JP3575653B2 - Ultra-fast synchronous pulse light source - Google Patents

Ultra-fast synchronous pulse light source Download PDF

Info

Publication number
JP3575653B2
JP3575653B2 JP21638896A JP21638896A JP3575653B2 JP 3575653 B2 JP3575653 B2 JP 3575653B2 JP 21638896 A JP21638896 A JP 21638896A JP 21638896 A JP21638896 A JP 21638896A JP 3575653 B2 JP3575653 B2 JP 3575653B2
Authority
JP
Japan
Prior art keywords
light source
modulation
light
optical
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21638896A
Other languages
Japanese (ja)
Other versions
JPH1065255A (en
Inventor
祥雅 片桐
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21638896A priority Critical patent/JP3575653B2/en
Publication of JPH1065255A publication Critical patent/JPH1065255A/en
Application granted granted Critical
Publication of JP3575653B2 publication Critical patent/JP3575653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気信号に同期可能な超高繰り返し周波数の光パルス列を発生する超高速同期パルス光源に関する。
【0002】
【従来の技術】
受動モード同期半導体レーザは、レーザ内に設けられた可飽和吸収領域の逆バイアス制御により、超高繰り返し周波数の光パルス列を発生させることが可能になっている。この受動モード同期半導体レーザを用い、繰り返し周波数が 100GHzを越える光パルスを電気信号に同期させる方法として位相同期ループが検討されている(参考文献:Buckman L. A., et al., “Stabilization of millimeter−wave frequencies from passively mode−locked semiconductor lasers using
an optoelectronic phase−locked loop”, IEEE J. Photonics Technol. Lett.5,pp.1137−1140, 1993) 。
【0003】
ここでは、受動モード同期半導体レーザから発生する光パルス列をフォトダイオードで検出し、その検出信号と電気信号とを位相比較し、得られる誤差信号が最小になるように可飽和吸収領域の逆バイアス電圧を制御し、繰り返し周波数を制御するようになっている。なお、位相同期ループでは、発振しないように最適なフィルタを通して誤差信号が逆バイアス電圧に重畳されるようになっている。
【0004】
【発明が解決しようとする課題】
従来の位相同期ループを用いた構成では、受動モード同期半導体レーザで発生する光パルス列をフォトダイオードで検出しているので、適用可能な繰り返し周波数の上限がフォトダイオードの反応時間により制限されていた。現状では、最大でも50GHzが限界であった。
【0005】
本発明は、繰り返し周波数が 100GHzを越える光パルスを電気信号に同期させることができる超高速同期パルス光源を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の超高速同期パルス光源は、受動モード同期半導体レーザから出力される光パルスを位相変調した後にフォトダイオードで受光する。フォトダイオードでは、同期モードの変調側波帯間、または変調側波帯と隣接同期モード間のビート信号を発生させ、そのビート信号を用いて位相同期ループを構成する。
【0007】
繰り返し周波数Fの光パルスは、図2に示すように、光周波数スペクトル上で間隔Fの同期モードを呈する。この光パルスを位相変調すると、各同期モードのまわりに変調周波数Fm の間隔で多数の変調側波帯が発生する。変調側波帯は、もとの同期モードの位相情報を保持しており、従って変調側波帯間のビートにもその位相情報が反映される。帯域無限大の理想的なフォトダイオードでは、図3に示すように、RFスペクトル上で周波数Fのモード同期信号を中心とする間隔Fm ごとのビート信号が表れる。周波数帯域に制限がある実際のフォトダイオードにおいても、低周波数領域のビート信号の検出は可能である。このビート信号を用い、従来と同様の位相同期ループを形成することにより、繰り返し周波数が 100GHzを越える光パルスを電気信号に同期させることが可能になる。
【0008】
