JPH04111485A - Frequency stabilizing laser beam source - Google Patents

Frequency stabilizing laser beam source

Info

Publication number
JPH04111485A
JPH04111485A JP23098290A JP23098290A JPH04111485A JP H04111485 A JPH04111485 A JP H04111485A JP 23098290 A JP23098290 A JP 23098290A JP 23098290 A JP23098290 A JP 23098290A JP H04111485 A JPH04111485 A JP H04111485A
Authority
JP
Japan
Prior art keywords
output
frequency
oscillator
circuit
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23098290A
Other languages
Japanese (ja)
Inventor
Satoru Yoshitake
哲 吉武
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP23098290A priority Critical patent/JPH04111485A/en
Publication of JPH04111485A publication Critical patent/JPH04111485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To materialize a laser beam light source for stabilizing frequency of unmodulated output, where the effect of the interference of an optical system does not exist and the oscillated frequency is controlled highly stably, by modulating an electrooptical modulator with a secondary function, and detecting the interfere pattern of an optical system outside the absorbed beams, and correcting. the effect of interference at the center of absorbed beam by the interference pattern. CONSTITUTION:When the output of a timing circuit 19 is 1, a switch 18 selects the output of an oscillator 17, and a switch 14 opens, and a synchronism detection circuit 12 operates as an amplifier, and by the modulated signal having secondary function waveform, the output light frequency of an electrooptical modulator 11 is swept in straight line manner to time, and based on the output of the corresponding photodetector 4, an interference pattern is stored in a memory circuit 13. When the output of the timing circuit 19 is 0, the switch 18 selects the output of an oscillator 16, and the switch 14 closes, and the synchronism detection circuit 12 performs synchronism detection, and based on the said stored interference pattern, in a correction circuit 13, the interference signal is removed from the synchronism detection output.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体レーザを用いた周波数安定化レーザ光
源の安定性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improving the stability of a frequency-stabilized laser light source using a semiconductor laser.

〈従来の技術〉 第6図は周波数安定化レーザ光源の第1の従来例を示す
ブロック図で、半導体レーザを直接変調して、その発振
周波数を原子および分子の吸収線の中心に制御するもの
を示している。半導体レーザ1の出力光はビームスプリ
ッタ2で2つの方向に分離し、一方の光は標準物質が封
入された吸収セル3に入射する。吸収セル3を透過した
光は光検出器4で検出されて電気信号に変換され、ロッ
クインアンプ等からなる同期検波回路5に入力する、半
導体レーザ1の発振周波数は発振器8の出力で電流変調
されており、同期検波回路5は発振器8の出力を参照信
号として同期検波を行う、PI制御回路6は同期検波回
F#15の出力が一定となるように半導体レーザ1の電
流を制御する。PI制御回路61発振器8の発振出力お
よびバイアス電流源9の出力は加算回路7で加算されて
半導体レーザ1に入力される。この結果、半導体レーザ
1の発振周波数は吸収セル3の標準物質の原子または分
子の吸収線の中心に制御され、ビームスプリッタ2の他
方の出力光は原子または分子で決まる絶対値が高精度の
周波数となる。
<Prior art> Figure 6 is a block diagram showing a first conventional example of a frequency-stabilized laser light source, in which a semiconductor laser is directly modulated to control its oscillation frequency to the center of the absorption lines of atoms and molecules. It shows. The output light of the semiconductor laser 1 is separated into two directions by a beam splitter 2, and one of the lights enters an absorption cell 3 in which a standard substance is sealed. The light transmitted through the absorption cell 3 is detected by a photodetector 4 and converted into an electrical signal, which is input to a synchronous detection circuit 5 consisting of a lock-in amplifier, etc. The oscillation frequency of the semiconductor laser 1 is current-modulated by the output of an oscillator 8. The synchronous detection circuit 5 performs synchronous detection using the output of the oscillator 8 as a reference signal, and the PI control circuit 6 controls the current of the semiconductor laser 1 so that the output of the synchronous detection circuit F#15 is constant. The oscillation output of the PI control circuit 61 oscillator 8 and the output of the bias current source 9 are added by the adder circuit 7 and input to the semiconductor laser 1. As a result, the oscillation frequency of the semiconductor laser 1 is controlled to the center of the absorption line of the atoms or molecules of the standard material in the absorption cell 3, and the other output light of the beam splitter 2 has a frequency whose absolute value is determined by the atoms or molecules with high precision. becomes.

