JPH027587A - Variable frequency light source - Google Patents

Variable frequency light source

Info

Publication number
JPH027587A
JPH027587A JP15887988A JP15887988A JPH027587A JP H027587 A JPH027587 A JP H027587A JP 15887988 A JP15887988 A JP 15887988A JP 15887988 A JP15887988 A JP 15887988A JP H027587 A JPH027587 A JP H027587A
Authority
JP
Japan
Prior art keywords
frequency
semiconductor laser
fabry
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15887988A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP15887988A priority Critical patent/JPH027587A/en
Publication of JPH027587A publication Critical patent/JPH027587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To assure a variable frequency light source excellent in frequency accuracy and long-time stability with a simplified structure by changing an oscillation frequency of a semiconductor laser by changing a frequency of an oscillator. CONSTITUTION:A switch 14 is shifted from the side (a) to the side (b) when the oscillation frequency of a semiconductor laser makes coincidence with one frequency at a point P among peaks of transmission characteristics of a Fabry-Perrot interferometer 6. Modulation frequency f1 is here assumed f1L. An output from an optical detector 9 is subjected to synchronous detection with a frequency f1 signal in a synchronous rectifier circuit 131. The output is proportional to a frequency difference between FM sub-carriers 22, 23 and the transmission peak through the Fabry-Perrot interferometer 6. Accordingly, with such a difference, a control section 132 controls an injection current into the semiconductor laser 1 such that said difference is zero. Hereby, the emission frequency of the semiconductor laser 1 is changed and the transmission peak of the Fabry-Perrot interferometer 6 is forced to follow the just- mentioned change of the emission frequency by first control means 10. Thus, FSR makes coincidence with the modulation frequency f1. In the above operation, the number (m) of modes of the Fabry-Perrot interferometer 6 is evaluated according to the formula I and the laser oscillation frequency f0 is continuously changed according to the formula II by changing f1.

Description

【発明の詳細な説明】 イ、「発明の目的」 〔産業上の利用分野〕 本発明は、半導体レーザの発振周波数を変えることがで
きる可変周波数レーザ光源の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to an improvement of a variable frequency laser light source that can change the oscillation frequency of a semiconductor laser.

〔従来の技術〕[Conventional technology]

第4図は可変周波数光源の第1の従来例を示す原理図で
ある。光増幅部41の出力光は集光レンズ42を介して
回折格子43に入射し、1次回折光45が光増幅部41
に戻る。44はO次回折光である0回折格子43を回転
すると光増幅部41へ戻る1次回折光の波長が変化する
ので、発振波長を制御することができる。
FIG. 4 is a principle diagram showing a first conventional example of a variable frequency light source. The output light of the optical amplifying section 41 enters the diffraction grating 43 via the condensing lens 42, and the first-order diffracted light 45 enters the optical amplifying section 41.
Return to When the zero diffraction grating 44, which is the O-order diffraction light, is rotated, the wavelength of the first-order diffraction light returning to the optical amplification section 41 changes, so that the oscillation wavelength can be controlled.

第5図は可変周波数光源の第2の従来例を示す原理図で
ある。光増幅部51の出力光に対して、第4図のように
回折格子を回転する代りに、音響光学素子52で回折格
子53への入射角を変化させて発振波長を制御する。
FIG. 5 is a principle diagram showing a second conventional example of a variable frequency light source. Instead of rotating the diffraction grating as shown in FIG. 4, the oscillation wavelength of the output light from the optical amplifying section 51 is controlled by changing the incident angle to the diffraction grating 53 using the acousto-optic element 52.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のような構成の可変波長レーザ光源
には次のような問題点がある。すなわち、第4図の方式
では回折格子を機械的に動かすので、高精度化が国数で
、応答が悪く、経時変化に弱い。
However, the variable wavelength laser light source configured as described above has the following problems. That is, in the method shown in FIG. 4, the diffraction grating is moved mechanically, so high precision is required, the response is poor, and it is susceptible to changes over time.