【発明の実施の形態】
(第1の実施形態−請求項1,2)
図1は、本発明の超高速同期パルス光源の第1の実施形態を示す。本実施形態は、繰り返し周波数36GHzのパルス光源に適用したものである。
図において、受動モード同期半導体レーザ10、アイソレータ11、光透過手段としての光フィルタ12、光出力を取り出す光カプラ13、光変調手段としてのLiNbO強度変調器14、光電変換手段としてのフォトダイオード(PD)15、増幅器16、位相比較手段としてのミキサ17、負帰還手段としての低域通過フィルタ(LPF)18および増幅器19、受動モード同期半導体レーザ10の可飽和吸収領域101がループ状に接続され、位相同期ループを構成している。光カプラ13で分岐された出力には、観測系のRFスペクトラムアナライザ20が接続される。LiNbO強度変調器14は、電気発振器21から出力される20GHzの変調信号で駆動される。ミキサ17には、電気発振器22から16GHzの正弦波信号が入力される。
【0009】
受動モード同期半導体レーザ10には、半導体レーザ導波路上に可飽和吸収領域101と利得領域102が一体成形された多電極レーザを用いる。このような受動モード同期半導体レーザ10は、可飽和吸収領域101の光強度の増大により損失が減少する非線形吸収特性により受動モード同期発振し、数ピコ秒以下のパルス幅(半値全幅)の光パルス列を発生させる。この光パルス列は、レーザ素子への戻り光を防止するアイソレータ11を通過し、さらに余分なモードによるASEビート雑音を除去し、モード同期に関与する光周波数成分のみを通過させる光フィルタ12を通過し、光カプラ13で分岐される。その一方の光パルス列は、光出力としてここではRFスペクトラムアナライザ20に入力され、他方の光パルス列は位相同期ループのLiNbO強度変調器14に入力される。
【0010】
LiNbO強度変調器14は変調周波数20GHzで駆動され、16GHz間隔の1次の変調側波帯を発生させ、フォトダイオード15で電気信号に変換される。RFスペクトル上では、この1次の変調側波帯と隣接同期モードとの間のビート信号(16GHz)と、隣接同期モードから発生した個別の1次変調側波帯間のビート信号(4GHz)を呈する。ここでは、強度の強い16GHzのビート信号を位相同期ループに使用する。フォトダイオード15から出力されるビート信号は増幅器16を介してミキサ17に入力され、電気発振器22から出力される16GHzの正弦波信号と位相比較される。得られた誤差信号は、低域通過フィルタ18を通過して増幅器19で増幅され、可飽和吸収領域101への逆バイアス電圧に重畳される。位相同期ループの利得を適当に選ぶことにより、受動モード同期半導体レーザ10から発生する光パルス列を電気発振器に同期させることができる(図1(2))。
【0011】
(第2の実施形態−請求項1,3)
図4は、本発明の超高速同期パルス光源の第2の実施形態を示す。本実施形態は、繰り返し周波数 100GHzのパルス光源に適用したものである。
図において、光変調手段として電気発振器23から出力される24GHzの変調信号で駆動される2段直列接続されたLiNbO強度変調器14−1,14−2を用い、また同期をとる4GHzの正弦波信号を出力する電気発振器24を用いる他は、図1に示す第1の実施形態と同様である。
【0012】
LiNbO強度変調器14−2では、48GHz間隔の1次の変調側波帯が各モードの周囲に発生するので、低周波数側のビート信号は4,28,52,76GHzに表れる。位相同期ループには電気的な処理が容易な最も低い4GHzのビート信号を利用する。ミキサ17で、4GHzの正弦波信号と位相比較して誤差信号を得た後は、第1の実施形態と同様である。なお、繰り返し周波数は変調周波数の非整数倍としている。これは、フォトダイオード15が位相検波できないことによる。
【0013】
(第3の実施形態−請求項1,4)
図5は、本発明の超高速同期パルス光源の第3の実施形態を示す。本実施形態は、繰り返し周波数 200GHzのパルス光源に適用したものである。
図において、光変調手段として電気発振器23から出力される24GHzの変調信号で駆動される光周波数コム発生器31を用い、また同期をとる8GHzの正弦波信号を出力する電気発振器25を用いる他は、図1に示す第1の実施形態と同様である。
【0014】
光周波数コム発生器31は、FSRが変調周波数と同じ24GHzのファブリ・ペロー共振器中にLiNbO位相変調器を含む構成である。これにより、24GHz間隔の多数の変調側波帯が各モードの周囲に発生する。したがって、検出できるビート信号は、8,32,56,80,104,128,152,176GHzに発生する。第2の実施形態と同様に、位相同期ループには電気的な処理が容易な最も低い8GHzのビート信号を利用する。ミキサ17で、8GHzの正弦波信号と位相比較して誤差信号を得た後は、第1の実施形態と同様である。
【0015】
(第4の実施形態−請求項5)
図6は、本発明の超高速同期パルス光源の第4の実施形態を示す。本実施形態は、第3の実施形態に用いた光周波数コム発生器31を半導体レーザに置き換え、繰り返し周波数 100GHzのパルス光源に適用したものである。