しかしながら、上記のような装置では、出力光が周波数
変調されているため、瞬時周波数の安定性がなく、干渉
計測等の応用には不適当となり、応用範囲が狭くなると
いう欠点を有する。
However, in the above-mentioned apparatus, since the output light is frequency-modulated, the instantaneous frequency is not stable, making it unsuitable for applications such as interferometric measurements, and has the drawback of narrowing the range of applications.

このような欠点を解決するために、半導体レーザ出力光
を音響光学変調器で外部変調し原子および分子の吸収線
に制御することにより、無変調出力を得るように構成し
たものがある。
In order to solve these drawbacks, there is a structure in which a non-modulated output is obtained by externally modulating the output light of a semiconductor laser using an acousto-optic modulator and controlling it to atomic and molecular absorption lines.

〈発明が解決しようとする課題〉 しかしながら、そのような装置の場合には、音響光学変
調器が不安定なため、安定度か不十分という問題かある
<Problems to be Solved by the Invention> However, in the case of such a device, there is a problem of insufficient stability because the acousto-optic modulator is unstable.

また上記各側のような従来装置では、光学系に端面反射
等による干渉があると、光学系の温度変化によって干渉
距離か変化し、周波数ドリフトを生じてしまう。
In addition, in conventional devices such as those described above, if there is interference in the optical system due to end face reflection, etc., the interference distance changes due to temperature changes in the optical system, resulting in frequency drift.

本発明はこのような課題を解決するためになされたもの
で、光学系の干渉の影響がなく、発振周波数が高安定に
制御された無変調出力の周波数安定化レーザ光源を実現
することを目的とする。
The present invention was made to solve these problems, and aims to realize a frequency-stabilized laser light source with unmodulated output, which is free from the influence of optical system interference and whose oscillation frequency is highly stably controlled. shall be.

く課題を解決するための手段〉 本発明に係る周波数安定化レーザ光源は半導体レーザと
、正弦波を発生する第1の発振器と、2次関数波形を発
生する第2の発振器と、前記第1゜第2の発振器のいず
れかを選択する切換スイッチと、この切換スイッチを制
御するタイミング発生回路と、前記切換スイッチの出力
で駆動され前記半導体レーザの出力光を周波数変調する
電気光学変調器と、この電気光学変調器の出力光を入射
し特定の周波数で吸収線を持つ標準物質を封入した吸収
セルと、この吸収セルを透過した光を検出する光検出器
と、前記切換スイッチが第2の発振器を選択していると
きに前記吸収線からシフトした光周波数で前記光検出器
から出力される干渉波形を記憶するメモリ回路と、前記
切換スイッチが第1の発振器を選択しているときに前記
光検出器の出力を前記第1の発振器出力により同期検波
する同期検波回路と、この同期検波回路の出力を前記メ
モリ回路の出力に基づいて補正する補正回路と、この補
正回路の出力に基づいて前記半導体レーザの発振周波数
が前記吸収線の中心となるように制御する制御回路とを
備え、半導体レーザから無変調光を出力するように構成
したことを特徴とする。
Means for Solving the Problems> A frequency stabilized laser light source according to the present invention includes a semiconductor laser, a first oscillator that generates a sine wave, a second oscillator that generates a quadratic function waveform, and the first oscillator that generates a quadratic function waveform. A changeover switch for selecting one of the second oscillators, a timing generation circuit for controlling the changeover switch, and an electro-optic modulator that is driven by the output of the changeover switch and frequency-modulates the output light of the semiconductor laser; An absorption cell into which the output light of the electro-optic modulator is input and a standard substance having an absorption line at a specific frequency is enclosed, a photodetector that detects the light transmitted through the absorption cell, and a second switch. a memory circuit for storing an interference waveform output from the photodetector at an optical frequency shifted from the absorption line when an oscillator is selected; a synchronous detection circuit that synchronously detects the output of the photodetector using the output of the first oscillator; a correction circuit that corrects the output of the synchronous detection circuit based on the output of the memory circuit; The present invention is characterized in that it includes a control circuit that controls the oscillation frequency of the semiconductor laser to be centered on the absorption line, and is configured to output unmodulated light from the semiconductor laser.

