して前記
加算器に連絡し、流量信号発生器により所望の流量基準
信号を発生させ、その流量基準信号を循環ポンプに印加
して熱媒体循環系の流量を調整して蒸気循環系の蒸発型
出口の蒸気温度を制御し、さらに前記流量基準信号に圧
力設定器の圧力設定値を調節器を経由して付加し蒸気圧
力の変化に対応して蒸気温度を所望の値に制御する装置
を提供するものであり、本発明によれば蒸気循環系の蒸
気圧力の増減に先だって予かしめ熱媒体流量を調整する
ことにより、蒸発器への搬入熱量を予め増減して蒸気循
環系の圧力変化に対応するので蒸気温度を時間遅れを生
ずることなく安定して制御でき、したがって効率よく迅
速にかつ配管、タービン等に何らの不具合を及ぼすこと
なくプラントを起動・停止することができる。
That is, the present invention provides an atomic coupler having a heat medium circulation system passing through an evaporator and a circulation pump, and a vapor circulation system passing through the evaporator corresponding to the heat medium circulation system, in which a controller is attached to the circulation pump. a flow rate signal generator that communicates with the controller via an adder, and a pressure setting device of a steam pressure control device provided in the steam circulation system communicates with the adder via a regulator; A flow rate signal generator generates a desired flow rate reference signal, and the flow rate reference signal is applied to the circulation pump to adjust the flow rate of the heat medium circulation system and control the steam temperature at the evaporative type outlet of the steam circulation system; According to the present invention, there is provided a device that adds a pressure set value of a pressure setting device to the flow rate reference signal via a regulator and controls steam temperature to a desired value in response to changes in steam pressure. For example, by pre-caulking and adjusting the heat medium flow rate before the steam pressure in the steam circulation system increases or decreases, the amount of heat carried into the evaporator can be increased or decreased in advance to respond to pressure changes in the steam circulation system, resulting in a time delay in the steam temperature. Therefore, the plant can be started and stopped efficiently and quickly without causing any problems to piping, turbines, etc.

次に本発明の実施例を図面にもとづいて説明する。Next, embodiments of the present invention will be described based on the drawings.

第1図は、本実施例の制御装置によって蒸気圧力が制御
される高速増殖炉プラントの系統図である。
FIG. 1 is a system diagram of a fast breeder reactor plant whose steam pressure is controlled by the control device of this embodiment.

第1図において1は原子炉の炉心で、この炉心1には、
制御棒駆動装置2を具備する制御棒3が挿入される。
In Fig. 1, 1 is the core of a nuclear reactor, and this core 1 includes:
A control rod 3 with a control rod drive 2 is inserted.

前記炉心1を流れる熱媒体すなわち液体ナトリウムの循
環系4は、中間熱交換器5および1次循環ポンプ6を通
る。
A circulation system 4 of the heat medium, that is, liquid sodium, flowing through the reactor core 1 passes through an intermediate heat exchanger 5 and a primary circulation pump 6.

前記循環系4は通常1次Naループ4と呼ばれる。The circulatory system 4 is usually called the primary Na loop 4.

同1次Naループ4に対応して前記中間熱交換器5を通
る熱媒体すなわち液体ナトリウムの2次循環系すなわち
2次Naループ7は、過熱器8と再熱器9とを分れて通
り、合流後蒸発器10と2次循環ポンプ11とを順次通
り前記中間熱交換器5に帰還する。
A secondary circulation system, that is, a secondary Na loop 7 for the heat medium, that is, liquid sodium, which passes through the intermediate heat exchanger 5 in correspondence with the primary Na loop 4, passes through the superheater 8 and the reheater 9 separately. After merging, the heat is returned to the intermediate heat exchanger 5 through the evaporator 10 and the secondary circulation pump 11 in sequence.

なお前記2次Naループ7には再熱器9の上流側に分配
弁12が設げられている。
Note that the secondary Na loop 7 is provided with a distribution valve 12 on the upstream side of the reheater 9.