また、第5図の方式は光増幅部に戻ってくる光の波長が
ドツプラシフトによりわずかにずれるため、安定な発振
が得られず、発振スペクトル幅が広くなってしまう、ま
た、上記のいずれの方式も周波数の絶対値が分らないの
で、校正が必要である。
In addition, in the method shown in Figure 5, the wavelength of the light returning to the optical amplification section is slightly shifted due to Doppler shift, so stable oscillation cannot be obtained and the oscillation spectrum width becomes wide. Since the absolute value of the frequency is not known, calibration is necessary.

本発明は上記の間趙を解決するためになされたもので、
周波数精度が良く、長期安定性に優れた可変周波数光源
を簡単な構成で実現することを目的とする。
The present invention was made to solve the above-mentioned problems,
The purpose of this invention is to realize a variable frequency light source with good frequency accuracy and excellent long-term stability with a simple configuration.

口、「発明の構成」 〔問題点そ解決するための手段〕 本発明に係る可変周波数光源は半導体レーザと、出力周
波数が高安定な発振器と、前記半導体レーザの出力光の
一部が入射し前記発振器の出力によりその透過光の周波
数が変調される位相変調器と、この位相変調器の出力光
が入射するフアブリ・ペロー干渉計と、このフアブリ・
ペロー干渉計の透過光を入射してその強度を電気信号に
変換する光検出器と、フアブリ・ペロー干渉計の透過周
波数を前記半導体レーザの発振周波数に制御する第1の
制御手段と、フアブリ・ペロー干渉計の自由スペクトル
領域を前記発振器の出力周波数に制御する第2の制御手
段とを備え、発振器の周波数を変えることによって半導
体レーザの発振周波数を変えるように構成したことを特
徴とする。
``Structure of the Invention'' [Means for Solving Problems] A variable frequency light source according to the present invention includes a semiconductor laser, an oscillator with a highly stable output frequency, and a part of the output light of the semiconductor laser incident on the variable frequency light source. a phase modulator whose frequency of transmitted light is modulated by the output of the oscillator; a Fabry-Perot interferometer into which the output light of the phase modulator is incident;
a photodetector that receives the transmitted light of the Perot interferometer and converts its intensity into an electrical signal; a first control means that controls the transmission frequency of the Fabry-Perot interferometer to the oscillation frequency of the semiconductor laser; and a second control means for controlling the free spectral region of the Perot interferometer to the output frequency of the oscillator, and the oscillation frequency of the semiconductor laser is changed by changing the frequency of the oscillator.

〔作用〕[Effect]

第1の制御手段によりフアブリ・ペロー干渉計の透過周
波数は半導体レーザの発振周波数に追従し、発振器の出
力周波数を変えると、第2の制御手段によりフアブリ・
ペロー干渉計の自由スペクトル領域がこれに追従するよ
うに半導体レーザの発振周波数が変化する。
The first control means causes the transmission frequency of the Fabry-Perot interferometer to follow the oscillation frequency of the semiconductor laser, and when the output frequency of the oscillator is changed, the second control means causes the Fabry-Perot interferometer to follow the oscillation frequency of the semiconductor laser.
The oscillation frequency of the semiconductor laser changes so that the free spectral range of the Perot interferometer follows this.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明に係る可変周波数光源の一実施例を示す
構成ブロック図である。1は半導体レーザ、2,3は半
導体レーザ1からの出射光を2方向に分離するビームス
プリッタ、4はビームス1リツタ3の透過光を位相変調
するLiNb0゜(ニオブ酸リチウム)等の電気光学結
晶からなる位相変調器、5は位相変調器4を変調周波数
f。
FIG. 1 is a block diagram showing an embodiment of a variable frequency light source according to the present invention. 1 is a semiconductor laser, 2 and 3 are beam splitters that separate the light emitted from the semiconductor laser 1 into two directions, and 4 is an electro-optic crystal such as LiNb0° (lithium niobate) that modulates the phase of the transmitted light from the beam 1 ritter 3. A phase modulator, 5, modulates the phase modulator 4 with a modulating frequency f.