く作用〉 2次関数波形を持つ変調信号により電気光学変調器の出
力光周波数を時間に対して直線的に掃引し、対応する光
検出器の出力に基づいて干渉パターンをメモリ回路に記
憶し、前記干渉パターンに基づき補正回路において同期
検波出力から干渉信号が除去されるので、周波数ドリフ
トがなくなり、吸収線の中心周波数へ安定した制御が行
なわれる。
Function> The output optical frequency of the electro-optic modulator is swept linearly with respect to time by a modulation signal having a quadratic function waveform, and an interference pattern is stored in a memory circuit based on the output of the corresponding photodetector. Since the interference signal is removed from the synchronous detection output in the correction circuit based on the interference pattern, frequency drift is eliminated and stable control is performed to the center frequency of the absorption line.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係る周波数安定化レーザ光源め一実施
例を示す構成ブロック図である。第6図と同じ部分は同
一の記号を付して説明を省略する。
FIG. 1 is a block diagram showing a first embodiment of a frequency stabilized laser light source according to the present invention. The same parts as in FIG. 6 are given the same symbols and the explanation will be omitted.

10は半導体レーザ1の出力光を2方向に分離するビー
ムスプリッタ、11はビームスプリッタ10で反射した
光を入射して周波数変調する電気光学変調器、3は電気
光学変調器11の出力光を入射し、特定の周波数で吸収
線を持つ標準物質、例えばC2H2を封入した吸収セル
、4は吸収セル3を透過した光を検出する光検出器、1
2は光検出器4の出力を発振器16の出力により同期検
波する同期検波回路、13は光検出器4から出力される
干渉波形を記憶するメモリ回路と同期検波回路12の出
力をメモリ回路の出力に基づいて補正する補正回路とを
備えたメモリ補正回路、14はメモリ補正回路13の出
力を一端に入力し制御ルプを開閉するスイッチ、15は
スイッチ14の他端から出力される信号を入力しメモリ
補正回路13の出力に基づいて半導体レーザ1の電流の
P■制御等を行う制御回路、16は正弦波を発生し同期
検波回8?I12の参照信号となる第1の発振器、17
は2次関数波形を繰返し発生しメモリ補正回路13の同
期信号入力となる第2の発振器、18は発振器16.1
7の出力のいずれかを選択する切換スイッチ、19はス
イッチ14.切換スイッチ18.同期検波回路12およ
びメモリ補正回路13を制御するタイミング発生回路で
ある。
10 is a beam splitter that separates the output light of the semiconductor laser 1 into two directions; 11 is an electro-optic modulator that inputs the light reflected by the beam splitter 10 and modulates the frequency; 3 receives the output light of the electro-optic modulator 11; 4 is a photodetector for detecting the light transmitted through the absorption cell 3;
2 is a synchronous detection circuit that synchronously detects the output of the photodetector 4 using the output of the oscillator 16; 13 is a memory circuit that stores the interference waveform output from the photodetector 4; and the output of the synchronous detection circuit 12 is the output of the memory circuit. 14 is a switch that inputs the output of the memory correction circuit 13 at one end and opens and closes the control loop; 15 inputs a signal output from the other end of the switch 14; A control circuit 16 generates a sine wave and a synchronous detection circuit 8? controls the current of the semiconductor laser 1 based on the output of the memory correction circuit 13. a first oscillator, 17, serving as a reference signal for I12;
18 is a second oscillator that repeatedly generates a quadratic function waveform and serves as a synchronization signal input to the memory correction circuit 13; 18 is an oscillator 16.1;
7 is a selector switch for selecting one of the outputs; 19 is a switch 14; Changeover switch 18. This is a timing generation circuit that controls the synchronous detection circuit 12 and the memory correction circuit 13.

なお発振器16の正弦波周波数は吸収線半値全幅の1/
2程度、振幅は電気光学変調器11による位相変位がπ
rad程度となるようにする。
Note that the sine wave frequency of the oscillator 16 is 1/of the full width at half maximum of the absorption line.
The amplitude is about 2, and the phase shift due to the electro-optic modulator 11 is π
It should be about rad.