図において、光周波数コム発生器31の位置にサーキュレータ32を介して半導体レーザ33を配置する。電気発振器26から出力される6GHzの電気信号により半導体レーザ33の駆動電流を変調する。半導体レーザ33は、それによりキャリア密度が変調され、さらに屈折率が変調されて外部から注入される光が位相変調を受ける。変調周波数の上限はキャリアの応答で制限されるが、変調度を大きくできるので多数のコムを発生させることができる。
【0016】
ここでは、変調周波数を6GHzとしているので、検出できるビート信号は4GHzから94GHzまで6GHzごとに表れる。その中で最も処理しやすいのは4GHzのビート信号であるが、キャリアから離れるほど強度が小さくなるので、電気回路で簡易に処理可能な最大の周波数のビート信号を使用する。ここでは、電気回路の上限を20GHzとして、16GHzのビート信号を位相同期ループに用いる。ミキサ17で、16GHzの正弦波信号と位相比較して誤差信号を得た後は、第1の実施形態と同様である。
【0017】
なお、半導体レーザ33は、可飽和吸収領域と利得領域を有する多電極レーザに置き換え、可飽和吸収領域へ印加する逆バイアス電流を変調しても屈折率変化を実現できる。利得領域は、可飽和吸収領域通過による損失を補償するために用いられる。逆バイアス変調による屈折率の応答は電流注入によるよりも速いので、高周波数の変調を実現することができる。
【0018】
(第5の実施形態−請求項6)
本実施形態は、光周波数コム発生器31または半導体レーザ33で多数のビート信号を発生させる第3の実施形態または第4の実施形態において、信号対雑音比を改善する構成に関する。
位相変調で多数の変調側波帯が発生することによりエネルギーが各側波帯に分配される。このエネルギーの分配によりビート信号の強度が劣化し、位相同期ループの誤差信号の品質が劣化する。このため、高次の側波帯間のビートを利用する場合には、着目するビート信号を与える側波帯に分配されるエネルギーを極大にする必要がある。これは、最大周波数偏移の最適化により達成することができる。すなわち、各変調側波帯の強度は、位相変調の最大位相偏移Δφを引数とするベッセル関数の2乗(J[Δφ])で与えられるので、Δφを適当に選ぶことにより目的のビート信号を極大にすることが可能である。例えば、図7に示すように、1次のベッセル関数の零点近傍にΔφを設定すると、2次側波帯の強度はほぼ最大となる。すなわち、2次側波帯を使う場合の最適値は、1次のベッセル関数の零点に位相変調の振幅を合わせればよい。
【0019】
(第6の実施形態−請求項7)
本実施形態は、ビート信号から誤差信号を得て受動モード同期半導体レーザの繰り返し周波数を制御する位相同期ループを最適化し、光パルス列の位相雑音を最小にするための構成に関する。
ビート信号には、繰り返し周波数のゆらぎに相当する位相雑音成分と、光パルス列の強度ゆらぎに相当する強度雑音成分が含まれる。このため、ビート信号を単純にベースバンドまで落として誤差信号を作っても、強度雑音成分により雑音が増大されて逆に光パルス列が不安定になる可能性がある。これを防ぐには、例えば繰り返し周波数の2以上の整数倍の高次のモード同期信号のビート信号を位相同期ループに使用する。このとき、高次のモード同期信号では位相雑音成分は次数の2乗に比例して増大し、相対的に強度雑音成分が小さくなるので、純粋に位相雑音成分から誤差信号を作りだすことが可能になる。このような誤差信号を用いれば、位相同期ループの利得を十分に上げてもループが発振することはなく、光パルス列を高精度に安定化することが可能になる。
【0020】
【発明の効果】
以上説明したように、本発明の超高速同期パルス光源は、電気信号に同期可能で繰り返し周波数が 100GHzを越える光パルス列を発生させることができる。
【図面の簡単な説明】
【図1】本発明の超高速同期パルス光源の第1の実施形態を示す図。
【図2】光周波数スペクトルを示す図。
【図3】RFスペクトルを示す図。
【図4】本発明の超高速同期パルス光源の第2の実施形態を示す図。
【図5】本発明の超高速同期パルス光源の第3の実施形態を示す図。
【図6】本発明の超高速同期パルス光源の第4の実施形態を示す図。
【図7】第一種ベッセル関数を示す図。
【符号の説明】
10 受動モード同期半導体レーザ
11 アイソレータ
12 光フィルタ
13 光カプラ
14 LiNbO強度変調器
15 フォトダイオード(PD)
16 増幅器
17 ミキサ
18 低域通過フィルタ(LPF)
19 増幅器
10 RFスペクトラムアナライザ
21 電気発振器(20GHz)
22 電気発振器(16GHz)
23 電気発振器(24GHz)
24 電気発振器(4GHz)
25 電気発振器(8GHz)
26 電気発振器(6GHz)
31 光周波数コム発生器
32 サーキュレータ
33 半導体レーザ
101 可飽和吸収領域
102 利得領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrahigh-speed synchronous pulse light source that generates an optical pulse train having an ultrahigh repetition frequency that can be synchronized with an electric signal.
