JPS60253953A - Measurement system for gas concentration - Google Patents

Measurement system for gas concentration

Info

Publication number
JPS60253953A
JPS60253953A JP11182384A JP11182384A JPS60253953A JP S60253953 A JPS60253953 A JP S60253953A JP 11182384 A JP11182384 A JP 11182384A JP 11182384 A JP11182384 A JP 11182384A JP S60253953 A JPS60253953 A JP S60253953A
Authority
JP
Japan
Prior art keywords
power source
signal
phase
frequency
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11182384A
Other languages
Japanese (ja)
Inventor
Shoji Doi
土肥 正二
Akira Sawada
亮 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11182384A priority Critical patent/JPS60253953A/en
Publication of JPS60253953A publication Critical patent/JPS60253953A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Abstract

PURPOSE:To measure the concentration of gas at a relavtively high speed with high precision by superposing a modulated current having a lower frequency than a fine sine wave current on light from a semiconductor laser in addition to a DC current and the fine sine wave current, and making a wavelength scan with the modulated current of low frequency. CONSTITUTION:The power source 2 of a laser diode 1 is controlled by a DC power source 3, power source 4 for wavelength scanning, and power source 5 for differential modulation. Laser light 6 is absorbed by a specific gas 7 and inputted to a detector 8. The reception signal of the detector 8 is inputted to a phase detector 10 through a filter 9 which passes only the higher harmonic 2f1 of frequency twice as high as a modulation frequency f1, and phase-detected with the synchronizing signal of the power source 5. The phase-detected signal is supplied to a phase detector 12 through a filter 11 which passes the higher harmonic 2f2 of frequency twice as high as a frequency f2 for wavelength scanning and phase- detected with the synchronizing signal of the power source 4. The phase-detected signal is passed through a smoothing filter 13 and outputted as a signal 14 proportional to the concentration gas. Thus, the gas concentration is measured at a relatively high speed with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス濃度測定計(二係り、特に、レーザの発振
波長を2取に変調することにより、高精度にガス濃度を
得られるガス濃度測定方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas concentration measuring meter (in particular, a gas concentration meter that can obtain gas concentration with high accuracy by modulating the oscillation wavelength of a laser in two directions). Regarding measurement method.

〔従来の技術〕[Conventional technology]

従来のガス濃度測定計としては、■吸収ラインの中心波
長の周りで微分計測する方式と、■吸収ラインより広い
波長範囲で波長をステップ状C二多点測定する方式があ
る。■の方式として、第4因にガス吸収ラインの2次微
分値をめる計測原理図を第4図に示す。図のようにガス
吸収ラインの2次微分値は、吸収ラインの中心にお、い
て最大(点α)となり、その前後(二おいて極小(点り
、c)があられれる。そして、前後のガスのないところ
でも2次微分出力があられれているが、これは色々な原
因があるが、例えばエタロンフリンジ等の影響であり、
その結果としてオフセラ) hsがか\す、その上Cニ
が夏濃度(二対応した信号りがでる。
Conventional gas concentration measuring meters include two methods: (1) differential measurement around the center wavelength of the absorption line, and (2) method in which wavelengths are measured at two step-like C points in a wider wavelength range than the absorption line. As the method (2), FIG. 4 shows a diagram of the measurement principle in which the second-order differential value of the gas absorption line is included as the fourth factor. As shown in the figure, the second-order differential value of the gas absorption line is maximum at the center of the absorption line (point α), and the minimum value (point c) is observed before and after it. The second derivative output is low even in the absence of gas, but there are various causes for this, such as the effect of etalon fringes, etc.
As a result, off-sera) hs burns, and in addition, C2 produces a signal corresponding to the summer concentration (2).

したがって、オフセットんBを補正しなければならない
が、オフセットは環境温度の変化等の要因で変動し、ベ
ースラインがドリフトするため、確度の高い補正ができ
ず、高精度の測定が困難であった。また■の波長をステ
ップ状に多点測定する方式は、通常レーザダイオードの
電流をステップ状に増加して波長を変えることがなされ
るが、ステップ状に切換える毎に波長が安定するのに時
間を要するという欠点があった。
Therefore, it is necessary to correct the offset B, but since the offset fluctuates due to factors such as changes in the environmental temperature and the baseline drifts, highly accurate correction is not possible, making it difficult to measure with high precision. . In addition, in the method (2) of measuring the wavelength at multiple points in steps, the wavelength is usually changed by increasing the current of the laser diode in steps, but it takes time for the wavelength to stabilize each time the current is changed in steps. There was a drawback that it was necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記ガス濃度測定において障害となる光学的
反動によるベースライン変動の影響を排除し、かつ波長
安定を待つといった非測定時間を無くするもので、高精
度でかつ比較的高速なガス濃度測定方式を提供するもの
である。
The present invention eliminates the influence of baseline fluctuations caused by optical recoil, which is an obstacle in gas concentration measurement, and eliminates non-measuring time such as waiting for wavelength stabilization. It provides a measurement method.

〔問題点を解決するための手段〕[Means for solving problems]

ガス吸収ラインの2次微分波形は第4図のように、極大
αと極小J、cを有し、2つの極小すとCを結ぶ線はベ
ースラインに平行であり、線分b−Cから極大αまでの
高さhmは、ガス濃度に対応している。本発明はこれに
着目し、2次微分波形の極大−極小間を低周波の変調信
号で波長スキャンし、極大−極小間の差り、を読とろう
とするものである。そのため、本発明では、第6図に示
すごとく、光源のレーザ(二、吸収の中心近くの波長で
発振させる直流電流と、ガス吸収ラインの2次微分波形
を得るための極小正弦波変調電流と、波長走査のための
低周波数の変調電流を重畳して加える。そしてこの変調
されたレーデ光乞特定のガスに通し吸収せしめ、検知器
で吸収により変化した信号Sを検出する。そして検出さ
れた信号Sから前記原理に基づきhmすなわちガス吸収
ラインの2次微分波形の極大−極小の差を読取る。例え
ば、微小正弦波変調の周波数がf t = I KHz
 、低周波の第2の変調波周波数が、7’2 = 10
ffzとすれば、1秒間に10回の波長スキャンするこ
とになる。ベースラインの変動は普通秒オーダ以上で生
ずるのに対し、上記の場合1/10秒で計測できるので
ベースライン変動が影響しない。
As shown in Figure 4, the second-order differential waveform of the gas absorption line has a maximum α and minimum J and c, and the line connecting the two minimums J and C is parallel to the baseline, and from the line segment b-C. The height hm up to the maximum α corresponds to the gas concentration. The present invention focuses on this and attempts to read the difference between the maximum and minimum of the second-order differential waveform by scanning the wavelength between the maximum and minimum using a low frequency modulation signal. Therefore, in the present invention, as shown in Fig. 6, the light source laser (2. , a low-frequency modulation current for wavelength scanning is superimposed and applied.Then, this modulated LED light is passed through a specific gas and absorbed, and a detector detects the signal S changed by the absorption.Then, the detected From the signal S, based on the above-mentioned principle, hm, that is, the difference between the maximum and minimum of the second-order differential waveform of the gas absorption line is read.For example, if the frequency of minute sine wave modulation is f t = I KHz
, the low frequency second modulation wave frequency is 7'2 = 10
ffz, the wavelength will be scanned 10 times per second. Baseline fluctuations normally occur on the order of seconds or more, but in the above case, measurements can be made in 1/10 seconds, so baseline fluctuations have no effect.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成であり、1はレーザダ
イオード、2はその電源であり、該電源は直流電源6.
波長走査用電源4.微分変調用電源5で制御されている
。レーザ光6は特定のガス7で吸収を受けて(6′)検
知器8に入力される。
FIG. 1 shows the configuration of an embodiment of the present invention, in which 1 is a laser diode, 2 is its power source, and the power source is a DC power source 6.
Power source for wavelength scanning 4. It is controlled by a differential modulation power source 5. The laser beam 6 is absorbed by a specific gas 7 (6') and input to the detector 8.

検知器8の受信信号は、変調周波数11の2倍高調波2
fIだけ通すフィルタ9を通す。この2fI信号は、微
分変調用電源5の同期信号5′で位相検波される。10
がそのための位相検波器である。次に10で位相検波さ
れた信号を波長走査用周波数f、 (但しf2<L)の
2倍高調波2bを通すフィルタ11を通す。この2f2
信号は、4の波長走査用電源の同期信号4′で位相検波
する。12がその位相検波器である。次に、この位相検
波された信号を平滑化フィルタ13を通し、ガス濃度に
比例する信号14を得る。
The received signal of the detector 8 is the second harmonic 2 of the modulation frequency 11.
It passes through a filter 9 that passes only fI. This 2fI signal is phase detected by the synchronizing signal 5' of the differential modulation power source 5. 10
is the phase detector for that purpose. Next, the phase-detected signal 10 is passed through a filter 11 that passes the second harmonic 2b of the wavelength scanning frequency f (where f2<L). This 2f2
The phase of the signal is detected using the synchronizing signal 4' of the wavelength scanning power source 4. 12 is its phase detector. Next, this phase-detected signal is passed through a smoothing filter 13 to obtain a signal 14 proportional to the gas concentration.

第2図は本実施例の各部の信号波形を示すものであり、
付された番号は第1図の番号に対応している。2のよう
な2重変調された電流なレーザダイオード1に供給し、
該レーザ出力を特定ガス7で吸収させると検知器8の出
力は8のよう(二なる。
FIG. 2 shows the signal waveforms of each part of this embodiment.
The numbers assigned correspond to the numbers in FIG. A doubly modulated current such as 2 is supplied to the laser diode 1,
If the laser output is absorbed by the specific gas 7, the output of the detector 8 will be 8 (2).

吸収の中心付近で変調周波数f1の2倍の高調波が大さ
く出力する。そこでフィルタ9を通して2f1信号(2
次微分信号に相当)を取出す。次もここの信号音11の
波長走査用周波数f2の2倍高調波2f2だけ通すフィ
ルタ11を通し、波高値Aの信号11を得、この2f2
信号を平滑化フィルタ16を通して2f2信号の実効値
(i3) (ガスa度(二比例する信号)を得る。
Near the center of absorption, a large harmonic of twice the modulation frequency f1 is output. Therefore, the 2f1 signal (2
(equivalent to the second derivative signal) is extracted. Next, the signal sound 11 is passed through the filter 11 that passes only the second harmonic of the wavelength scanning frequency f2, 2f2, to obtain the signal 11 with the peak value A, and this 2f2
The signal is passed through a smoothing filter 16 to obtain the effective value (i3) of the 2f2 signal (gas a degree (signal proportional to two)).

〔発明の効果〕〔Effect of the invention〕

本発明(二よれば、光学的なオフセットがあっても、オ
フセットは波長走査用周波数f、と同じ周波数成分であ
るのに対して、ガス吸収による信号は2f2の周波数成
分であるため、2f2周波数成分の(i号を観測するこ
とによって、オフセット成分はほとんど除去できる効果
が得られる。また、オフセットが時々刻々変化してもそ
の変化より高速で波長走査しているため、オフセットの
時間変化に影響されず、高精度のガス濃度計測が可能と
なる。また、波長をディスクリートに変化する場合は波
長安定に時間を要する(レーザの熱応答特性による)の
(=比べて、本発明によれば、連続的に波長走査できる
ので、待時間が必要でなく、比較的高速(二測定が可能
である。
According to the present invention (2), even if there is an optical offset, the offset is the same frequency component as the wavelength scanning frequency f, whereas the signal due to gas absorption is the frequency component of 2f2, so the 2f2 frequency By observing component (i), it is possible to almost eliminate the offset component.Also, even if the offset changes from moment to moment, the wavelength is scanned faster than the change, so it does not affect the time change of the offset. In addition, when the wavelength is changed discretely, it takes time to stabilize the wavelength (due to the thermal response characteristics of the laser), but according to the present invention, Since the wavelength can be scanned continuously, no waiting time is required and relatively high speed (two measurements can be performed).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガス濃度測定方式を説明するための構
成図、第2図はその各部の波形図、第6図はガス吸収ラ
インに本発明方式を用いた時の検知器出力を示す原理図
、第4図はガス吸収ラインの2次微分値と波長の関係を
示す図。 1・・・レーザダイオード 2・・・電源 6・・・直流電源 4・・・波長走査用電源 5・・・微分変調用電源 6・・・レーザ光 7・・・特定のガス 8・・・検知器 9・・・2fIだけ通すフィルタ 10・・・位相検波器 11・・・2f2を通すフィルタ 12・・・位相検波器 13・・・平滑化フィルタ 14・・・ガス濃度に比例する信号 特許出願人 富士通株式会社 代理人 弁理士 玉蟲久五部(外1名)第 1 図 第2図 第3図 第 4 図 ト\−吸収ラインの中心
Figure 1 is a configuration diagram for explaining the gas concentration measurement method of the present invention, Figure 2 is a waveform diagram of each part thereof, and Figure 6 shows the detector output when the method of the present invention is used in the gas absorption line. The principle diagram and FIG. 4 are diagrams showing the relationship between the second-order differential value of the gas absorption line and the wavelength. 1...Laser diode 2...Power source 6...DC power source 4...Wavelength scanning power source 5...Differential modulation power source 6...Laser light 7...Specific gas 8... Detector 9...Filter 10 that passes only 2fI...Phase detector 11...Filter 12 that passes 2f2...Phase detector 13...Smoothing filter 14...Signal patent proportional to gas concentration Applicant Fujitsu Limited Agent Patent Attorney Gobe Tamamushi (1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Figure \ - Center of absorption line

Claims (1)

【特許請求の範囲】[Claims] ガスの吸収ラインの2次微分波形の極大と極小の差を読
取り、ガス濃度を測定するガス濃度測定方式において、
半導体レーザを光源として用い、該レーザに直流電流と
微小正弦波電流の他に該微小正弦波電流より低い周波数
の変調電流を重畳し、該低い周波数の変調電流で波長ス
キャンすることを特徴とするガス濃度測定方式。
In the gas concentration measurement method, the gas concentration is measured by reading the difference between the maximum and minimum of the second derivative waveform of the gas absorption line.
A semiconductor laser is used as a light source, and in addition to a direct current and a minute sine wave current, a modulation current having a lower frequency than the minute sine wave current is superimposed on the laser, and wavelength scanning is performed using the modulation current at the lower frequency. Gas concentration measurement method.
JP11182384A 1984-05-31 1984-05-31 Measurement system for gas concentration Pending JPS60253953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11182384A JPS60253953A (en) 1984-05-31 1984-05-31 Measurement system for gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11182384A JPS60253953A (en) 1984-05-31 1984-05-31 Measurement system for gas concentration

Publications (1)

Publication Number Publication Date
JPS60253953A true JPS60253953A (en) 1985-12-14

Family

ID=14571049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11182384A Pending JPS60253953A (en) 1984-05-31 1984-05-31 Measurement system for gas concentration

Country Status (1)

Country Link
JP (1) JPS60253953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010896A1 (en) * 1990-01-10 1991-07-25 Mütek Gmbh Method for operating a radiation absorption photometer
JP2007285823A (en) * 2006-04-14 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Light absorption measuring device
JP2008175611A (en) * 2007-01-17 2008-07-31 Fuji Electric Systems Co Ltd Device and method for measuring gas concentration
JP2008268064A (en) * 2007-04-23 2008-11-06 Fuji Electric Systems Co Ltd Multicomponent responsive laser type gas analyzer
JP2013164315A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010896A1 (en) * 1990-01-10 1991-07-25 Mütek Gmbh Method for operating a radiation absorption photometer
JP2007285823A (en) * 2006-04-14 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Light absorption measuring device
JP4634956B2 (en) * 2006-04-14 2011-02-16 日本電信電話株式会社 Light absorption measuring device
JP2008175611A (en) * 2007-01-17 2008-07-31 Fuji Electric Systems Co Ltd Device and method for measuring gas concentration
JP2008268064A (en) * 2007-04-23 2008-11-06 Fuji Electric Systems Co Ltd Multicomponent responsive laser type gas analyzer
JP2013164315A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device

Similar Documents

Publication Publication Date Title
US6351309B1 (en) Dual modulation laser line-locking technique for wavelength modulation spectroscopy
EP0193742B1 (en) Wavelength scanning interferometry and interferometer employing laser diode
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
CN111693255A (en) Device and method for measuring frequency drift of laser light source
JP2744742B2 (en) Gas concentration measuring method and its measuring device
CN112729544B (en) Laser wavelength locking system and method for scanning absorption spectrum
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JPS60253953A (en) Measurement system for gas concentration
US6141138A (en) Apparatus and method for measuring characteristics of light
JP2703835B2 (en) Gas concentration measuring method and its measuring device
JP2792782B2 (en) Gas concentration measuring method and its measuring device
JPH03277945A (en) Gas detecting apparatus
Acef CO/sub 2//OsO/sub 4/lasers as frequency standards in the 29 THz range
JPH0616012B2 (en) Gas concentration measurement method
JPS6371675A (en) Laser distance measuring instrument
RU2431909C2 (en) System to stabilise frequency of laser radiation
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
WO1991006141A1 (en) Apparatus for stabilizing the wavelength of a signal-modulated light beam
SU1226059A1 (en) Method of correcting optical difference of interferometer travel
Minoni et al. An optical self-calibrating technique for the dynamic characterization of PZT's
JPH06167304A (en) Displacement sensor
JPH03135782A (en) Triangular wave modulated semiconductor laser device with linearlized frequency variation of output light
JPH01320489A (en) Method and instrument for measuring distance
SU757090A1 (en) Device for measuring laser wavelength