上記構成の装置の動作を次に説明する。半導体レーザ1
の出力光の一部はビームスプリッタ10を透過して外部
に出射され、反射光が電気光学変調器11に入射する。
The operation of the apparatus having the above configuration will be explained next. Semiconductor laser 1
A part of the output light passes through the beam splitter 10 and is emitted to the outside, and the reflected light enters the electro-optic modulator 11.

第2図に示すように、本装置ではタイミング発生回路1
つの出力に対応して掃引モードと周波数ロックモードの
2つのモードが交互に繰返される。以下に示すように、
掃引モードでは干渉パターンがメモリに記憶され、周波
数ロックモードではレーザの発振周波数が吸収線に制御
される。
As shown in FIG. 2, in this device, the timing generation circuit 1
Two modes, a sweep mode and a frequency lock mode, are alternately repeated in response to each output. As shown below,
In sweep mode, the interference pattern is stored in memory, and in frequency lock mode, the oscillation frequency of the laser is controlled to the absorption line.

(イ)掃引モード タイミング発生回路19の出力が1のとき一掃引モード
となり、切換スイッチ18は発振器17の出力を選択し
、スイッチ14はオープンとなり、同期検波回路12は
増幅器として動作し、メモリ補正回B13は書込みメモ
リとして動作する。半導体レーザ1は制御回R15によ
って保持された一定電流によって駆動されている。
(a) Sweep mode When the output of the timing generation circuit 19 is 1, the sweep mode is set, the selector switch 18 selects the output of the oscillator 17, the switch 14 is open, the synchronous detection circuit 12 operates as an amplifier, and memory correction is performed. The circuit B13 operates as a write memory. The semiconductor laser 1 is driven by a constant current maintained by a control circuit R15.

その結果、電気光学変調器11は第2図(B)のように
周波数f2で繰返す2次関数波形信号によって駆動され
る。この部分の拡大図を第3図に示す、このときの電気
光学変調器11の出力光の位相θは、次式で表される。
As a result, the electro-optic modulator 11 is driven by a quadratic function waveform signal that repeats at frequency f2 as shown in FIG. 2(B). An enlarged view of this portion is shown in FIG. 3. The phase θ of the output light of the electro-optic modulator 11 at this time is expressed by the following equation.

2+ψ ・・・ (1) ただしO<tく1/f2 f:光周波数 f2:発振器17の発振周波数 ψ:初期位相 (1)式より周波数は f−=(1/2π)・dθ(t)/dt=f+2f  
 −t+f2   ・・・(2)となる、ただしOくt
く1/f2 (2)式より電気光学変調器11の出力光の光周波数は
入力光周波数でと比較してf2だけシフトするとともに
、時間に対しリニアに変化する。第4図は吸収特性(A
)と電気光学変調器11の出力周波数特性(B)の関係
を示す説明図で、第4図(A)の吸収特性には光学系の
干渉による、正弦波状の干渉パターンが現れている。ま
た第4図(B)に示すように、電気光学変調器11の出
力光周波数は吸収線からずれた周波数b1とb2の間を
2 f 2の幅で直線的に掃引される。この状態で吸収
セル3の透過光パワーを光検出器4で検出し、発振器1
7出力と同期してメモリ補正回路13のメモリ部に書込
むことにより、第4図(A)の吸収特性のblとb2の
間の周波数区間における干渉パターン20が記憶される
2+ψ... (1) where O<t×1/f2 f: optical frequency f2: oscillation frequency of oscillator 17 ψ: initial phase From equation (1), the frequency is f-=(1/2π)・dθ(t) /dt=f+2f
-t+f2 ...(2), however, Ot
1/f2 From equation (2), the optical frequency of the output light of the electro-optic modulator 11 is shifted by f2 compared to the input optical frequency, and changes linearly with time. Figure 4 shows the absorption characteristics (A
) and the output frequency characteristic (B) of the electro-optic modulator 11. In the absorption characteristic of FIG. 4(A), a sinusoidal interference pattern due to interference of the optical system appears. Further, as shown in FIG. 4(B), the output optical frequency of the electro-optic modulator 11 is linearly swept with a width of 2 f 2 between frequencies b1 and b2 shifted from the absorption line. In this state, the transmitted light power of the absorption cell 3 is detected by the photodetector 4, and the oscillator 1
By writing in the memory section of the memory correction circuit 13 in synchronization with the 7 output, the interference pattern 20 in the frequency section between bl and b2 of the absorption characteristic shown in FIG. 4(A) is stored.

(ロ)周波数ロックモード タイミング発生回路19の出力が1のとき、周波数ロッ
クモードとなり、切換スイッチ18は発振器16の出力
を選択し、スイッチ14は閉となり、同期検波回路12
は同期検波を行い、メモリ補正回路13は補正回路とし
て動作して、全体で周波数ロックループを形成する。
(b) Frequency lock mode When the output of the timing generation circuit 19 is 1, the frequency lock mode is entered, the selector switch 18 selects the output of the oscillator 16, the switch 14 is closed, and the synchronous detection circuit 12
performs synchronous detection, and the memory correction circuit 13 operates as a correction circuit, forming a frequency locked loop as a whole.

その結果、電気光学、変調器11は第2図(B)のよう
に周波数で1で繰返す正弦波信号によって駆動される。
As a result, the electro-optic modulator 11 is driven by a sinusoidal signal repeating at a frequency of 1, as shown in FIG. 2(B).

このときの電気光学変調器11の出力光の電界振幅は、
次式で表される。
The electric field amplitude of the output light of the electro-optic modulator 11 at this time is:
It is expressed by the following formula.

e=E−cos (2gft+m−sin2rf1m− 5in2rf1t)=EJo(+EJ1  (m)co
s2g (f+f1 )t  EJl  (m・)C0
g2π(f−fl)t         ・・・(3)
ただしE:電気光学変調器11の入射光の電界振幅。
e=E-cos (2gft+m-sin2rf1m-5in2rf1t)=EJo(+EJ1 (m)co
s2g (f+f1)t EJl (m・)C0
g2π(f-fl)t...(3)
where E: electric field amplitude of incident light on the electro-optic modulator 11;

f:レーザ1の発振周波数 fl :発振器16の周波数=(吸収線半値全幅)/2 第4図(B)のスペクトルa o 、 a 1 、a 
2は(3)式の各周波数成分に対応している。al。
f: Oscillation frequency fl of laser 1: Frequency of oscillator 16 = (absorption line full width at half maximum)/2 Spectrum a o , a 1 , a in Fig. 4(B)
2 corresponds to each frequency component in equation (3). al.

a2はサイドバンドである。a2 is a side band.

吸収線は光パワーで検出すると、ドツプラー塩がりの影
響でガウス型となる。そこで電界のデイメンジョンでみ
ると吸収線は次式で表される。
When the absorption line is detected using optical power, it becomes Gaussian due to the influence of Doppler salt distortion. Therefore, when looking at the dimension of the electric field, the absorption line is expressed by the following formula.

G(f)=1−a [exp (−1n2・(f−f2
   2  1/2 ゜)/f+]        ・・・(4)ま ただし fo:吸収線周波数 α:電界吸収率 したがって吸収セル3を透過した光の電界振幅は次式で
表される。
G(f)=1-a [exp (-1n2・(f-f2
2 1/2°)/f+] (4) where fo: Absorption line frequency α: Electric field absorption rate Therefore, the electric field amplitude of the light transmitted through the absorption cell 3 is expressed by the following equation.

e=EJo(m)G(f)cos2πft+EJ1 (
m)G(f十f1)t−EJl (m)G(f−f  
)cos2g (f−fl)t  −= (5)これを
光検出器4で検出すると、その検出出力I、0は I  −K (I +2E  Jo (m) Jl(m
) GD (f)G(f十f1 )cos2πflt−2EJ  
(m)J  (m)G(f)G(f−fl)cos2π
f   t−2E   J     (m)G  (f
−fl1 2               ・・・(6)、) 
 cos4πf1t) となる、同期検波回FI@12においてIPDをCO5
2πftで同期検波すると、同期検波出力■。
e=EJo(m)G(f)cos2πft+EJ1 (
m) G(f 1) t-EJl (m) G(f-f
) cos2g (f-fl)t -= (5) When this is detected by the photodetector 4, its detection output I, 0 is I -K (I +2E Jo (m) Jl(m
) GD (f) G (f + f1 ) cos2πflt-2EJ
(m)J (m)G(f)G(f-fl)cos2π
f t-2E J (m)G (f
-fl1 2 ... (6),)
cos4πf1t) in the synchronous detection circuit FI@12.
When synchronously detecting at 2πft, the synchronous detection output ■.

は V  =に−G(f)(G(f+f、)−G(f−fl
))             ・・・(7)となる、
(7)式のfを吸収線周波数f。を中心に挿引すると、
第5図の点線21のようになる。
is V = to −G(f)(G(f+f,)−G(f−fl
)) ...(7) becomes,
In equation (7), f is the absorption line frequency f. If you subtract around
It becomes like the dotted line 21 in FIG.

前述のように光学系に干渉があると、吸収線には正弦波
状の干渉パターンが重畳するので、実際のVoは第5図
の実線22のようになる。この干渉パターンは吸収線の
真の中心周波数f。を検出する際に誤差となり、干渉距
離が変化すると干渉パターンが周波数軸上を移動し、レ
ーザ光がロックする周波数が正弦波状に変化してしまう
ので、周波数安定度が悪化する。これを防ぐために、本
装置ではメモリ補正回路13の捕正部において、前述の
掃引モードでメモリ部に記憶された干渉ノ<ターンに基
づいて同期検波回路12の出力を補正する。ここで干渉
パターンは次に示す一定間隔で繰返して現れる。
When there is interference in the optical system as described above, a sinusoidal interference pattern is superimposed on the absorption line, so the actual Vo becomes as shown by the solid line 22 in FIG. This interference pattern has the true center frequency f of the absorption line. When the interference distance changes, the interference pattern moves on the frequency axis, and the frequency at which the laser beam is locked changes sinusoidally, resulting in poor frequency stability. In order to prevent this, in the present device, the acquisition section of the memory correction circuit 13 corrects the output of the synchronous detection circuit 12 based on the interference no<turn stored in the memory section in the aforementioned sweep mode. Here, the interference pattern appears repeatedly at regular intervals as shown below.

f    =c/2nl           =−(
8)SR ただし C:光速 1:干渉距離 n:屈折率 この繰返しを利用して、吸収線の中心における干渉レベ
ル〈山か谷かその間か等)を容易に推測することができ
る。このようにして補正されたメモリ補正回路13の出
力に基づいて、制御回路15により、干渉パターンの影
響を受けずに半導体レーザの発振周波数を吸収線の中心
にロックすることができる。その結果周波数ドリフトの
ない無変調の光出力がビームスプリッタ10を介して取
出される。
f = c/2nl =-(
8) SR However, C: Speed of light 1: Interference distance n: Refractive index Using this repetition, it is possible to easily estimate the interference level at the center of the absorption line (peak, valley, somewhere in between, etc.). Based on the output of the memory correction circuit 13 corrected in this manner, the control circuit 15 can lock the oscillation frequency of the semiconductor laser to the center of the absorption line without being affected by the interference pattern. As a result, an unmodulated optical output without frequency drift is extracted via the beam splitter 10.

このような構成の周波数安定化レーザ光源によれば、電
気光学変調器を用いて外部変調を行っているので無変調
出力光を得ることができる。
According to the frequency stabilized laser light source having such a configuration, since external modulation is performed using an electro-optic modulator, unmodulated output light can be obtained.

また電気光学変調器を2次関数で変調し、吸収線外で光
学系の干渉パターンを検出して、その干渉パターンによ
って吸収線中心での干渉影響を補正するので、周波数安
定度が上がり、光学系温度が変化しても周波数ドリフト
が現れなくなる。
In addition, the electro-optic modulator is modulated with a quadratic function to detect the interference pattern of the optical system outside the absorption line, and the interference effect at the center of the absorption line is corrected using the interference pattern, increasing frequency stability and optical Frequency drift no longer appears even if the system temperature changes.