で励振する高安定発振器、6は位相変調器4の出力光を
入射するフアブリ・ペロー干渉器、7はフアブリ・ペロ
ー干渉器6のミラー間隔を微小に、例えば波長オーダー
で変化させるためにミラーの一方に取付けられたPZT
等の圧電アクチュエータ、8はフアブリ・ペロー干渉器
6を格納する真空チャンバ、9はフアブリ・ペロー干渉
器6を透過する光の強度を検出して電気信号に変換する
フォトダイオード等の受光素子−10は受光素子9の出
力を入力しフアブリ・ペロー干渉計6の透過周波数を半
導体レーザ1の発振周波数に制御する第1の制御手段で
ある。第1の制御手段10において、101は受光素子
9の出力を入力する同期整流回路、102は同期整流回
路101の出力を入力する制御部である。11は制御部
102の出力を一方の入力とする加算器、12はその出
力が同期整流回路101および加算器11の他方の入力
となる第2の発振器、13は受光素子9の出力を入力し
フアブリ・ペロー干渉計6の自由スペクトル領域を発振
器5の出力周波数に制御する第2の制御手段である。第
2の制御手段13は受光素子9の出力を一方の入力とし
発振器5の出力を他方の入力とする同期整流口1131
と、同期整流回路131の出力を入力する制御部132
から構成される。14は制御部132の出力を一端に入
力しその出力が半導体レーザ1の注入電流となる切換ス
イッチである。15はビームスプリッタ2の反射光を入
力して半導体レーザ1の発振周波数を基準周波数に制御
する第3の制御手段で、151はビームスプリッタ2の
反射光を入射して周波数変調する音響光学変調器、15
2は音響光学変調器151の出力光を入射し特定の波長
の光を吸収するRb、NHz等の標準物質を封入した吸
収セル、153は吸収セル152の透過光を検出して電
気信号に変換する受光素子、154は受光素子153の
出力を入力する同期整流回路、155は周波数で3 (
例えば80MHz)の第3の発振器、156は発振器1
55の出力を入力し音響光学変調器151に出力するス
イッチ、157はその一方の出力がこのスイッチ156
をオンオフ駆動し他方の出力が同期整流回路154の参
照信号となる周波数14の第4の発振器、158は同期
整流回路154の出力を入力しその出力が切換スイッチ
14の他方の入力@aに接続する制御部である6本装置
の出力光はビームスプリッタ3の反射光として外部に取
出される。
6 is a Fabry-Perot interferometer into which the output light of the phase modulator 4 is input; 7 is a Fabry-Perot interferometer in which the mirror spacing of the Fabry-Perot interferometer 6 is minutely changed, for example, on the wavelength order. PZT mounted on one side
8 is a vacuum chamber that stores the Fabry-Perot interferometer 6, and 9 is a light receiving element 10 such as a photodiode that detects the intensity of light passing through the Fabry-Perot interferometer 6 and converts it into an electric signal. is a first control means which inputs the output of the light receiving element 9 and controls the transmission frequency of the Fabry-Perot interferometer 6 to the oscillation frequency of the semiconductor laser 1. In the first control means 10, 101 is a synchronous rectifier circuit that inputs the output of the light receiving element 9, and 102 is a control section that inputs the output of the synchronous rectifier circuit 101. 11 is an adder which receives the output of the control unit 102 as one input; 12 is a second oscillator whose output is the other input of the synchronous rectifier circuit 101 and the adder 11; and 13 receives the output of the light receiving element 9. This is second control means for controlling the free spectral range of the Fabry-Perot interferometer 6 to the output frequency of the oscillator 5. The second control means 13 has a synchronous rectifier port 1131 which has the output of the light receiving element 9 as one input and the output of the oscillator 5 as the other input.
and a control unit 132 that inputs the output of the synchronous rectification circuit 131.
It consists of Reference numeral 14 denotes a changeover switch which inputs the output of the control section 132 at one end and whose output becomes the injection current of the semiconductor laser 1. 15 is a third control means that inputs the reflected light from the beam splitter 2 and controls the oscillation frequency of the semiconductor laser 1 to the reference frequency; 151 is an acousto-optic modulator that inputs the reflected light from the beam splitter 2 and modulates the frequency. , 15
2 is an absorption cell in which the output light of the acousto-optic modulator 151 is input and standard substances such as Rb and NHZ are sealed to absorb light of a specific wavelength; 153 is an absorption cell that detects the transmitted light of the absorption cell 152 and converts it into an electrical signal. 154 is a synchronous rectifier circuit that inputs the output of the light receiving element 153, and 155 is a frequency of 3 (
a third oscillator (e.g. 80MHz), 156 is oscillator 1
A switch 157 inputs the output of 55 and outputs it to the acousto-optic modulator 151, and 157 has one output connected to this switch 156.
A fourth oscillator with a frequency of 14, whose output is turned on and off and whose other output serves as a reference signal for the synchronous rectifier circuit 154; 158 inputs the output of the synchronous rectifier circuit 154, and its output is connected to the other input @a of the changeover switch 14; The output light from the six-piece device, which is a control section, is extracted to the outside as reflected light from the beam splitter 3.