[0002]
[Prior art]
The passive mode-locked semiconductor laser can generate an optical pulse train having an extremely high repetition frequency by controlling the reverse bias of the saturable absorption region provided in the laser. As a method of using this passive mode-locked semiconductor laser to synchronize an optical pulse having a repetition frequency exceeding 100 GHz with an electric signal, a phase-locked loop has been studied (Reference: Buckman LA, et al., "Stabilization of". millimeter-wave frequencies from passive mode-locked semiconductor lasers using
an optoelectronic phase-locked loop ", IEEE J. Photonics Technology. Lett. 5, pp. 1137-1140, 1993).
[0003]
Here, an optical pulse train generated from a passively mode-locked semiconductor laser is detected by a photodiode, the phase of the detected signal is compared with that of an electric signal, and the reverse bias voltage in the saturable absorption region is minimized so that the obtained error signal is minimized. And the repetition frequency is controlled. In the phase locked loop, the error signal is superimposed on the reverse bias voltage through an optimum filter so as not to oscillate.
[0004]
[Problems to be solved by the invention]
In a conventional configuration using a phase-locked loop, since an optical pulse train generated by a passively mode-locked semiconductor laser is detected by a photodiode, the upper limit of the applicable repetition frequency is limited by the reaction time of the photodiode. At present, 50 GHz is the limit at the maximum.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an ultrafast synchronized pulse light source that can synchronize an optical pulse having a repetition frequency exceeding 100 GHz with an electric signal.
[0006]
[Means for Solving the Problems]
The ultrafast synchronous pulse light source of the present invention receives an optical pulse output from a passively mode-locked semiconductor laser with a photodiode after phase-modulating the optical pulse. The photodiode generates a beat signal between the modulation sidebands of the synchronous mode or between the modulation sideband and the adjacent synchronous mode, and forms a phase locked loop using the beat signal.
[0007]
The optical pulse having the repetition frequency F 0 exhibits a synchronous mode with an interval F 0 on the optical frequency spectrum as shown in FIG. When this optical pulse is phase-modulated, a number of modulation sidebands are generated around each synchronous mode at an interval of the modulation frequency Fm. The modulation sideband holds the phase information of the original synchronous mode, and accordingly, the phase information is also reflected on the beat between the modulation sidebands. Ideal photodiode band infinity, as shown in FIG. 3, the beat signal for each interval Fm around the mode locking signal frequency F 0 on RF spectrum appears. Even an actual photodiode having a limited frequency band can detect a beat signal in a low frequency region. By using this beat signal and forming a phase-locked loop similar to the conventional one, it becomes possible to synchronize an optical pulse having a repetition frequency exceeding 100 GHz with an electric signal.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment-Claims 1 and 2)
FIG. 1 shows a first embodiment of the ultrafast synchronous pulse light source of the present invention. This embodiment is applied to a pulse light source having a repetition frequency of 36 GHz.