なお上記の実施例では発振器17の発振波形を下に凸の
2次関数波形としたが、上に凸の2次関数波形としても
よい。
In the above embodiment, the oscillation waveform of the oscillator 17 is a downwardly convex quadratic function waveform, but it may also be an upwardly convex quadratic function waveform.

また掃引モードにおける2次関数波形の掃引回数は任意
とすることができる。
Further, the number of sweeps of the quadratic function waveform in the sweep mode can be set arbitrarily.

また掃引モードでも同期検波回路12が発振器16の出
力により同期検波を行うようにすれは、周波数ロックモ
ードでは同期検波回路12の出力からメモリ補正部出力
を単に引算すればよく、メモリ補正回路13における演
算をより簡単にすることができる。
In addition, in order for the synchronous detection circuit 12 to perform synchronous detection using the output of the oscillator 16 even in the sweep mode, in the frequency lock mode, it is sufficient to simply subtract the output of the memory correction section from the output of the synchronous detection circuit 12. The calculations in can be made simpler.

また上記の実施例において、同期検波の参照周波数はf
lを用いて1次微分信号の0クロスボイントに制御して
いたが、3f1を参照周波数として3次微分信号の02
0スポイントに制御することもできる。一般にflの奇
数倍の参照周波数を用いて奇数次の微分信号のOクロス
ポイントに制御することができる。
Furthermore, in the above embodiment, the reference frequency for coherent detection is f
l was used to control the first-order differential signal to 0 cross point, but with 3f1 as the reference frequency, the third-order differential signal was controlled to 0 cross point.
It can also be controlled to 0 point. Generally, using a reference frequency that is an odd multiple of fl, it is possible to control the O cross point of an odd-order differential signal.

また吸収セルの標準物質はC2H2に限らない。Further, the standard substance for the absorption cell is not limited to C2H2.

〈発明の効果〉 以上述べたように本発明によれば、光学系の干渉の影響
がなく、発振周波数が高安定に制御された無変調出力の
周波数安定化レーザ光源を簡単な構成で実現することが
できる。
<Effects of the Invention> As described above, according to the present invention, a frequency-stabilized laser light source with a non-modulated output, which is not affected by optical system interference and whose oscillation frequency is highly stably controlled, can be realized with a simple configuration. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る周波数安定化レーザ光源の一実施
例を示す構成ブロック図、第2図〜第5図は第1図装置
の動作を示す説明図、第6図は周波数安定化レーザ光源
の従来例を示す構成ブロック図である。 1・・・半導体レーザ、3・・・吸収セル、4・・・光
検出器、11・・・電気光学変調器、12・・・同期検
波回路、13・・・メモリ補正回路、15・・・制御回
路、16・・・第1の発振器、 7・・・第2の発振器、 ・・切換 カ 517一 第j 図 第4図 第 図
FIG. 1 is a configuration block diagram showing an embodiment of the frequency-stabilized laser light source according to the present invention, FIGS. 2 to 5 are explanatory diagrams showing the operation of the device shown in FIG. 1, and FIG. 6 is a frequency-stabilized laser light source. FIG. 2 is a configuration block diagram showing a conventional example of a light source. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 3... Absorption cell, 4... Photodetector, 11... Electro-optic modulator, 12... Synchronous detection circuit, 13... Memory correction circuit, 15...・Control circuit, 16...first oscillator, 7...second oscillator,...switching unit 517-j Figure 4 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  半導体レーザと、正弦波を発生する第1の発振器と、
2次関数波形を発生する第2の発振器と、前記第1、第
2の発振器のいずれかを選択する切換スイッチと、この
切換スイッチを制御するタイミング発生回路と、前記切
換スイッチの出力で駆動され前記半導体レーザの出力光
を周波数変調する電気光学変調器と、この電気光学変調
器の出力光を入射し特定の周波数で吸収線を持つ標準物
質を封入した吸収セルと、この吸収セルを透過した光を
検出する光検出器と、前記切換スイッチが第2の発振器
を選択しているときに前記吸収線からシフトした光周波
数で前記光検出器から出力される干渉波形を記憶するメ
モリ回路と、前記切換スイッチが第1の発振器を選択し
ているときに前記光検出器の出力を前記第1の発振器出
力により同期検波する同期検波回路と、この同期検波回
路の出力を前記メモリ回路の出力に基づいて補正する補
正回路と、この補正回路の出力に基づいて前記半導体レ
ーザの発振周波数が前記吸収線の中心となるように制御
する制御回路とを備え、半導体レーザから無変調光を出
力するように構成したことを特徴とする周波数安定化レ
ーザ光源。
a semiconductor laser; a first oscillator that generates a sine wave;
A second oscillator that generates a quadratic function waveform, a changeover switch that selects either the first or second oscillator, a timing generation circuit that controls this changeover switch, and a timing generation circuit that is driven by the output of the changeover switch. an electro-optic modulator that frequency-modulates the output light of the semiconductor laser; an absorption cell in which the output light of the electro-optic modulator enters and encapsulates a standard substance having an absorption line at a specific frequency; a photodetector that detects light; a memory circuit that stores an interference waveform output from the photodetector at an optical frequency shifted from the absorption line when the changeover switch selects the second oscillator; a synchronous detection circuit that synchronously detects the output of the photodetector using the first oscillator output when the changeover switch selects the first oscillator; and an output of the synchronous detection circuit as an output of the memory circuit. and a control circuit that controls the oscillation frequency of the semiconductor laser to be centered on the absorption line based on the output of the correction circuit, and outputs unmodulated light from the semiconductor laser. A frequency-stabilized laser light source characterized by comprising:
JP23098290A 1990-08-31 1990-08-31 Frequency stabilizing laser beam source Pending JPH04111485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23098290A JPH04111485A (en) 1990-08-31 1990-08-31 Frequency stabilizing laser beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23098290A JPH04111485A (en) 1990-08-31 1990-08-31 Frequency stabilizing laser beam source