給水ポンプ13を出て給水制御弁14を通り、前記2次
Naループ7に対応して蒸気発生器10および過熱器8
を順次通り、更に調速弁15を通って高圧タービン16
に至り、同高圧タービン16を出て再熱器9を通り低圧
タービンに至った後前記給水ポンプ13に帰還する蒸気
循環系17が設げられている。
It exits the feed water pump 13 and passes through the feed water control valve 14, and is connected to a steam generator 10 and a superheater 8 corresponding to the secondary Na loop 7.
, and further passes through the speed regulating valve 15 to the high pressure turbine 16.
A steam circulation system 17 is provided in which the steam exits the high-pressure turbine 16, passes through the reheater 9, reaches the low-pressure turbine, and then returns to the feedwater pump 13.

第2図は本実施例の制御装置の系統を示したもので、第
2図において蒸発器10より出る蒸気循環系17に設け
られた温度検出器18は比較器19を介して蒸気温度設
定器20に連絡し、前記比較器19は比例積分動作調節
器21に連絡しており、これらは補償回路を形成してい
る。
FIG. 2 shows the system of the control device of this embodiment. In FIG. 20, said comparator 19 is connected to a proportional-integral action regulator 21, which form a compensation circuit.

図示しない中央指令装置に関して設けられた流量信号発
生器22は、2次循環ポンプ6に設けられ関数発生機能
を有する制御器すなわち、回転数調節器23に加算器2
5.26を経由して電気的に連絡している。
A flow rate signal generator 22 provided for a central command device (not shown) is a controller provided in the secondary circulation pump 6 and has a function generation function, that is, a rotation speed regulator 23 and an adder 2
Electrical communication via 5.26.

前記加算器26は、前記補償回路の比例積分動作調節器
21に電気的に連絡している。
The adder 26 is in electrical communication with the proportional-integral operation regulator 21 of the compensation circuit.

前記蒸気循環系17に調速弁15に関して設けられた圧
力検出器″27は、比較器28を介して圧力設定器29
に電気的に連絡し、前記比較器28は比例積分動作調節
器30を介して調速弁15に連絡し、これら調速弁15
、圧力検出器27、比較器28、比例積分動作調節器3
0および圧力設定器29は一体となって蒸気循環系17
の蒸気圧力制御装置31を形成している。
A pressure detector "27 provided in the steam circulation system 17 in relation to the speed regulating valve 15 is connected to a pressure setting device 29 via a comparator 28.
The comparator 28 is in electrical communication with the regulating valves 15 via a proportional-integral operation regulator 30,
, pressure detector 27, comparator 28, proportional-integral operation regulator 3
0 and the pressure setting device 29 are integrated into the steam circulation system 17.
A steam pressure control device 31 is formed.

同蒸気圧力制御装置31の圧力設定器29は、調節器す
なわち比例微分動作調節器32を介して前記加算器25
に電気的に結ばれている。
The pressure setting device 29 of the steam pressure control device 31 is connected to the adder 25 via a regulator, that is, a proportional differential operation regulator 32.
electrically connected to.

前記した構成の実施例の通常運転について説明すると炉
心1で発生した核反応熱は1次Naループ4を流れる液
体ナトリウムに伝えられ、受熱して昇温しだ液体ナトリ
ウムは中間熱交換器5に流入し、ここで2次Naループ
7を流れる液体ナトリウムに授熱し、それ自体は減温し
て低温となり、1次循環ポンプ6を通って再び炉心1に
戻り、運転中はこのサイクルを繰返す。
To explain the normal operation of the embodiment with the above configuration, the nuclear reaction heat generated in the reactor core 1 is transferred to the liquid sodium flowing through the primary Na loop 4, and the liquid sodium receives heat and rises in temperature.The liquid sodium then passes through the intermediate heat exchanger 5. Here, it transfers heat to the liquid sodium flowing through the secondary Na loop 7, which itself is reduced in temperature to a low temperature, passes through the primary circulation pump 6, returns to the core 1, and repeats this cycle during operation.

前記したように中間熱交換器5で受熱し高温となった2
次Naループ7の液体ナトリウムは、過熱器8および再
熱器9を流れて蒸気循環系17の蒸気に授熱し、更に蒸
発器10に入って、蒸気循環系17を流れて蒸発器10
に入る給水に授熱し、従って前記給水は沸騰蒸発し蒸気
となる。
As mentioned above, heat was received in the intermediate heat exchanger 5 and the temperature became high.
Next, the liquid sodium in the Na loop 7 flows through a superheater 8 and a reheater 9 to transfer heat to the steam in the vapor circulation system 17, and further enters the evaporator 10, flows through the vapor circulation system 17, and then passes through the evaporator 10.
It transfers heat to the incoming feed water, so that said feed water boils and evaporates into steam.