In the figure, a passive mode-locked semiconductor laser 10, an isolator 11, an optical filter 12 as a light transmitting means, an optical coupler 13 for taking out an optical output, a LiNbO 3 intensity modulator 14 as a light modulating means, a photodiode as a photoelectric converting means ( PD) 15, an amplifier 16, a mixer 17 as phase comparing means, a low-pass filter (LPF) 18 and an amplifier 19 as negative feedback means, and a saturable absorption region 101 of the passive mode-locked semiconductor laser 10 are connected in a loop. , Forming a phase locked loop. An RF spectrum analyzer 20 of an observation system is connected to the output branched by the optical coupler 13. The LiNbO 3 intensity modulator 14 is driven by a 20 GHz modulation signal output from the electric oscillator 21. A 16 GHz sine wave signal is input from the electric oscillator 22 to the mixer 17.
[0009]
As the passive mode-locked semiconductor laser 10, a multi-electrode laser in which a saturable absorption region 101 and a gain region 102 are integrally formed on a semiconductor laser waveguide is used. Such a passively mode-locked semiconductor laser 10 oscillates passively in a mode-locked manner due to nonlinear absorption characteristics in which the loss decreases with an increase in light intensity in the saturable absorption region 101, and has an optical pulse train having a pulse width of less than several picoseconds (full width at half maximum). Generate. This optical pulse train passes through an isolator 11 for preventing return light to the laser element, and further passes through an optical filter 12 that removes ASE beat noise due to extra modes and passes only optical frequency components involved in mode locking. , At the optical coupler 13. One of the optical pulse trains is input here as an optical output to the RF spectrum analyzer 20, and the other optical pulse train is input to the LiNbO 3 intensity modulator 14 of the phase locked loop.
[0010]
The LiNbO 3 intensity modulator 14 is driven at a modulation frequency of 20 GHz, generates primary modulation sidebands at 16 GHz intervals, and is converted into an electric signal by a photodiode 15. On the RF spectrum, a beat signal (16 GHz) between the primary modulation sideband and the adjacent synchronization mode and a beat signal (4 GHz) between individual primary modulation sidebands generated from the adjacent synchronization mode are used. Present. Here, a strong 16 GHz beat signal is used for the phase locked loop. The beat signal output from the photodiode 15 is input to the mixer 17 via the amplifier 16, and is compared in phase with a 16 GHz sine wave signal output from the electric oscillator 22. The obtained error signal passes through the low-pass filter 18, is amplified by the amplifier 19, and is superimposed on the reverse bias voltage applied to the saturable absorption region 101. By appropriately selecting the gain of the phase locked loop, the optical pulse train generated from the passively mode-locked semiconductor laser 10 can be synchronized with the electric oscillator (FIG. 1 (2)).
[0011]
(Second Embodiment-Claims 1 and 3)
FIG. 4 shows a second embodiment of the ultrafast synchronous pulse light source according to the present invention. This embodiment is applied to a pulse light source having a repetition frequency of 100 GHz.
In the figure, two-stage serially connected LiNbO 3 intensity modulators 14-1 and 14-2 driven by a 24 GHz modulation signal output from an electric oscillator 23 are used as light modulation means, and a 4 GHz sine is synchronized. It is the same as the first embodiment shown in FIG. 1 except that an electric oscillator 24 for outputting a wave signal is used.
[0012]
In the LiNbO 3 intensity modulator 14-2, the primary modulation sidebands at 48 GHz intervals are generated around each mode, so that the beat signal on the low frequency side appears at 4, 28, 52, 76 GHz. For the phase locked loop, a beat signal of the lowest 4 GHz, which is easily processed electrically, is used. After the mixer 17 obtains an error signal by comparing the phase with a 4 GHz sine wave signal, the process is the same as that of the first embodiment. The repetition frequency is a non-integer multiple of the modulation frequency. This is because the photodiode 15 cannot perform phase detection.
[0013]
(Third Embodiment-Claims 1 and 4)
FIG. 5 shows a third embodiment of the ultrafast synchronous pulse light source according to the present invention. This embodiment is applied to a pulse light source having a repetition frequency of 200 GHz.
In the figure, an optical frequency comb generator 31 driven by a 24 GHz modulation signal output from an electric oscillator 23 is used as an optical modulating means, and an electric oscillator 25 outputting a synchronized 8 GHz sine wave signal is used. , And is similar to the first embodiment shown in FIG.