Publications (1)

Publication Number Publication Date
JPH04111485A true JPH04111485A (en) 1992-04-13

Family

ID=16916376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23098290A Pending JPH04111485A (en) 1990-08-31 1990-08-31 Frequency stabilizing laser beam source

Country Status (1)

Country Link
JP (1) JPH04111485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251945A (en) * 2007-03-30 2008-10-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization light source
JP2008288390A (en) * 2007-05-17 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical frequency stabilizing light source
JP2009278006A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Device for stabilizing laser wavelength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251945A (en) * 2007-03-30 2008-10-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilization light source
JP4608512B2 (en) * 2007-03-30 2011-01-12 日本電信電話株式会社 Frequency stabilized light source
JP2008288390A (en) * 2007-05-17 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical frequency stabilizing light source
JP2009278006A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Device for stabilizing laser wavelength

Similar Documents

Publication Publication Date Title
EP0401799B1 (en) Length measuring apparatus
US6891149B1 (en) Optical phase detector
JPH027587A (en) Variable frequency light source
US4969017A (en) Measuring device for the measurement, in a wide range, of a non-reciprocal phase shift generated in a ring interferometer, and measuring method
JPH04111485A (en) Frequency stabilizing laser beam source
GB1576941A (en) Laser gyroscope
JP2006337832A (en) Method and device for generating optical frequency comb
JP2520740B2 (en) Variable wavelength stabilized light source
JP2578271Y2 (en) Frequency stabilized laser light source
JPH0653590A (en) Method for stabilizing optical fsk frequency displacement amount
JPH01102978A (en) Variable wavelength light source
JP3575653B2 (en) Ultra-fast synchronous pulse light source
JPS60253953A (en) Measurement system for gas concentration
JPH0210785A (en) Variable frequency light source
JP2612919B2 (en) Laser oscillation frequency stabilizer
Chien et al. The optical signal generator and phase-locked loop based on a triangularly phase-modulated fibre-optic gyroscope
Akulshin et al. Frequency stabilization of highly coherent AlGaAs diode lasers
JP3018615B2 (en) Frequency stabilized laser light source
GB2227833A (en) Fibre-optic gyroscope
JPS6152634A (en) Semiconductor laser optical modulating and demodulating system
JPH03250680A (en) Frequency stabilized laser light source
JPH05275788A (en) Frequency-stabilized semiconductor laser
JPH0482191B2 (en)
JP2664038B2 (en) Semiconductor laser light modulation / demodulation method
JP2986239B2 (en) Frequency stabilized light source