上記のような構成の可変周波数光源の動作を次に説明す
る。
The operation of the variable frequency light source configured as described above will be explained next.

(イ)まずスイッチ14をa側にして半導体レーザ1の
発振周波数fOを吸収セル152の吸収線周波数に制御
する。すなわち半導体レーザの出力光の一部はビームス
プリッタ2で反射され、音響光学変調器151に入射す
る。スイッチ156がオンの時音皆光学変調器151は
発振器155の周波数で、の出力で駆動されるので、入
射光の大部分は回折して周波数シフトを受け、1次回折
光として周波数fo 十f3の光が吸収セル152に入
射する。スイッチ156がオフのときは入射光はすべて
0次光として周波数f、で吸収セル152に入射する。
(a) First, the switch 14 is set to the a side to control the oscillation frequency fO of the semiconductor laser 1 to the absorption line frequency of the absorption cell 152. That is, a part of the output light of the semiconductor laser is reflected by the beam splitter 2 and enters the acousto-optic modulator 151. When the switch 156 is on, the optical modulator 151 is driven by the output of the oscillator 155 at the frequency of Light enters absorption cell 152. When the switch 156 is off, all incident light enters the absorption cell 152 as zero-order light at a frequency f.

スイッチ156は発振器157の周波数f4のタロツク
で駆動されるので、吸収セル152に入射する光は変調
周波数fd+変調深さf、の周波数変調を受けることに
なる。音響光学変調器151からの周波数変調を受けた
光は吸収セル152の吸収信号の箇所で透過光量が変調
を受けて出力に信号があられれる。この信号を光検出器
153で電気信号に変換し同期整流回路154で周波数
で4で同期整流することにより2次微分信号が得られ、
この信号が所定の値となるよう制御部158により半導
体レーザ1の注入電流を制御して、発振周波数foを吸
収波長の中心faに制御することができる。この結果半
導体レーザ1からは発振周波数が変調されていない、瞬
時的に安定な出力光が得られる。また音響光学変調器1
51で回折した1次光と0次光は共に1つの受光素子1
53に入射するので、半導体レーザ1の光量の変動の影
響を受けない。
Since the switch 156 is driven by the taro clock of the frequency f4 of the oscillator 157, the light incident on the absorption cell 152 is subjected to frequency modulation of modulation frequency fd+modulation depth f. The frequency-modulated light from the acousto-optic modulator 151 is modulated in the amount of transmitted light at the absorption signal location of the absorption cell 152, and a signal is output. This signal is converted into an electrical signal by a photodetector 153 and synchronously rectified at a frequency of 4 by a synchronous rectifier circuit 154, thereby obtaining a second-order differential signal.
The control unit 158 controls the injection current of the semiconductor laser 1 so that this signal has a predetermined value, and the oscillation frequency fo can be controlled to the center fa of the absorption wavelength. As a result, an instantaneously stable output light whose oscillation frequency is not modulated can be obtained from the semiconductor laser 1. Also, the acousto-optic modulator 1
Both the first-order light and the zero-order light diffracted by the light receiving element 1
53, it is not affected by fluctuations in the amount of light from the semiconductor laser 1.