蒸発器10を出た液体ナトリウムは2次循環ポンプ11
を通り中間熱交換器5に戻り、運転中は前述したような
サイクルを繰返して2次Naループ7を循環する。
The liquid sodium that has exited the evaporator 10 is sent to the secondary circulation pump 11
, and returns to the intermediate heat exchanger 5, and during operation, the above-described cycle is repeated to circulate through the secondary Na loop 7.

又前述のように蒸気循環系1γはある部分では水が流れ
、ある部分では蒸気が流れる。
Further, as mentioned above, in the steam circulation system 1γ, water flows in some parts and steam flows in some parts.

次に前記した構成を有する本実施例による蒸気温度の制
御作用を起動時を例にとって説明する。
Next, the steam temperature control operation according to this embodiment having the above-mentioned configuration will be explained by taking the startup time as an example.

通常タービンの起動に先立ち蒸気循環系17の圧力は、
適宜な方法で大体60ata程度に昇圧されているので
、プラントの起動時に前記圧力を60ataから120
ataまで昇圧する場合について説明する。
Normally, before starting the turbine, the pressure in the steam circulation system 17 is
Since the pressure has been increased to approximately 60 ata using an appropriate method, the pressure must be increased from 60 ata to 120 ata when the plant is started up.
The case where the voltage is increased to ATA will be explained.

なお、炉心1は、図示しない通常の制御装置で制御され
所定の熱出力を発生している。
Note that the reactor core 1 is controlled by a normal control device (not shown) to generate a predetermined thermal output.

図示しない中央制御装置により流量信号発生器22に第
3図における曲線Fで示すような流量基準信号を発生さ
せる。
A central controller (not shown) causes the flow rate signal generator 22 to generate a flow rate reference signal as shown by curve F in FIG.

すなわち時間T(0)からT(3)まではF(0)〜F
(3)に示す如く一様に増大し、時間T(3)からT(
6)まではF(3)〜F(6)に示すごとく一定で更に
時間T(6)以降はF(6)から一様に増大する。
In other words, from time T(0) to T(3), F(0) to F
As shown in (3), it increases uniformly from time T(3) to T(
Until 6), it is constant as shown in F(3) to F(6), and increases uniformly from F(6) after time T(6).

この流量基準信号のパターンは、プラントの特性等を考
慮して種々設定することができることは勿論である。
It goes without saying that the pattern of this flow rate reference signal can be set in various ways taking into consideration the characteristics of the plant and the like.

前述のように蒸気圧力制御装置31の圧力設定器29の
設定圧力は第3図の曲線Aで示すように時間T(0)か
らT(4)まではA(0)〜A(4)に示す如く一定(
60ata)で、時間T(4)からT(5)まではA(
4)〜A(5)に示す如く一様に上昇し、時間T(6)
以降は、A(6)以降に示す如(120ataに保持さ
れる。
As mentioned above, the set pressure of the pressure setting device 29 of the steam pressure control device 31 changes from A(0) to A(4) from time T(0) to T(4) as shown by curve A in FIG. As shown, constant (
60ata), and from time T(4) to T(5), A(
As shown in 4) to A(5), it rises uniformly, and at time T(6)
Thereafter, it is held at 120ata (120ata) as shown in A(6) and after.

したがって、時間T(0)からT(3)までは前記設定
圧力による比例微分動作調節器32の出力は曲MBのB
(0)〜B(3)の如く零なので回転数調整器23への
入力は流量基準信号Fのみに対応して一様に増大し、適
宜変換されて2次循環ポンプ11の回転数をあげて2次
Naループ7の流量を曲線りのD(0)からD(3)ま
でのように増大させる。
Therefore, from time T(0) to T(3), the output of the proportional differential operation regulator 32 based on the set pressure is B of the song MB.
Since it is zero as shown in (0) to B(3), the input to the rotation speed regulator 23 increases uniformly in response to only the flow rate reference signal F, and is converted as appropriate to increase the rotation speed of the secondary circulation pump 11. The flow rate of the secondary Na loop 7 is increased from D(0) to D(3) along the curve.