[0014]
The optical frequency comb generator 31 has a configuration in which a LiNbO 3 phase modulator is included in a Fabry-Perot resonator whose FSR is the same as the modulation frequency of 24 GHz. As a result, a large number of modulation sidebands at 24 GHz intervals are generated around each mode. Therefore, detectable beat signals are generated at 8, 32, 56, 80, 104, 128, 152 and 176 GHz. As in the second embodiment, a beat signal of the lowest 8 GHz, which is easily processed electrically, is used for the phase locked loop. After the mixer 17 obtains an error signal by comparing the phase with an 8 GHz sine wave signal, the process is the same as that of the first embodiment.
[0015]
(Fourth embodiment-Claim 5)
FIG. 6 shows a fourth embodiment of the ultrafast synchronous pulse light source according to the present invention. In this embodiment, the optical frequency comb generator 31 used in the third embodiment is replaced with a semiconductor laser, and is applied to a pulse light source having a repetition frequency of 100 GHz.
In the figure, a semiconductor laser 33 is arranged at a position of an optical frequency comb generator 31 via a circulator 32. The drive current of the semiconductor laser 33 is modulated by a 6 GHz electric signal output from the electric oscillator 26. In the semiconductor laser 33, the carrier density is thereby modulated, the refractive index is further modulated, and light injected from the outside undergoes phase modulation. Although the upper limit of the modulation frequency is limited by the response of the carrier, a large number of combs can be generated since the degree of modulation can be increased.
[0016]
Here, since the modulation frequency is 6 GHz, the beat signal that can be detected appears every 6 GHz from 4 GHz to 94 GHz. Among them, the beat signal of 4 GHz is the easiest to process, but since the intensity decreases as the distance from the carrier increases, the beat signal of the maximum frequency that can be easily processed by an electric circuit is used. Here, the upper limit of the electric circuit is set to 20 GHz, and a beat signal of 16 GHz is used for the phase locked loop. After the mixer 17 obtains an error signal by comparing the phase with the 16 GHz sine wave signal, the process is the same as that of the first embodiment.
[0017]
It should be noted that the semiconductor laser 33 may be replaced with a multi-electrode laser having a saturable absorption region and a gain region, and a refractive index change may be realized by modulating a reverse bias current applied to the saturable absorption region. The gain region is used to compensate for loss due to passing through the saturable absorption region. Since the response of the refractive index by reverse bias modulation is faster than by current injection, high frequency modulation can be realized.
[0018]
(Fifth Embodiment-Claim 6)
This embodiment relates to a configuration for improving the signal-to-noise ratio in the third embodiment or the fourth embodiment in which a large number of beat signals are generated by the optical frequency comb generator 31 or the semiconductor laser 33.
Energy is distributed to each sideband by generating a number of modulation sidebands by phase modulation. Due to this energy distribution, the strength of the beat signal deteriorates, and the quality of the error signal of the phase locked loop deteriorates. For this reason, when using the beat between higher-order sidebands, it is necessary to maximize the energy distributed to the sideband that gives the beat signal of interest. This can be achieved by optimizing the maximum frequency shift. That is, since the intensity of each modulation sideband is given by the square of the Bessel function (J n [Δφ]) 2 with the maximum phase shift Δφ of the phase modulation as an argument, by appropriately selecting Δφ, It is possible to maximize the beat signal. For example, as shown in FIG. 7, when Δφ is set near the zero point of the first-order Bessel function, the intensity of the secondary sideband becomes almost maximum. That is, the optimum value in the case of using the secondary sideband can be adjusted by adjusting the amplitude of the phase modulation to the zero point of the first-order Bessel function.
[0019]
(Sixth Embodiment-Claim 7)
The present embodiment relates to a configuration for optimizing a phase locked loop for controlling a repetition frequency of a passively mode-locked semiconductor laser by obtaining an error signal from a beat signal and minimizing phase noise of an optical pulse train.