(ロ)次にフアブリ・ペロー干渉計6の透過周波数をレ
ーザ周波数f、ヘロックする。このとき位相変調器は動
作させず、半導体レーザ1の出力光はそのままフアブリ
・ペロー干渉計6に入射し、周波数で2で変調されて受
光素子9で検出される。
(b) Next, the transmission frequency of the Fabry-Perot interferometer 6 is locked to the laser frequency f. At this time, the phase modulator is not operated, and the output light from the semiconductor laser 1 enters the Fabry-Perot interferometer 6 as it is, is modulated at a frequency of 2, and is detected by the light receiving element 9.

受光素子9の出力は同期整流回路101により参照周波
数f2で同期整流され、制御部102を介して圧電アク
チュエータフの印加電圧として帰還され、フアブリ・ペ
ロー干渉計6の透過周波数のピークをレーザ発振周波数
faに制御する。
The output of the light receiving element 9 is synchronously rectified by a synchronous rectifier circuit 101 at a reference frequency f2, and is fed back as an applied voltage to the piezoelectric actuator via a control unit 102, and the peak of the transmission frequency of the Fabry-Perot interferometer 6 is set to the laser oscillation frequency. control to fa.

(ハ)次にフアブリ・ペロー干渉計6のFSR(Fre
e 5pectral Ranoe:自由スペクトル領
域)を位相変調周波数f、にロックする。まず発振器5
の出力をオンとして位相変調器4を動作させ、第2図(
B)に示ずようにレーザ光21の周波数faを中心にサ
ブキャリア22.23を発生させる。
(c) Next, the FSR (Fre) of the Fabry-Perot interferometer 6
e 5spectral Ranoe (free spectral region) to the phase modulation frequency f. First, oscillator 5
The phase modulator 4 is operated by turning on the output of
As shown in B), subcarriers 22 and 23 are generated around the frequency fa of the laser beam 21.

変調周波数で1を掃引してサブキャリア22.23を周
波数軸上で左右に動かし、第2図(A)に示すフアブリ
・ペロー干渉計6の透過特性のピークの1つの周波数と
P点において一致したときにスイッチ14をa側からb
lllへ切換える。このときの変調周波数f1の値をf
lLとする。この切換の結果、レーザ発振周波数を吸収
周波数にロックするループが切離され、フアブリ・ペロ
ー干渉計6のFSRを変調周波数f1にロックするルー
プが新たに形成される。すなわち、受光素子9の出力を
同期整流回路131において周波数で1の信号で同期検
波した出力はFMサブキャリア22゜23とフアブリ・
ペロー干渉計6の透過ピークとの周波数ずれに比例する
ので、周波数ずれが存在するとこれがゼロになるように
制御部132で半導体レーザ1の注入電流を制御し、半
導体レーザ1の周波数を変化させ、第1の制御手段10
によりフアブリ・ペロー干渉計6の透過ピークがこれに
追従し、結果的にFSRが変調周波数f、に一致するこ
とになる。
By sweeping 1 at the modulation frequency and moving the subcarriers 22 and 23 left and right on the frequency axis, point P coincides with one frequency of the peak of the transmission characteristic of the Fabry-Perot interferometer 6 shown in Figure 2 (A). when the switch 14 is turned from side a to side b
Switch to lll. The value of modulation frequency f1 at this time is f
Let it be LL. As a result of this switching, the loop that locks the laser oscillation frequency to the absorption frequency is separated, and a new loop that locks the FSR of the Fabry-Perot interferometer 6 to the modulation frequency f1 is formed. In other words, the output of the light receiving element 9 is synchronously detected using a signal with a frequency of 1 in the synchronous rectifier circuit 131, and the output is output from the FM subcarrier 22°23 and the Fabry subcarrier 22°23.
Since it is proportional to the frequency deviation from the transmission peak of the Perot interferometer 6, if there is a frequency deviation, the control unit 132 controls the injection current of the semiconductor laser 1 so that this becomes zero, and changes the frequency of the semiconductor laser 1. First control means 10
Therefore, the transmission peak of the Fabry-Perot interferometer 6 follows this, and as a result, the FSR coincides with the modulation frequency f.