2次Naループ7内の液体ナトリウムの流量が増大する
と、中間熱交換器5内の熱伝達率が増大し、2次Naル
ープ7の液体ナトリウムの温度が上がり、結局蒸発器1
0へ搬入される熱量が増大し、蒸気循環系17を通って
蒸発器10内へ流入する給水へ伝えられる熱量が増大す
る。
When the flow rate of liquid sodium in the secondary Na loop 7 increases, the heat transfer coefficient in the intermediate heat exchanger 5 increases, the temperature of the liquid sodium in the secondary Na loop 7 increases, and eventually the evaporator 1
The amount of heat carried into the evaporator 10 increases, and the amount of heat transferred to the feed water flowing through the steam circulation system 17 into the evaporator 10 increases.

従って蒸気循環系17の蒸発器10の出口温度は曲線E
に示すように初期温度E(0)から60ataにおける
飽和温度E(1)まで上昇する。
Therefore, the outlet temperature of the evaporator 10 of the steam circulation system 17 is curve E
As shown, the temperature rises from the initial temperature E(0) to the saturation temperature E(1) at 60ata.

圧力が一定に保たれているから蒸気循環系17の蒸発器
10の出口温度は蒸気が飽和蒸気にかわるまですなわち
E(2)まで上昇しない。
Since the pressure is kept constant, the outlet temperature of the evaporator 10 of the steam circulation system 17 does not rise to E(2) until the steam changes to saturated steam.

さらに2次Naループ7の液体ナトリウムが蒸発器10
へ搬入する熱量が増大しているから前記出口温度はE(
2)〜E(3)のように上昇し、蒸気は過熱蒸気となる
Furthermore, the liquid sodium in the secondary Na loop 7 is transferred to the evaporator 10.
Since the amount of heat carried into is increasing, the outlet temperature is E(
2) to E(3), and the steam becomes superheated steam.

時間T(3)以降は、基準流量信号(F)がF(3)〜
F(6)の如く一定になった後に、蒸発器10の出口温
度じ)もE(3)〜E(4)の如く一定となり、更に時
間T(4)で設定圧力(A)がA(4)からA(5)に
向って上昇しはじめると、比例微分動作調節器32の出
力(B)は、まず、B(4−−L)からB(4−U)に
瞬間的に増大し、しかる後に前記A(4)〜A(5)に
対応して、B(4−U)からB(5−U)まで増大する
After time T(3), the reference flow rate signal (F) changes from F(3) to
After becoming constant as shown in F(6), the outlet temperature of the evaporator 10 also becomes constant as shown in E(3) to E(4), and furthermore, at time T(4), the set pressure (A) becomes A( 4) starts to rise toward A(5), the output (B) of the proportional differential action regulator 32 first instantaneously increases from B(4--L) to B(4-U). , and then increases from B(4-U) to B(5-U) corresponding to A(4) to A(5).

前述の比例微分動作調節器32の出力(B)は、加算器
25から前記基準流量信号F)に付加されるので2次N
aループ7の流量(D)は、同様に回転数調節器23お
よび2次循環ポンプ11の作動によりD(4)〜D(5
)の如く増加する。
The output (B) of the proportional differential operation regulator 32 described above is added to the reference flow rate signal F) from the adder 25, so it is a secondary N
Similarly, the flow rate (D) of the a-loop 7 changes from D(4) to D(5) by the operation of the rotation speed regulator 23 and the secondary circulation pump 11.
).

前述の理由によす蒸発器10への2次Naループ7によ
る搬入熱量は増大し、蒸気循環系17を流れる給水ある
いは蒸気が蒸発器10内で受ける熱量は増加する。
Due to the above-mentioned reason, the amount of heat introduced into the evaporator 10 by the secondary Na loop 7 increases, and the amount of heat that the feed water or steam flowing through the steam circulation system 17 receives in the evaporator 10 increases.

そして、前記蒸気循環系1Tの受熱量の増加は、圧力設
定器29の設定圧力穴にもとづいて蒸気圧力制御装置3
1によって行なわれる蒸気循環系17の昇圧に先立ちか
つ並行して行なわれるので蒸発器出口温度じ)は、下る
ことなく一定に保持される。
The increase in the amount of heat received by the steam circulation system 1T is determined by the steam pressure control device 3 based on the setting pressure hole of the pressure setting device 29.
Since this is carried out prior to and in parallel with the pressurization of the steam circulation system 17 carried out by 1, the evaporator outlet temperature (1) is maintained constant without falling.