The beat signal includes a phase noise component corresponding to the repetition frequency fluctuation and an intensity noise component corresponding to the intensity fluctuation of the optical pulse train. Therefore, even if the error signal is created by simply dropping the beat signal to the baseband, the noise may increase due to the intensity noise component, and conversely, the optical pulse train may become unstable. In order to prevent this, for example, a beat signal of a higher-order mode synchronization signal having an integral multiple of 2 or more of the repetition frequency is used in the phase locked loop. At this time, in the higher-order mode-locked signal, the phase noise component increases in proportion to the square of the order, and the intensity noise component becomes relatively small, so that an error signal can be created purely from the phase noise component. Become. By using such an error signal, even if the gain of the phase locked loop is sufficiently increased, the loop does not oscillate, and the optical pulse train can be stabilized with high accuracy.
[0020]
【The invention's effect】
As described above, the ultrahigh-speed synchronous pulse light source of the present invention can generate an optical pulse train that can be synchronized with an electric signal and has a repetition frequency exceeding 100 GHz.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an ultrafast synchronous pulse light source according to the present invention.
FIG. 2 is a diagram showing an optical frequency spectrum.
FIG. 3 is a view showing an RF spectrum.
FIG. 4 is a diagram showing a second embodiment of the ultrafast synchronous pulse light source according to the present invention.
FIG. 5 is a diagram showing a third embodiment of the ultrafast synchronous pulse light source according to the present invention.
FIG. 6 is a diagram showing a fourth embodiment of the ultrafast synchronous pulse light source according to the present invention.
FIG. 7 is a diagram showing a Bessel function of the first kind.
[Explanation of symbols]
Reference Signs List 10 passive mode-locked semiconductor laser 11 isolator 12 optical filter 13 optical coupler 14 LiNbO 3 intensity modulator 15 photodiode (PD)
16 Amplifier 17 Mixer 18 Low-pass filter (LPF)
19 amplifier 10 RF spectrum analyzer 21 electric oscillator (20 GHz)
22 Electric oscillator (16 GHz)
23 Electric oscillator (24GHz)
24 Electric oscillator (4GHz)
25 Electric oscillator (8 GHz)
26 Electric oscillator (6GHz)
31 optical frequency comb generator 32 circulator 33 semiconductor laser 101 saturable absorption region 102 gain region

Claims (7)

第1の繰り返し周波数で光パルス列を発生する受動モード同期半導体レーザと、
前記受動モード同期半導体レーザの光出力からモード同期に関与した光周波数成分のみを透過させる光透過手段と、
前記光透過手段の出力を分岐し、一方を光出力として取り出す分岐手段と、
前記分岐手段で分岐された他方の光を第2の周波数で光学的に変調する光変調手段と、 前記光変調手段の光出力を電気信号に変換する光電変換手段と、
前記光電変換手段から出力される同期モードの変調側波帯間または変調側波帯と隣接同期モード間のビート信号と第3の周波数とを位相比較する位相比較手段と、
前記位相比較手段から出力される誤差信号を前記受動モード同期半導体レーザの逆バイアス電圧に重畳する負帰還手段と
を備えたことを特徴とする超高速同期パルス光源。
A passive mode-locked semiconductor laser that generates an optical pulse train at a first repetition frequency;
Light transmission means for transmitting only the optical frequency components involved in mode locking from the optical output of the passive mode-locked semiconductor laser,
Branching means for branching the output of the light transmitting means and taking out one as a light output;
Light modulation means for optically modulating the other light branched by the branching means at a second frequency, photoelectric conversion means for converting the light output of the light modulation means into an electric signal,
Phase comparing means for comparing the phase of the beat signal between the modulation sidebands of the synchronous mode or between the modulation sideband and the adjacent synchronous mode with the third frequency, which is output from the photoelectric conversion means,
An ultrafast synchronous pulse light source, comprising: negative feedback means for superimposing an error signal output from the phase comparing means on a reverse bias voltage of the passive mode-locked semiconductor laser.