上記の操作において、フアブリ・ペロー干渉計6のモー
ド数mは m = f a / f + L       −(1
)で算出されるので、レーザ発振周波数f、はf□=m
−f。
In the above operation, the number of modes m of the Fabry-Perot interferometer 6 is m = fa / f + L - (1
), so the laser oscillation frequency f is f□=m
-f.

=fa  −fl /f1 L    =  (2)と
なり、flを変えることにより出力周波数fOを連続的
に変化することができる。ここで、圧電アクチュエータ
7がミラーを2μmまで掃引できるとすると、Δfo 
=2.6GHz (波長λ=1゜557zm、fFSR
=IGH2)となるので、Δfを2.6GHz以上とる
場合にはモード数mをm+l、m+2とステップ的に変
えればよい。
=fa − fl /f1 L = (2), and by changing fl, the output frequency fO can be changed continuously. Here, assuming that the piezoelectric actuator 7 can sweep the mirror up to 2 μm, Δfo
=2.6GHz (wavelength λ=1°557zm, fFSR
= IGH2), so if Δf is set to 2.6 GHz or more, the number of modes m may be changed stepwise from m+l to m+2.

このような構成の可変周波数光源によれば、第1の発振
器5の周波数f1が高安定なので、(2)式から明らか
なように一周波数精度が良く、長期安定性に優れた可変
周波数レーザが実現できる。
According to the variable frequency light source with such a configuration, the frequency f1 of the first oscillator 5 is highly stable, so as is clear from equation (2), a variable frequency laser with good single frequency accuracy and excellent long-term stability can be obtained. realizable.

また(2)式から明らかなように、変調周波数f1を変
化させることにより、出力周波数f、をアナログ的に変
化することができる。
Furthermore, as is clear from equation (2), by changing the modulation frequency f1, the output frequency f can be changed in an analog manner.

半導体レーザを1つしか用いないので、小形化が出来る
Since only one semiconductor laser is used, miniaturization is possible.

吸収セルに封入する物質を選択することにより、種々な
波長帯での可変周波数光源を実現することができる。
By selecting the material to be filled in the absorption cell, it is possible to realize a variable frequency light source in various wavelength bands.

なお上記の実施例において、変調周波数f、を高安定化
するために、外部からCsビーム等の発振器の出力を基
準としてもよい。
In the above embodiment, in order to highly stabilize the modulation frequency f, the output of an oscillator such as an external Cs beam may be used as a reference.

また半導体レーザの注入電流に帰還するかわりに、温度
に帰還をかけてもよい。
Moreover, instead of feedback to the current injected into the semiconductor laser, feedback may be applied to the temperature.

また半導体レーザの発振周波数の安定化は制御手段15
の方式に限らない。
Further, the control means 15 stabilizes the oscillation frequency of the semiconductor laser.
It is not limited to this method.

またフアブリ・ペロー干渉計6のFSRを変調周波数f
1にロックする代りに、第3図に示すように、n−FS
R=f、としてFSRの整数倍のf、でサブキャリア3
2.33にロックしてもよい。
In addition, the FSR of the Fabry-Perot interferometer 6 is determined by the modulation frequency f
Instead of locking to 1, as shown in Figure 3, n-FS
R = f, and subcarrier 3 with f, which is an integer multiple of FSR.
It may be locked to 2.33.

ハ、「発明の効果」 以、Eの説明から明らかなように、本願発明によれば、
周波数精度が良く、長期安定性に優れl:可変周波数光
源を簡単な構成で実現することができる。
C. "Effects of the Invention" As is clear from the explanation in E, according to the claimed invention,
Good frequency accuracy and excellent long-term stability: A variable frequency light source can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る可変周波数光源の一実施例を示す
構成ブロック図、第2図は第1図の動作を説明するため
の図、第3図は第1図装置の変形例の動作を示す図、第
4図および第5図は可変周波数光源の従来例を示す説明
図である。 1・・・半導体レーザ、4・・・位相変調器、5・・・
発振器、6・・・ファブリ・ペロー干渉計、9・・・光
検出器、第4 因 →;ジ5図
FIG. 1 is a block diagram showing an embodiment of a variable frequency light source according to the present invention, FIG. 2 is a diagram for explaining the operation of FIG. 1, and FIG. 3 is an operation of a modification of the device shown in FIG. 1. FIGS. 4 and 5 are explanatory diagrams showing conventional examples of variable frequency light sources. 1... Semiconductor laser, 4... Phase modulator, 5...
Oscillator, 6... Fabry-Perot interferometer, 9... Photodetector, 4th factor → ; Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザと、出力周波数が高安定な発振器と、前記
半導体レーザの出力光の一部が入射し前記発振器の出力
によりその透過光の周波数が変調される位相変調器と、
この位相変調器の出力光が入射するフアブリ・ペロー干
渉計と、このフアブリ・ペロー干渉計の透過光を入射し
てその強度を電気信号に変換する光検出器と、ファブリ
・ペロー干渉計の透過周波数を前記半導体レーザの発振
周波数に制御する第1の制御手段と、フアブリ・ペロー
干渉計の自由スペクトル領域を前記発振器の出力周波数
に制御する第2の制御手段とを備え、発振器の周波数を
変えることによって半導体レーザの発振周波数を変える
ように構成したことを特徴とする可変周波数光源。
a semiconductor laser, an oscillator with a highly stable output frequency, and a phase modulator into which a portion of the output light of the semiconductor laser enters and the frequency of the transmitted light is modulated by the output of the oscillator;
A Fabry-Perot interferometer into which the output light of this phase modulator enters, a photodetector which receives the transmitted light of this Fabry-Perot interferometer and converts its intensity into an electrical signal, and a transmitted light of the Fabry-Perot interferometer. A first control means for controlling the frequency to the oscillation frequency of the semiconductor laser, and a second control means for controlling the free spectral region of the Fabry-Perot interferometer to the output frequency of the oscillator, and changing the frequency of the oscillator. A variable frequency light source characterized by being configured to change the oscillation frequency of a semiconductor laser by changing the oscillation frequency of a semiconductor laser.
JP15887988A 1988-06-27 1988-06-27 Variable frequency light source Pending JPH027587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15887988A JPH027587A (en) 1988-06-27 1988-06-27 Variable frequency light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15887988A JPH027587A (en) 1988-06-27 1988-06-27 Variable frequency light source

Publications (1)

Publication Number Publication Date
JPH027587A true JPH027587A (en) 1990-01-11

Family

ID=15681389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15887988A Pending JPH027587A (en) 1988-06-27 1988-06-27 Variable frequency light source

Country Status (1)

Country Link
JP (1) JPH027587A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513077U (en) * 1991-03-01 1993-02-19 横河電機株式会社 Frequency stabilized laser light source
JP2008070385A (en) * 2001-01-30 2008-03-27 Thorlabs Inc Device and method for wavelength calibration of swept laser
JP2008251945A (en) * 2007-03-30 2008-10-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization light source
US8542079B2 (en) 2007-03-20 2013-09-24 Nuvotronics, Llc Coaxial transmission line microstructure including an enlarged coaxial structure for transitioning to an electrical connector
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US9312589B2 (en) 2003-03-04 2016-04-12 Nuvotronics, Inc. Coaxial waveguide microstructure having center and outer conductors configured in a rectangular cross-section
US9325044B2 (en) 2013-01-26 2016-04-26 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9515364B1 (en) 2006-12-30 2016-12-06 Nuvotronics, Inc. Three-dimensional microstructure having a first dielectric element and a second multi-layer metal element configured to define a non-solid volume
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513077U (en) * 1991-03-01 1993-02-19 横河電機株式会社 Frequency stabilized laser light source
JP2008070385A (en) * 2001-01-30 2008-03-27 Thorlabs Inc Device and method for wavelength calibration of swept laser
JP4722110B2 (en) * 2001-01-30 2011-07-13 ソルラブス、 インコーポレイテッド Wavelength calibration apparatus and method for swept laser
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
US9312589B2 (en) 2003-03-04 2016-04-12 Nuvotronics, Inc. Coaxial waveguide microstructure having center and outer conductors configured in a rectangular cross-section
US9515364B1 (en) 2006-12-30 2016-12-06 Nuvotronics, Inc. Three-dimensional microstructure having a first dielectric element and a second multi-layer metal element configured to define a non-solid volume
US9000863B2 (en) 2007-03-20 2015-04-07 Nuvotronics, Llc. Coaxial transmission line microstructure with a portion of increased transverse dimension and method of formation thereof
US8542079B2 (en) 2007-03-20 2013-09-24 Nuvotronics, Llc Coaxial transmission line microstructure including an enlarged coaxial structure for transitioning to an electrical connector
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US10431521B2 (en) 2007-03-20 2019-10-01 Cubic Corporation Integrated electronic components and methods of formation thereof
US9570789B2 (en) 2007-03-20 2017-02-14 Nuvotronics, Inc Transition structure between a rectangular coaxial microstructure and a cylindrical coaxial cable using step changes in center conductors thereof
JP2008251945A (en) * 2007-03-30 2008-10-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization light source
JP4608512B2 (en) * 2007-03-30 2011-01-12 日本電信電話株式会社 Frequency stabilized light source
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
US9325044B2 (en) 2013-01-26 2016-04-26 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10257951B2 (en) 2013-03-15 2019-04-09 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10361471B2 (en) 2013-03-15 2019-07-23 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10553511B2 (en) 2017-12-01 2020-02-04 Cubic Corporation Integrated chip scale packages

Similar Documents

Publication Publication Date Title
JPH027587A (en) Variable frequency light source
CA2343780C (en) Optical phase detector
EP0401799B1 (en) Length measuring apparatus
US7023887B2 (en) Method and system for controlling optical wavelength based on optical frequency pulling
CN101512286B (en) Method and device for generating a synthetic wavelength
JPH10209546A (en) Wavelength stabilizing device of laser beam source
JPH0815742A (en) Optical frequency stabilizer and optical frequency selector
US6724786B2 (en) Variable optical attenuator using wavelength locked loop tuning
JPH0675144B2 (en) Optical modulation wave demodulator
JPH0210785A (en) Variable frequency light source
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JPH0215685A (en) Variable frequency light source
JPH0653590A (en) Method for stabilizing optical fsk frequency displacement amount
JPH0763102B2 (en) Variable wavelength light source
Baryshev Laser frequency stabilisation by the Pound—Drever—Hall method using an acousto-optic phase modulator operating in the pure Raman—Nath diffraction regime
JPH01307287A (en) Variable-frequency light source
JP2001027512A (en) Wavelength-stabilized coherent light source
JP2986239B2 (en) Frequency stabilized light source
JPH04111485A (en) Frequency stabilizing laser beam source
JPH01164135A (en) Oscillation frequency stabilizing method for semiconductor laser in optical frequency division multiplex transmission system
JP2578271Y2 (en) Frequency stabilized laser light source
CN116338635A (en) Laser radar
JPH03135086A (en) Variable frequency light source
JP2863564B2 (en) Ultra-wideband and high coherent optical sweep generator from infrared to ultraviolet
JPH02260480A (en) Semiconductor laser device