時間T(5)以降は、設定圧力(A)はA(5)から一
定(120ata)に保持されるが、比例微分動作調節
器の出力(B)は、微分項だけなくなり圧力変化(△P
=120−60=60 ata )に比例する比例項だ
けが残り、B(5−L)以降の一定値を保持される。
After time T(5), the set pressure (A) is kept constant (120 ata) from A(5), but the output (B) of the proportional differential action regulator loses only the differential term and changes in pressure (△P
Only the proportional term proportional to (=120-60=60 ata) remains and is held at a constant value after B(5-L).

従って2次Naループ7の流量D)も設定圧力(A)の
上昇前よりも若干大きい値に保持される。
Therefore, the flow rate D) of the secondary Na loop 7 is also maintained at a value slightly larger than before the set pressure (A) increases.

この流量(D)の増大分(△D)は、圧力変化(△P)
に対応するエンタルピの変化に対応しているので蒸発器
10の出口温度じ)は一定に保持される。
The increase (△D) in this flow rate (D) is the pressure change (△P)
The outlet temperature of the evaporator 10 (the same) is kept constant because the change in enthalpy corresponds to the change in enthalpy.

以上の場合において前記補償回路の蒸気温度設定器20
の設定温度は曲線Eの如く予め設定されており、蒸発器
10出口の蒸気温度は温度検出器18により検出され、
前記設定温度と比較され、偏差が生じた場合は比例積分
動作調節器21から補償信号が出力され、これによって
2次Naループの流量を増減して前記蒸気温度が設定温
度と一致するよう制御する。
In the above case, the steam temperature setting device 20 of the compensation circuit
The set temperature is set in advance as shown by curve E, and the steam temperature at the outlet of the evaporator 10 is detected by the temperature detector 18.
The steam temperature is compared with the set temperature, and if a deviation occurs, a compensation signal is output from the proportional-integral operation controller 21, thereby increasing or decreasing the flow rate of the secondary Na loop to control the steam temperature to match the set temperature. .

前記したような構成および作用を有する本実施例によれ
ば、単に蒸気圧力を上昇させる制御方式(制御された蒸
発器10の出口温度は曲線E/)にくらべ蒸発器10出
口の蒸気温度は下がらないので蒸気循環系17の配管、
過熱器9および高圧タービン16等における熱サイクル
応力の発生や腐食の発生を防止しながら適切に効率よく
迅速にプラントを起動しうるという効果を奏する。
According to this embodiment having the configuration and operation described above, the steam temperature at the outlet of the evaporator 10 does not decrease compared to a control method that simply increases the steam pressure (the controlled outlet temperature of the evaporator 10 is curve E/). Since there is no piping for steam circulation system 17,
This has the effect that the plant can be started appropriately, efficiently, and quickly while preventing the occurrence of thermal cycle stress and corrosion in the superheater 9, high-pressure turbine 16, and the like.

さらに又、蒸気圧力の上昇に先立ちかつ並行して2次N
aルーズの流量を増大するので単に当業者が容易になす
ような蒸気温度の補償回路を付設するものにくらべても
、蒸気温度の変化を検知してから炉出力を増大し、蒸発
器内の熱伝達量を増大するまでの時間遅れを防止しえて
より確実に蒸発器出口の蒸気温度を制御でき前記した効
果を奏しうる。
Furthermore, prior to and in parallel with the rise in steam pressure, secondary N
Since it increases the flow rate of a-loose, it increases the furnace output after detecting a change in steam temperature, compared to simply installing a steam temperature compensation circuit that can be easily done by a person skilled in the art. It is possible to prevent a time delay until the amount of heat transfer is increased and to more reliably control the steam temperature at the evaporator outlet, thereby producing the above-described effects.

以上、本実施例による起動時の制御作用および効果につ
いて詳細に説明したのが、停止時はこれに対応して停止
に向って作用することは当業者なら容易に理解できるで
あろう。
Those skilled in the art will easily understand that the control action and effect at the time of starting according to the present embodiment have been explained in detail above, but at the time of stopping, the control action and effect will correspond to this and work towards stopping.

又、本発明は起動時や停止時において非常に有効である
が、若干の構成の変化をなすことによって通常運転の蒸
気温度制御に供しうろことは勿論である。
Furthermore, although the present invention is very effective during startup and shutdown, it is of course possible to use it for steam temperature control during normal operation by making some changes in the configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例が適用される原子カプラントの
系統図、第2図は本発明の実施例を示す系統図、第3図
は作用説明図である。 1・・・・・・炉心、2・・・・・・制御棒駆動装置、
4・・・・・・1次Naループ、6・・・・・・1次循
環ポンプ、7・・・・・・2次Naループ、10・・・
・・・蒸発器、15・・・・・・調速弁、22・・・・
・・流量信号発生器、23・・・・・・回転数調整器、
25.26・・・・・・加算器、27・・・・・・圧力
検出器、28・・・・・・比較器、29・・・・・・圧
力設定器、30・・・・・・比例積分動作調節器、31
・・・・・・蒸気圧力制御装置、32・・・・・・比例
微分動作調節器。
FIG. 1 is a system diagram of an atomic couplant to which an embodiment of the present invention is applied, FIG. 2 is a system diagram showing an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the operation. 1...Reactor core, 2...Control rod drive device,
4...Primary Na loop, 6...Primary circulation pump, 7...Secondary Na loop, 10...
...Evaporator, 15...Governing valve, 22...
...Flow rate signal generator, 23...Rotation speed regulator,
25.26... Adder, 27... Pressure detector, 28... Comparator, 29... Pressure setting device, 30...・Proportional-integral action regulator, 31
. . . Steam pressure control device, 32 . . . Proportional differential operation regulator.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器と循環ポンプとを通る熱媒体循環系および同
熱媒体循環系に対応して前記蒸発器を通る蒸気循環系を
有する原子カプラントに於て、前記循環ポンプに制御器
を付設し、同制御器に加算器を経由して連絡する流量信
号発生器を設け、前記蒸気循環系に設けた蒸気圧力制御
装置の圧力設定器を調節器を経由して前記加算器に連絡
したことを特徴とする原子カプラントの蒸気温度制御装
置。
1. In an atomic couplant having a heat medium circulation system passing through an evaporator and a circulation pump, and a vapor circulation system passing through the evaporator corresponding to the heat medium circulation system, a controller is attached to the circulation pump, and the same A flow rate signal generator is provided in communication with the controller via an adder, and a pressure setting device of a steam pressure control device provided in the steam circulation system is communicated with the adder via a regulator. Atomic couplant steam temperature control device.
JP51051865A 1976-05-07 1976-05-07 Nuclear plant steam temperature control device Expired JPS5928803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51051865A JPS5928803B2 (en) 1976-05-07 1976-05-07 Nuclear plant steam temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51051865A JPS5928803B2 (en) 1976-05-07 1976-05-07 Nuclear plant steam temperature control device

Publications (2)

Publication Number Publication Date
JPS52134996A JPS52134996A (en) 1977-11-11
JPS5928803B2 true JPS5928803B2 (en) 1984-07-16

Family

ID=12898753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51051865A Expired JPS5928803B2 (en) 1976-05-07 1976-05-07 Nuclear plant steam temperature control device

Country Status (1)

Country Link
JP (1) JPS5928803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456054U (en) * 1987-09-30 1989-04-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456054U (en) * 1987-09-30 1989-04-06

Also Published As

Publication number Publication date
JPS52134996A (en) 1977-11-11

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
US4104117A (en) Nuclear reactor power generation
EP0093118A1 (en) Hrsg damper control.
US3434924A (en) Method of power generation and thermal power plant for the application of said method
JPS59231305A (en) Method and device for controlling flow rate of liquid to steam generator
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JPH10292902A (en) Main steam temperature controller
US3947319A (en) Nuclear reactor plants and control systems therefor
JPS5928803B2 (en) Nuclear plant steam temperature control device
JP2653798B2 (en) Boiler and turbine plant control equipment
JPS5928802B2 (en) Nuclear plant steam temperature control device
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP3112579B2 (en) Pressure control device
JPS5928801B2 (en) Steam pressure control device for nuclear power plants
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS63682B2 (en)
JPH0221296A (en) Controlling of fast breeder reactor system
JPH04148895A (en) Speed controller for coolant recirculation pump
JPS6390605A (en) Control device for steam generating plant
JPS6135442B2 (en)
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS6217081B2 (en)
JPS63243411A (en) Control device for generating plant
JPS6011282B2 (en) Method and device for controlling the amount of ventilation in the superheater of a sodium-heated steam generator