光変調手段が光強度変調器であることを特徴とする請求項1に記載の超高速同期パルス光源。2. The ultrafast synchronous pulse light source according to claim 1, wherein the light modulation means is a light intensity modulator. 光変調手段が多段直列接続された光強度変調器であることを特徴とする請求項1に記載の超高速同期パルス光源。2. The ultrahigh-speed synchronous pulse light source according to claim 1, wherein the light modulating means is a light intensity modulator connected in multiple stages in series. 光変調手段が光周波数コム発生器であることを特徴とする請求項1に記載の超高速同期パルス光源。2. The ultrafast synchronous pulse light source according to claim 1, wherein the optical modulation means is an optical frequency comb generator. 光周波数コム発生器が利得領域と電気的変調手段を有する半導体レーザであることを特徴とする請求項4に記載の超高速同期パルス光源。The ultrafast synchronous pulse light source according to claim 4, wherein the optical frequency comb generator is a semiconductor laser having a gain region and an electric modulation means. 光変調手段の変調振幅が光電変換手段から出力されるビート信号の強度が最大となる値に設定されることを特徴とする請求項4または請求項5に記載の超高速同期パルス光源。The ultrahigh-speed synchronous pulse light source according to claim 4 or 5, wherein the modulation amplitude of the light modulation means is set to a value at which the intensity of the beat signal output from the photoelectric conversion means is maximized. 光電変換手段から出力されるビート信号が高次のモード同期信号によるものであることを特徴とする請求項1に記載の超高速同期パルス光源。2. The ultrahigh-speed synchronous pulse light source according to claim 1, wherein the beat signal output from the photoelectric conversion means is based on a high-order mode synchronous signal.
JP21638896A 1996-08-16 1996-08-16 Ultra-fast synchronous pulse light source Expired - Fee Related JP3575653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21638896A JP3575653B2 (en) 1996-08-16 1996-08-16 Ultra-fast synchronous pulse light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21638896A JP3575653B2 (en) 1996-08-16 1996-08-16 Ultra-fast synchronous pulse light source

Publications (2)

Publication Number Publication Date
JPH1065255A JPH1065255A (en) 1998-03-06
JP3575653B2 true JP3575653B2 (en) 2004-10-13

Family

ID=16687795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21638896A Expired - Fee Related JP3575653B2 (en) 1996-08-16 1996-08-16 Ultra-fast synchronous pulse light source

Country Status (1)

Country Link
JP (1) JP3575653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508851B2 (en) 2006-05-15 2009-03-24 National Institute Of Advanced Industrial Science And Technology Clock transfer device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204914A (en) * 2010-03-25 2011-10-13 Sony Corp Optical oscillator and recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508851B2 (en) 2006-05-15 2009-03-24 National Institute Of Advanced Industrial Science And Technology Clock transfer device

Also Published As

Publication number Publication date
JPH1065255A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
US5379309A (en) High frequency source having heterodyned laser oscillators injection-locked to a mode-locked laser
US6963442B2 (en) Low-noise, switchable RF-lightwave synthesizer
JP6844119B2 (en) Optical frequency sweep laser light source and laser radar
US20130301664A1 (en) High spectral-purity carrier wave generation by nonlinear optical mixing
CN105763266A (en) Method for simultaneously achieving down conversion and phase shifting of microwave photons
JP2008288390A (en) Wavelength variable optical frequency stabilizing light source
US6614816B2 (en) Optical electromagnetic wave generator
Lee et al. A 30-GHz self-injection-locked oscillator having a long optical delay line for phase-noise reduction
EP1615334B1 (en) FM modulator
EP0585758B1 (en) Optical wavelength converter
Chen et al. Ultra-simple all-optical microwave frequency divider
CN116667111B (en) Frequency division oscillator based on light injection and oscillation method
JP4889951B2 (en) Optical frequency stabilizer
JP3575653B2 (en) Ultra-fast synchronous pulse light source
CN115037379B (en) Photon RF frequency doubling chip based on silicon-based micro-ring modulator and control method thereof
US20080292326A1 (en) Optical Voltage Controlled Oscillator for an Optical Phase Locked Loop
Hasanuzzaman et al. Cascaded microwave photonic filters for side mode suppression in a tunable optoelectronic oscillator applied to THz signal generation & transmission
CN111725690B (en) Device for rapidly tuning wide-range frequency of narrow-linewidth laser
US7324256B1 (en) Photonic oscillator
JPH08160475A (en) Superhigh-speed optical solinton pulse generating device
Larger et al. Optoelectronic phase chaos generator for secure communication
US6266351B1 (en) Generator for producing a high-frequency, low-noise signal
CN210326471U (en) Electric pulse mode-locked laser based on OEO
Chen et al. Wideband photonic microwave frequency divider with large harmonic suppression capability
JP2003195380A (en) Generator for optical millimeter wave or sub-millimeter wave

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees