JPH06167304A - Displacement sensor - Google Patents

Displacement sensor

Info

Publication number
JPH06167304A
JPH06167304A JP4354344A JP35434492A JPH06167304A JP H06167304 A JPH06167304 A JP H06167304A JP 4354344 A JP4354344 A JP 4354344A JP 35434492 A JP35434492 A JP 35434492A JP H06167304 A JPH06167304 A JP H06167304A
Authority
JP
Japan
Prior art keywords
length measurement
signal
displacement meter
phase
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4354344A
Other languages
Japanese (ja)
Inventor
Hide Hosoe
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4354344A priority Critical patent/JPH06167304A/en
Publication of JPH06167304A publication Critical patent/JPH06167304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a length measuring signal highly accurate, highly stable and have multi-wavelength by detecting a reference signal from a flux of modulated laser light and sampling the displacement of a to-be-tested body in accordance with the length measuring signal and a synchronous signal obtained through optical interferences. CONSTITUTION:A part for detecting a length measuring signal is integrally formed in an interference prism. The intensity of the interference fringes is transmitted to a sampling circuit 9 by an optical fiber 8. The circuit 9 photoelectrically converts a reference signal and then detects a zero crossing point by means of a comparator. The length measuring signal is sampled in accordance with a synchronous signal. Since it is impossible to detect only from the value of the length measuring signal sampled by the single-phase synchronous signal whether the initial phase changes due to the displacement or solely the amplitude changes, a multi-phase reference signal is utilized and a multi-phase modulating synchronous signal is obtained. Accordingly, a plurality of length measuring signals are obtained in one modulation cycle, and the initial phase of the length measuring signals is obtained highly accurately in a multi- bucket method without influences of the external disturbances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、干渉縞計数方式のレー
ザー干渉測長計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference fringe counting type laser interferometer.

【0002】[0002]

【従来の技術】レーザー干渉測長器は、その高分解能と
広いダイナミックレンジにより、超精密測定や超精密加
工の分野において、変位あるいは変位を用いた角度測定
の基準として、広く利用されている。レーザー干渉測長
器には、大きく2つの方式が一般化されており、1つは
ヘテロダイン方式と呼ばれるもので、もう1つは、干渉
縞計数方式と呼ばれるものである。
2. Description of the Related Art Laser interferometers are widely used as a reference for displacement or angle measurement using displacement in the fields of ultraprecision measurement and ultraprecision machining because of their high resolution and wide dynamic range. Two types of laser interferometers are generally used. One is called a heterodyne method and the other is called an interference fringe counting method.

【0003】図6に、ヘテロダイン方式のレーザー干渉
測長器の実施例を示す。ヘテロダイン方式は、レーザー
光源15に、ゼーマン効果やAOMにより変調した、2
周波安定化レーザーを用いるのが大きな特徴で、このわ
ずかに差のある2つの周波数によって発生するビート周
波数が、その後にくる干渉測長光学系5において、被験
物が変移したときにドップラーシフトすることを利用し
て、被験物の速度を検出するものである。従ってこの方
式は、測長回路19の内部でいったん検出した速度信号
を積分して変位に変換してから出力する。また、ヘテロ
ダイン方式は、通常光源部で光源光束の干渉縞を発生さ
せ、検出ヘッド17によってビート周波数を取り出し、
これを参照信号とすることで、その測長精度を高めてい
る。
FIG. 6 shows an embodiment of a heterodyne type laser interferometer. In the heterodyne method, the laser light source 15 is modulated by Zeeman effect or AOM
The main feature of this is the use of a frequency-stabilized laser, and the beat frequency generated by these two slightly different frequencies is Doppler-shifted when the test object shifts in the interferometric measuring optical system 5 that follows. Is used to detect the velocity of the test object. Therefore, in this method, the velocity signal once detected inside the length measuring circuit 19 is integrated and converted into a displacement, and then output. In the heterodyne method, an interference fringe of a light source luminous flux is usually generated in a light source unit, a beat frequency is extracted by a detection head 17,
By using this as a reference signal, the length measurement accuracy is improved.

【0004】一方、干渉縞計数方式は図7の実施例に示
すように、レーザー光源20として比較的安価な単一波
長の安定化レーザーを用いることができ、被験物の変移
を後段の干渉測長光学系5により、干渉縞の強度変化と
して直接変位を検出するものである。そのためこの方式
は、光電変換後の計数回路24において積分器を必要と
せず、比較的簡素な構成で高速に変位測定ができるとい
う特徴がある。例えば、公知文献Nanotechno
logy 2,(1991)88−95,laser
interferometeric system f
ordisplacement measuremen
t with high precision,S H
osoeでは、0.6nmの測長分解能で1m/sec
という高速の測長を、干渉縞計数方式で実現している。
On the other hand, in the interference fringe counting system, as shown in the embodiment of FIG. 7, a relatively inexpensive single-wavelength stabilized laser can be used as the laser light source 20, and the displacement of the test object can be measured by an interferometer in the latter stage. The long optical system 5 directly detects displacement as a change in intensity of interference fringes. Therefore, this method is characterized in that the counting circuit 24 after photoelectric conversion does not require an integrator, and displacement measurement can be performed at high speed with a relatively simple configuration. For example, the publicly known document Nanotechno
logy 2, (1991) 88-95, laser
interferometric system f
ordisplacement measuremen
t with high precision, SH
With osoe, 1 m / sec with a measurement resolution of 0.6 nm
The high-speed measurement is realized by the interference fringe counting method.

【0005】どちらの方式も、測長精度に関しては干渉
縞の強度変化を利用しているため、原理的に差はない。
Both methods use the change in the intensity of the interference fringes with respect to the length measurement accuracy, so that there is no difference in principle.

【0006】[0006]

【考案が解決しようとする課題】しかしながら、図6に
示すヘテロダイン型のレーザー干渉測長計においては、
以下の問題があった。 (1)検出した測長信号の光電変換後に積分器を必要と
するため、測長の追従速度を速くしにくい。 (2)測長信号から大気揺らぎの影響をなくすために、
光源光を多波長化する際に、光源が複雑になるため技術
的に実現が難しく、また高価になる。さらに、図7で示
す干渉縞計数方式の実施例において以下の問題があっ
た。 (3)参照信号を有しておらず、システム全体としてオ
ープンループとなっているため、光源光束の強度変化な
どにより測長信号にノイズが入りやすく、その結果、測
長安定性が悪かった。 (4)検出した測長信号の周波数帯域がDCを含むた
め、検出部に差動光学系を用いても、外部迷光やドリフ
トといったDCノイズの影響や干渉縞強度の振幅変化の
影響を測長信号が直接受けるため、測長安定性の向上に
限界があった。本考案は、干渉縞計数方式を用いて、こ
れらの課題を全て克服し、サブナノメータを測長できる
レーザー干渉測長器の高精度高安定化と多波長化を実現
するものである。
However, in the heterodyne type laser interferometer as shown in FIG.
There were the following problems. (1) Since the integrator is required after photoelectric conversion of the detected length measurement signal, it is difficult to increase the speed of the length measurement. (2) In order to eliminate the influence of atmospheric fluctuations from the measurement signal,
It is technically difficult to realize and expensive because the light source becomes complicated when the wavelength of the light source is changed. Further, the embodiment of the interference fringe counting system shown in FIG. 7 has the following problems. (3) Since the system as a whole does not have a reference signal and is in an open loop, noise is likely to be included in the measurement signal due to a change in the intensity of the light flux of the light source, and as a result, the measurement stability is poor. (4) Since the frequency band of the detected length measurement signal includes DC, the influence of DC noise such as external stray light or drift and the influence of amplitude change of interference fringe strength are measured even if a differential optical system is used in the detection unit. Since the signal is directly received, there is a limit to the improvement of measurement stability. The present invention overcomes all of these problems by using an interference fringe counting method, and realizes high precision and stability of a laser interferometer that can measure sub-nanometers and increase in wavelength.

【0007】[0007]

【課題を解決するための手段】電気光学素子や磁気光学
素子を用いて光源光の偏光状態を変調して、後段の干渉
光学系による測長信号を交流化し、その帯域をDCから
離す。干渉光学系を経て検出される測長信号は、偏光特
性の変化を干渉縞の強度変化で検出することで得る。さ
らに、変調された光源光から参照信号を発生させ、光電
変換された測長信号を、その参照信号に従って90度の
位相差を設けた同期信号によりサンプリングし、その値
にマルチバケット法を適用して、高精度に変位信号の初
期位相を求め、測長値を得る。このようにして得た、参
照信号により同期して復調された測長信号の初期位相が
変われば、光源から検出部までの干渉光路長に変化があ
ったことを意味し、即ち被験物の変位を測長できる。マ
ルチバケットの演算には、メモリを用いる。参照信号の
伝送には、光ファイバーを用いる。さらに、大気揺らぎ
の測長信号への影響を除去するため、光源を多波長化す
るには、前述した電気光学素子や磁気光学素子の後段に
SHG素子を設けて、単一波長の偏光変調光源より多波
長化する。参照信号の検出は、単一波長の場合と同様
に、SHG素子の後段で、干渉縞強度の変化により検出
する。後段の干渉光学系を通った測長信号の検出は、ダ
イクロイックフィルター等により各色ごとに分離し、行
なう。
A polarization state of light from a light source is modulated by using an electro-optical element or a magneto-optical element, and a length measurement signal by an interference optical system in a subsequent stage is converted into an alternating current, and its band is separated from DC. The length measurement signal detected through the interference optical system is obtained by detecting a change in polarization characteristic by a change in intensity of interference fringes. Further, a reference signal is generated from the modulated light source light, the photoelectrically measured length measurement signal is sampled by a synchronization signal having a phase difference of 90 degrees according to the reference signal, and the multi-bucket method is applied to the value. Then, the initial phase of the displacement signal is obtained with high accuracy and the length measurement value is obtained. If the initial phase of the length measurement signal synchronously demodulated by the reference signal changes in this way, it means that the interference optical path length from the light source to the detection unit has changed, that is, the displacement of the test object. Can be measured. A memory is used for the calculation of the multi-bucket. An optical fiber is used to transmit the reference signal. Further, in order to eliminate the influence of atmospheric fluctuations on the measurement signal, in order to make the light source have multiple wavelengths, an SHG element is provided after the electro-optical element or the magneto-optical element described above, and a single wavelength polarization modulation light source is provided. Increase the number of wavelengths. Similar to the case of a single wavelength, the reference signal is detected after the SHG element by the change of the interference fringe intensity. The detection of the length measurement signal that has passed through the interference optical system in the subsequent stage is performed by separating each color by a dichroic filter or the like.

【0008】[0008]

【作用】本発明では、従来の干渉縞計数方式と異なり、
光源光の偏光状態を変調するため、測長信号として検出
する干渉縞の強度がたえず振動しており、これを光電変
換後にローカットフィルターを通すことで、簡単にDC
ノイズをほぼ100%除去できる。光源光から取り出さ
れて光ファイバーで伝送される参照信号より同期信号を
発生させ、それにより先のフィルターを通過した変位情
報を有する交流成分から、精密に変調信号と同期した測
長信号を得られるので、その位相を特定できて測長値が
得られる。さらに本発明では、この同期信号を、参照信
号(変調信号に等しい)の位相が変調により90゜ずれ
る毎に発生させ、それに同期して複数の測長信号をサン
プリングすることで、マルチバケット法をその初期位相
の算出に適用できるようにせしめ、これにより非常に高
精度にその初期位相(変位)を得ることができ、その結
果、高精度の測長が干渉縞計数方式で実現できる。また
本発明によれば、前述したDC成分による外乱やドリフ
トのほかに、光源の出力変動などに伴う干渉縞強度の振
幅変化の影響も、ほぼ完全に除去できるため、極めて安
定度の高い測長が同時に実現できる。
In the present invention, unlike the conventional interference fringe counting method,
Since the polarization state of the light source light is modulated, the intensity of the interference fringes detected as a length measurement signal is constantly oscillating. This can be easily converted into DC by passing it through a low-cut filter after photoelectric conversion.
Noise can be removed almost 100%. Since a synchronization signal is generated from the reference signal extracted from the light source light and transmitted through the optical fiber, the length measurement signal accurately synchronized with the modulation signal can be obtained from the AC component having the displacement information that has passed through the previous filter. , The phase can be specified and the length measurement value can be obtained. Further, in the present invention, the synchronization signal is generated every time the phase of the reference signal (equal to the modulation signal) is deviated by 90 ° due to the modulation, and a plurality of length measurement signals are sampled in synchronization with the synchronization signal, thereby implementing the multi-bucket method. The initial phase (displacement) can be obtained with extremely high accuracy by applying it to the calculation of the initial phase, and as a result, highly accurate length measurement can be realized by the interference fringe counting method. Further, according to the present invention, in addition to the disturbance and drift due to the DC component described above, the influence of the change in the amplitude of the interference fringe intensity due to the output fluctuation of the light source, etc. can be almost completely removed. Can be realized at the same time.

【0009】マルチバケットの演算にはメモリを使用
し、予めメモリ内に演算値を書き込んでおく。メモリの
アドレスに各同期測長信号値またはその加減算値をいれ
るだけで、その演算値をメモリのリードサイクルで極め
て高速に得ることができ、測長の追従速度も測長分解能
に依存することなく、高速にすることができる。さら
に、大気揺らぎを除去するために光源光を多波長化する
場合は、偏光変調素子の後段にSHG素子を入れる。S
HG素子は、結晶の持つ複屈折性を2つの結晶を対向し
て用いることでキャンセルしているため、偏光変調され
た単一波長光に位相をあわせて、やはり偏光変調された
高調波を出射する。但し、変調量はもとの基本波と等し
く、高調波に対しては変調位相量が逓倍となるため、同
期用参照信号は、SHG素子の後段から同様に干渉縞強
度の変化により取り出す。
A memory is used for the calculation of the multi-bucket, and the calculated value is written in the memory in advance. The calculated value can be obtained at a very high speed in the memory read cycle by simply adding each synchronous measurement signal value or its addition / subtraction value to the memory address, and the following speed of the measurement does not depend on the measurement resolution. , Can be fast. Furthermore, when the light source light is made to have multiple wavelengths in order to remove atmospheric fluctuations, an SHG element is inserted after the polarization modulator. S
Since the HG element cancels the birefringence of the crystal by using two crystals facing each other, the phase is aligned with the polarization-modulated single-wavelength light, and the polarization-modulated harmonic wave is also emitted. To do. However, since the modulation amount is equal to the original fundamental wave and the modulation phase amount is multiplied with respect to the higher harmonic wave, the synchronization reference signal is similarly extracted from the subsequent stage of the SHG element by the change in the interference fringe intensity.

【0010】[0010]

【実施例】図1に本発明の実施例を示す。レーザー光源
1は、単一周波数安定化He−Neレ一ザーが一般的で
はあるが、半導体励起のYAG固体レーザーであっても
よいし、他の種類のレーザーであってもよい。光源の種
類は、本発明とは関係ない。図1の実施例において光源
のすぐ後段には、戻り光をカットするアイソレーター2
を設置してあるが、これは光源の安定度を高く維持する
ためであって、その有無は本発明の構成には関係ない。
光源光束の偏光方向を無くすために、この後段に位相板
を置くことも、本発明の請求範囲には関係ない。光源か
ら出射したレーザー光束は、例えばLiTaOのよう
な電気光学素子を通して、その偏光状態を変調する。こ
の変調素子3についても、本実施例の電気光学素子に限
らず、磁気光学素子でもよく、またPZTなどを用いて
バビネソレイユ板を駆動する等して、機械的に変調する
などしてもよい。偏光変調に用いる素子の種類は、本発
明に関係ない。LiTaOの場合は、光束の進む方向
と垂直な方向に変調電界をかけてやると、内部を通る光
束の電界方向とそれに垂直な方向の互いに垂直な電場ベ
クトルに位相差が発生するため、例えば直線偏光でレー
ザー光源光を結晶内に入射してやると、変調電界によっ
て、円偏光や楕円偏光、入射時とは直交する方向の直線
偏光などにして、出射させることができる。今、変調に
より位相差を生じる互いに垂直な電場ベクトル方向を、
後段にある干渉測長光学系5のやはり互いに垂直な参照
光束の偏光方向と、測長光束の偏光方向にそれぞれ一致
させると、この変調は、参照光束と測長光束の位相差を
変調することになる。したがって、偏光子などによる公
知の手段で、参照光束と測長光束の成分をそれぞれ抽出
して、変位を干渉縞の強度で検出する(測長信号)と、
この干渉縞強度は、前述した変調により常に変化してい
ることになる。もし、干渉測長光学系において被験物に
変位が生じると、変調に精確に同期したタイミングでこ
の干渉縞をサンプリングすれば、その干渉縞強度の変化
から変調タイミングに対する測長干渉縞の位相変化が分
かり、そこから変位が分かるはずである。
EXAMPLE FIG. 1 shows an example of the present invention. The laser light source 1 is generally a single frequency-stabilized He-Ne laser, but may be a semiconductor-excited YAG solid-state laser or another type of laser. The type of light source is not relevant to the invention. In the embodiment of FIG. 1, an isolator 2 that cuts back light is provided immediately after the light source.
Is provided in order to maintain high stability of the light source, and the presence or absence thereof is not related to the configuration of the present invention.
It is not related to the scope of the claims of the present invention to place a phase plate in the latter stage in order to eliminate the polarization direction of the light source luminous flux. The laser beam emitted from the light source passes through an electro-optical element such as LiTaO 3 to modulate its polarization state. The modulator 3 is not limited to the electro-optical element of this embodiment, and may be a magneto-optical element, or may be mechanically modulated by driving a Babinet-Soleil plate using PZT or the like. . The type of element used for polarization modulation is not relevant to the present invention. In the case of LiTaO 3 , when a modulation electric field is applied in a direction perpendicular to the direction of travel of the light flux, a phase difference occurs between the electric field vectors of the light flux passing through the interior and the electric field vectors perpendicular to the electric field direction. When the laser light source light is made to enter the crystal by linearly polarized light, it can be made to be circularly polarized light, elliptically polarized light, or linearly polarized light in a direction orthogonal to the time of incidence by the modulating electric field, and then emitted. Now, the mutually perpendicular electric field vector directions that produce a phase difference due to modulation,
When the polarization directions of the reference light flux and the measurement light flux, which are also perpendicular to each other, of the interferometric length measurement optical system 5 in the latter stage are made to coincide with each other, this modulation modulates the phase difference between the reference light flux and the length measurement light flux. become. Therefore, by a known means such as a polarizer, the components of the reference light flux and the length measurement light flux are respectively extracted, and the displacement is detected by the intensity of the interference fringes (length measurement signal),
This interference fringe intensity always changes due to the above-mentioned modulation. If displacement occurs in the test object in the interferometric measuring optical system, if this interference fringe is sampled at the timing precisely synchronized with the modulation, the phase change of the measuring interferometric fringe with respect to the modulation timing will occur due to the change in the interference fringe intensity. You know, and you should know the displacement.

【0011】図1の実施例では、測長信号を検出する部
分は、干渉プリズム6内に一体化され、光ファイバー8
によってその干渉縞強度が、サンプリング回路9へ伝送
されている。もちろんこの検出部は、干渉プリズムと別
体であってもかまわない。また、変調との同期タイミン
グは、測長干渉光学系5の変位とは無関係であるから、
光源光を変調した後段4から、やはり偏光子等を用いた
公知の方法で、干渉縞強度から簡単に得ることができ
る。図2は、その同期信号を発生させるための参照信号
の検出部の実施例を示したものである。先ず左から、変
調された光源光がプリズムユニット10に入射する。こ
れをビームスプリッターによって取り出す。プリズムユ
ニット10は、変調の位相差を生じる互いに垂直な偏光
方向に対して、45゜傾けて設置されているので、その
位相差を生じる互いに垂直な偏光方向の両成分を、偏光
ビームスプリッター11により抽出でき、180°位相
の異なる2つの干渉縞を同時に発生させている。さらに
実施例では、一方の干渉縞に90゜の位相板13を通す
ことで、最終的に90゜位相の異なる2相の参照信号を
得ている。これは、後に示すマルチバケット法に使うた
めである。これらの参照信号は、精確な同期タイミング
を得るために、時間分解能が非常に重要であるから、ケ
ーブル内で反射したり、ストレ容量で波形が変形しやす
い電気信号で伝送するのは良くない。図1及び図2に示
したように光ファイバー7により、干渉縞強度のままサ
ンプリング回路9まで伝送する。サンプリング回路9で
は、図3に示す実施例のように参照信号を光電変換後、
DC成分を除去し、コンパレーターでゼロクロス位置を
検出し、微分回路によりパルス化して、同期信号を得、
これに従って測長信号をサンプリングする。同期信号を
得るまでのゲイン調整や波形整形は、回路中で適宜行な
われる。
In the embodiment shown in FIG. 1, the portion for detecting the length measurement signal is integrated in the interference prism 6, and the optical fiber 8 is used.
The interference fringe intensity is transmitted to the sampling circuit 9. Of course, this detector may be separate from the interference prism. Further, since the timing of synchronization with the modulation has nothing to do with the displacement of the length-measuring interference optical system 5,
It is possible to easily obtain the interference fringe intensity from the post-stage 4 after modulating the light from the light source by a known method using a polarizer or the like. FIG. 2 shows an embodiment of a reference signal detector for generating the synchronization signal. First, from the left, the modulated light source light enters the prism unit 10. This is taken out by the beam splitter. Since the prism unit 10 is installed at an angle of 45 ° with respect to the mutually perpendicular polarization directions that generate the phase difference of modulation, both components of the mutually perpendicular polarization directions that generate the phase difference are generated by the polarization beam splitter 11. Two interference fringes that can be extracted and are 180 ° out of phase are generated at the same time. Further, in the embodiment, the 90 ° phase plate 13 is passed through one of the interference fringes to finally obtain two-phase reference signals having different 90 ° phases. This is for use in the multi-bucket method described later. Since time resolution is very important for obtaining accurate synchronization timing, it is not good for these reference signals to be transmitted as electric signals which are reflected in the cable or whose waveform is easily deformed by the stray capacitance. As shown in FIGS. 1 and 2, the optical fiber 7 transmits the interference fringe intensity as it is to the sampling circuit 9. In the sampling circuit 9, after photoelectrically converting the reference signal as in the embodiment shown in FIG.
Remove the DC component, detect the zero-cross position with the comparator, pulse it with the differentiating circuit, obtain the synchronization signal,
The length measurement signal is sampled accordingly. Gain adjustment and waveform shaping until the synchronization signal is obtained are appropriately performed in the circuit.

【0012】図1において干渉測長光学系5により、被
験物の変位を干渉縞強度として検出し、光ファイバーに
より伝送され光電変換された測長信号は、参照信号の場
合と同様にローカットフィルターにより、DC成分を除
去する。光源光の変調周波数は、測長の追従速度の2倍
程度に取っておけば十分で、そうすると変調帯域は数M
Hz以上になるため、ローカット後の測長信号にはDC
成分が殆ど残らない。しかしながら、この測長信号をそ
のまま単相の同期信号により、単一の干渉縞強度として
位相変化に置き換えると、問題が起きる。ローカットフ
ィルターを通った測長信号は、干渉縞強度を表わす電圧
値(V)、振幅(A)、初期位相(θ)と変調角(ω
t)により以下のように表わされる。 V = A・sin(θ+ωt) (1) 図4は、横軸に時間(t)をとり、縦軸に電圧(V)を
取って、式(1)を単相同期信号と共に表わしたもので
ある。DC成分は消失しているが、振幅(A)の変動に
よって、式(1)の電圧値Vは変動してしまい、図4に
示すように単相同期信号によりサンプリングした測長信
号値だけでは、変位によって初期位相が変化したのか、
単に振幅が変動しただけなのか判別できない。このまま
測長値として出力すると、光源強度の変動や揺らぎなど
による干渉縞の振幅変動の影響を直接被るため、測長安
定性が低くなってしまう。
In FIG. 1, the interference measurement optical system 5 detects the displacement of the test object as interference fringe intensity, and the measurement signal transmitted by the optical fiber and photoelectrically converted is processed by the low-cut filter as in the case of the reference signal. Remove the DC component. It is sufficient to set the modulation frequency of the light source light at about twice the tracking speed of the length measurement, and then the modulation band is several M.
Since it will be more than Hz, DC for the length measurement signal after low cut
Almost no ingredients remain. However, if this length measurement signal is directly replaced by a single-phase synchronization signal as a single interference fringe intensity for phase change, a problem occurs. The measurement signal that has passed through the low-cut filter has a voltage value (V) representing the intensity of interference fringes, an amplitude (A), an initial phase (θ), and a modulation angle (ω).
It is represented by t) as follows. V = A · sin (θ + ωt) (1) FIG. 4 shows the equation (1) together with the single-phase synchronizing signal, with the horizontal axis representing time (t) and the vertical axis representing voltage (V). is there. Although the DC component disappears, the voltage value V of the equation (1) fluctuates due to the fluctuation of the amplitude (A), and as shown in FIG. 4, it is only the length measurement signal value sampled by the single-phase synchronization signal. , Did the initial phase change due to displacement,
It is impossible to determine whether the amplitude has simply changed. If the measurement value is output as it is, it is directly affected by the fluctuation of the amplitude of the interference fringes due to the fluctuation of the light source intensity or the fluctuation, and the stability of the measurement becomes low.

【0013】そこで図5にこの問題を解決した本発明の
実施例を示す。図5では、多相の参照信号を利用するこ
とにより多相の変調同期信号をとり、これにより変調1
周期の間に複数の測長信号値を得、マルチバケット法で
測長信号の初期位相を高精度に外乱の影響無しに求め、
上述の問題点を克服するものである。マルチバケット法
とは、単一の三角関数で表わされる周期信号を、精確に
90゜毎にサンプリングして、三角関数の直交関係を用
いて、簡単な演算で初期位相値や振幅値、DCバイアス
値などを求める方法である。 式(1)にマルチバケッ
ト法を適用すると、未知数は振幅(A)と初期位相
(θ)だけであるから、ωt=0°、90゜の2点で測
長信号をサンプリングすれば良い。そのときの値をそれ
ぞれV、Vすると、以下の式になる。 V= A・sin(θ) (2) V= A・sin(θ+90゜) = A・cos(θ) (3) 従って初期位相(θ)、振幅(A)は、 θ = tan−1(V/V) (4) A = squart(V +V ) (5 ) これが2バケット法であり、本発明により、前述した9
0゜位相の異なる2相の参照信号によって、精確に
、Vを得られるため、式(4)に従って、初期位
相値を振幅変動の影響無しに高精度に求めることができ
る。図5の実施例では、DC成分を除去された測長信号
は、ADコンバーターによってデジタル化され、ωt=
0゜、90゜の値が、メモリのアドレスに接続される。
初期位相値は、V、Vの値で一義的に決まるから、
予めメモリ内にその全ての組み合わせによる値を書き込
んでおけば、式(4)の演算はメモリのリードサイクル
で実行でき、極めて高速に初期位相値を求めることがで
きる。振幅値Aも同様にして高速に求める。求められた
振幅値Aは、図5に示すように、測長信号のゲイン調整
にフィードバックし、ADコンバーターのダイナミック
レンジを常に最大まで利用する様にAGCを働かせる。
これにより、測長信号のデジタル化に伴う量子化誤差を
最小にできるため、初期位相値の精度を高く維持でき
る。
FIG. 5 shows an embodiment of the present invention which solves this problem. In FIG. 5, a multiphase modulation synchronization signal is obtained by using a multiphase reference signal, and the modulation 1
Obtaining multiple length measurement signal values during a cycle, and obtaining the initial phase of the length measurement signal with high accuracy without the influence of disturbance by the multi-bucket method,
The above problems are overcome. In the multi-bucket method, a periodic signal represented by a single trigonometric function is accurately sampled at 90 ° intervals, and the initial phase value, amplitude value, and DC bias are calculated by simple calculation using the orthogonal relationship of trigonometric functions. This is a method of obtaining values and the like. When the multi-bucket method is applied to the equation (1), since the unknowns are only the amplitude (A) and the initial phase (θ), the length measurement signal may be sampled at two points of ωt = 0 ° and 90 °. Letting the values at that time be V 1 and V 2 , respectively, the following equation is obtained. V 1 = A · sin (θ) (2) V 2 = A · sin (θ + 90 °) = A · cos (θ) (3) Therefore, the initial phase (θ) and amplitude (A) are θ = tan −1 (V 1 / V 2 ) (4) A = squart (V 1 2 + V 2 2 ) (5) This is the 2-bucket method, and according to the present invention, the above-mentioned 9
Since V 1 and V 2 can be accurately obtained by the two-phase reference signals having different 0 ° phases, the initial phase value can be obtained with high accuracy according to the equation (4) without the influence of the amplitude fluctuation. In the embodiment of FIG. 5, the length measurement signal from which the DC component is removed is digitized by the AD converter, and ωt =
Values of 0 ° and 90 ° are connected to addresses in the memory.
Since the initial phase value is uniquely determined by the values of V 1 and V 2 ,
If the values of all the combinations are written in the memory in advance, the operation of the equation (4) can be executed in the read cycle of the memory, and the initial phase value can be obtained extremely quickly. The amplitude value A is similarly obtained at high speed. The obtained amplitude value A is fed back to the gain adjustment of the length measurement signal as shown in FIG. 5, and the AGC is operated so as to always use the maximum dynamic range of the AD converter.
As a result, the quantization error that accompanies the digitization of the length measurement signal can be minimized, so that the accuracy of the initial phase value can be maintained high.

【0014】測長信号は、前述したようにそのDC成分
をローカットフィルターにより、ほぼ完全に除去される
が、その後段のコンパレーターやOPアンプにオフセッ
トエラーがあると、わずかではあるがDC成分が残る。
このDC成分は、温度変化などによってドリフトを生じ
るので、初期位相(測長)の分解能を高くする時には、
実害を生じる。このときにマルチバケット法を適用する
には、式(1)では不十分で、以下の式(6)のように
DC項(D)を付加しなければならない。 V = A・sin(θ+ωt)+D (6) 未知数は3つになるため、ωt=0゜、90゜、180
°の3点で測長信号をサンプリングすれば良い。そのと
きの値をそれぞれV、V、Vすると、以下の式に
なる。 V= A・sin(θ)+D (7) V= A・sin(θ+90゜)+D = A・cos(θ)+D (8) V= A・sin(θ+180°)+D =−A・sin(θ)+D (9) 従って初期位相(θ)、振幅(A)、DC成分(D)
は、 θ = tan−1((V−V)/(2・V−V−V))(10 ) A = 1/2・squart((V−V+(V+V−2・V) (11) D = (V+V)/2 (12) これが3バケット法で、Vに対して対称的な演算を行
なうため、初期位相値についても2バケット法よりも同
期信号の誤差の影響を受けにくいが、やや複雑であり、
特に振幅Aの算出は、演算メモリを使うには複雑すぎ
る。この場合は、次に示す4バケット法のほうが、演算
が簡単で追従速度の点で有利である。
As described above, the DC component of the length measurement signal is almost completely removed by the low-cut filter. However, if there is an offset error in the comparator or OP amplifier in the subsequent stage, the DC component is slightly generated. Remain.
Since this DC component causes a drift due to a temperature change, etc., when increasing the resolution of the initial phase (length measurement),
Cause real harm. To apply the multi-bucket method at this time, the equation (1) is not sufficient, and the DC term (D) must be added as in the following equation (6). V = A · sin (θ + ωt) + D (6) Since there are three unknowns, ωt = 0 °, 90 °, 180
It suffices to sample the length measurement signal at three points. Letting the values at that time be V 1 , V 2 , and V 3 , respectively, the following equation is obtained. V 1 = A · sin (θ) + D (7) V 2 = A · sin (θ + 90 °) + D = A · cos (θ) + D (8) V 3 = A · sin (θ + 180 °) + D = −A · sin (θ) + D (9) Therefore, initial phase (θ), amplitude (A), DC component (D)
Is θ = tan −1 ((V 1 −V 3 ) / (2 · V 2 −V 1 −V 3 )) (10) A = ½ · squart ((V 1 −V 3 ) 2 + ( V 1 + V 2 −2 · V 2 ) 2 ) (11) D = (V 1 + V 3 ) / 2 (12) This is the 3-bucket method, and since the symmetrical operation is performed with respect to V 2 , the initial phase value Is less affected by the error of the sync signal than the two-bucket method, but it is a little complicated,
In particular, the calculation of the amplitude A is too complicated to use the arithmetic memory. In this case, the following 4-bucket method is advantageous in terms of easy calculation and following speed.

【0015】4バケット法は、3バケット法にωt=2
70°の測長信号Vを加え、以下のようにするもので
ある。 V= A・sin(θ+270°)+D =−A・c0s(θ)+D (13) 従って初期位相(θ)、振幅(A)、DC成分(D)
は、 θ = tan−1((V−V)/(V−V)) (14 ) A = 1/2・squart((V−V+(V−V) (15) D = (V+V+V+V)/4 (16) この場合は、演算メモリのアドレスには、(V
)及び(V−V)の値を与える。従って、測長
信号をサンプルしたあとに、減算を行なっておく必要が
あるが、回路的にはさほど負担はかからない。これによ
り、振幅値Aも同様に演算メモリで算出することがで
き、測長信号のAGC化が図れる。
In the 4-bucket method, ωt = 2 is added to the 3-bucket method.
A length measurement signal V 4 of 70 ° is added and the following is performed. V 4 = A · sin (θ + 270 °) + D = −A · c0s (θ) + D (13) Therefore, initial phase (θ), amplitude (A), DC component (D)
Is θ = tan −1 ((V 1 −V 3 ) / (V 2 −V 4 )) (14) A = 1/2 · squart ((V 1 −V 3 ) 2 + (V 2 −V 4 ) 2 ) (15) D = (V 1 + V 2 + V 3 + V 4 ) / 4 (16) In this case, the address of the arithmetic memory is (V 1
V 3) and giving a value of (V 2 -V 4). Therefore, it is necessary to perform the subtraction after sampling the length measurement signal, but the circuit does not require much load. As a result, the amplitude value A can be calculated in the arithmetic memory in the same manner, and the length measurement signal can be converted into AGC.

【0016】さらに初期位相(測長)の高精度化を図る
には、5バケット法を用いる。本発明においては、これ
により同期信号に含まれる時間誤差の一次成分がキャン
セルできるため、さらなる高精度化が可能となる。 V= A・sin(θー180゜)+D =−A・sin(θ)+D (17) V= A・sin(θ−90゜)+D =−A・cos(θ)+D (18) V= A・sin(θ)+D (19} V= A・sin(θ+90゜)+D = A・cos(θ)+D (20) V= A・sin(θ+180°)+D =−A・sin(θ)+D (21) 従って初期位相(θ)、振幅(A)、DC成分(D)
は、 θ = tan−1((2・V−V−V)/2・(V−V)) (22) A =squart(4・(V−V+(V+V−2・V )/4 ( 23) D = (2・V+V+V+V+V)/6 (24) やや複雑ではあるが、Vに対して対称的に加減算を行
なうため、本発明における2相の参照信号の位相差が誤
差をもっても、平均化の効果によりその一次成分がキャ
ンセルされる訳である。
To further improve the accuracy of the initial phase (length measurement), the 5-bucket method is used. According to the present invention, the primary component of the time error included in the synchronization signal can be canceled by this, so that higher accuracy can be achieved. V 1 = A · sin (θ−180 °) + D = −A · sin (θ) + D (17) V 2 = A · sin (θ−90 °) + D = −A · cos (θ) + D (18) V 3 = A · sin (θ) + D (19} V 4 = A · sin (θ + 90 °) + D = A · cos (θ) + D (20) V 5 = A · sin (θ + 180 °) + D = −A · sin (θ) + D (21) Therefore, initial phase (θ), amplitude (A), DC component (D)
Is θ = tan −1 ((2 · V 3 −V 1 −V 5 ) / 2 · (V 4 −V 2 )) (22) A = squart (4 · (V 2 −V 4 ) 2 + ( V 1 + V 5 −2 · V 3 ) 2 ) / 4 (23) D = (2 · V 3 + V 1 + V 2 + V 4 + V 5 ) / 6 (24) Somewhat complicated, but symmetrical with respect to V 3 Since addition and subtraction are carried out dynamically, even if there is an error in the phase difference between the two-phase reference signals in the present invention, the primary component is canceled by the effect of averaging.

【0017】以上述べたマルチバケット法は、本発明に
おいて、測長信号の初期位相を高精度にしかも簡単に求
める手段であった。しかしながら、このような方法を用
いても、位相差による偏光変調では正確な初期位相値は
求まらない。なぜなら、変調が光束の進行方向に行なわ
れるため、位相差を設けた直交する2つの偏光方向の周
波数、つまりは波長が、ドップラーシフトにより変動す
るからである。この変動量は、例えば変調周波数を10
MHzとし、変調量を1波長分とすると、2×10−5
程度になり無視できない。本発明による参照信号は、直
交する2つの偏光の相対的な位相差の情報を持っている
だけで、このような絶対的な波長変動は検出できない。
これを解決する手段として本発明では、変調が相対的に
光束の進行する向きに行なわれ位相差が増大するとき
と、逆向きに行なわれ位相差が減少するときの測長信号
値または初期位相値を平均化することで、解決を図っ
た。平均化は、測長信号について行なっても、初期位相
まで算出してから行なっても良いが、変調による位相差
の変化の速度の絶対値が、両方向でほぼ等しくなるタイ
ミングで、測長信号をサンプリングすることが重要であ
る。このタイミングは、前述した本発明の実施例によっ
て、容易に実現できる。例えば、2相の参照信号から発
生させた同期信号で行なう場合、光束の位相差が増大す
る方向に変調しているときに順に測長信号のサンプリン
グを行なう場合と、逆方向のときに順にサンプリングす
る場合では、単に測長値の並びが逆になるだけであるか
ら、3バケットや5バケットの場合はそのまま等価に扱
って平均化できるし、2バケットや4バケットの場合
は、一方の並びを逆にすることで、何ら算術的に手を加
えることなくそのまま平均化できる。この一連の操作は
変調の1周期で行なえるから、このような操作をして
も、測長値は少なくとも変調周波数で得られることにな
る。本発明のこのような操作をマルチバケット法に付け
加えることによって、簡素な構成で極めて高精度な測長
を高速に行なうことが可能となった。
The multi-bucket method described above is a means for obtaining the initial phase of the length measurement signal with high accuracy and easily in the present invention. However, even if such a method is used, an accurate initial phase value cannot be obtained by polarization modulation based on the phase difference. This is because, since the modulation is performed in the traveling direction of the light flux, the frequency in two orthogonal polarization directions with a phase difference, that is, the wavelength, changes due to the Doppler shift. This variation amount is, for example, 10 at the modulation frequency.
MHz, and the modulation amount for one wavelength is 2 × 10 −5
It becomes a degree and cannot be ignored. The reference signal according to the present invention only has information on the relative phase difference between two polarizations orthogonal to each other, and such an absolute wavelength variation cannot be detected.
As a means for solving this, in the present invention, the length measurement signal value or the initial phase when the modulation is performed in the direction in which the light flux relatively advances and the phase difference increases, and when the modulation is performed in the opposite direction and the phase difference decreases The solution was achieved by averaging the values. The averaging may be performed on the length measurement signal or after calculating the initial phase, but the length measurement signal is measured at the timing when the absolute values of the changes in the phase difference due to the modulation become almost equal in both directions. It is important to sample. This timing can be easily realized by the above-described embodiment of the present invention. For example, when the synchronization signal is generated from the two-phase reference signal, the length measurement signal is sequentially sampled when the phase difference of the light flux is modulated, and the sampling is sequentially performed in the opposite direction. In this case, the arrangement of the measured values is simply reversed, so that 3 buckets or 5 buckets can be treated as equivalent and averaged, and in the case of 2 buckets or 4 buckets, one of the arrangements can be used. By reversing, it is possible to average without changing anything arithmetically. Since this series of operations can be performed in one cycle of modulation, even if such an operation is performed, the length measurement value can be obtained at least at the modulation frequency. By adding such an operation of the present invention to the multi-bucket method, it has become possible to perform extremely highly accurate length measurement at high speed with a simple configuration.

【0018】本発明において、大気揺らぎによる測長値
の変動を防ぐため、光源を多色化するには、偏光変調素
子の後段にSHG素子を配すればよい。さらに後段に、
参照信号を検出するための図3に示した実施例に類する
光学系を配する。SHGに用いられる結晶は、複屈折性
を有しているため、通常2つの結晶を対向させて、それ
を打ち消すようにする。そのため、入射光の偏光状態が
出射時にも維持されるので、高調波も単一の偏光状態と
して出射する。つまり、入射光が偏光変調されれば、高
調波も偏光変調されるわけである。その偏光変調の同期
信号は、後段に置かれた参照信号の検出光学系により得
ることができる。さらに後段には、測長を行なう干渉光
学系が配され、そのあとに各波長ごとの検出光学系が配
される。各波長における測長原理は、これまで述べてき
た実施例と同様である。本発明のこのような構成をもっ
た変位計により、各波長ごとに高精度に高速に測長値が
得られるため、これをもとに大気の分散式に従って導か
れる揺らぎのない最終的な測長値を、高精度に高速に得
ることができる。
In the present invention, in order to prevent the measurement value from fluctuating due to atmospheric fluctuations, in order to make the light source multi-colored, an SHG element may be arranged after the polarization modulator. Further down,
An optical system similar to the embodiment shown in FIG. 3 for detecting the reference signal is provided. Since the crystal used for SHG has birefringence, two crystals are usually made to face each other to cancel them. Therefore, since the polarization state of the incident light is maintained even at the time of emission, the harmonic wave is also emitted as a single polarization state. That is, if the incident light is polarization-modulated, the harmonics are also polarization-modulated. The polarization-modulated synchronization signal can be obtained by a reference signal detection optical system placed at a subsequent stage. Further, an interference optical system for length measurement is arranged in the subsequent stage, and a detection optical system for each wavelength is arranged after that. The principle of length measurement at each wavelength is the same as in the embodiments described above. With the displacement gauge of the present invention having such a configuration, since a length measurement value can be obtained with high accuracy and high speed for each wavelength, a final measurement without fluctuation that is guided according to the dispersion formula of the atmosphere based on this is obtained. The long value can be obtained with high accuracy and at high speed.

【0019】本発明のこれまでの実施例では、偏光変調
の方法として電気光学素子による参照光と測長光の位相
差を用いたが、本発明の範囲はこれに限るものではな
い。例えば、変調素子として磁気光学素子を用いてもよ
い。また、変調方法としてファラデー効果等を利用し
て、コイル磁界により偏光の方位を回転(旋光)させる
変調方法であっても、上述した実施例は全て適用でき、
高精度高安定で、しかも多色化の容易な干渉縞計数方式
の変位計が実現できる。この場合は、変調方向が光束の
進行方向に対して直交するため、変調にともなうドップ
ラーシフトが発生せず、従ってこれをキャンセルするた
めに複数の初期位相値を平均化する必要はなくなる。こ
のため、位相差変調に比べシステムがより簡素になる
分、高速化と高精度化が容易となる。
In the above embodiments of the present invention, the phase difference between the reference light and the length measuring light by the electro-optical element was used as the polarization modulation method, but the scope of the present invention is not limited to this. For example, a magneto-optical element may be used as the modulation element. In addition, even if it is a modulation method in which the Faraday effect or the like is used as the modulation method to rotate (rotate) the azimuth of polarization by the coil magnetic field, all the above-described embodiments can be applied,
It is possible to realize an interference fringe counting type displacement meter that is highly accurate and highly stable, and that can easily be multicolored. In this case, since the modulation direction is orthogonal to the traveling direction of the light beam, the Doppler shift due to the modulation does not occur, and therefore it is not necessary to average a plurality of initial phase values to cancel this. Therefore, as compared with the phase difference modulation, the system becomes simpler, which facilitates speeding up and higher accuracy.

【0020】[0020]

【発明の効果】本発明による簡素な構成及び手法によ
り、外乱やノイズを除去して測長の干渉縞の初期位相を
高精度かつ高速に求められるため、サブナノメータの精
度で安定して測長できるレーザー干渉測長計を、容易に
安価に得る事ができる。また、光源光の多色化が容易
で、大気揺らぎの影響を高精度高速に安定して補正する
ことができる。
With the simple structure and method according to the present invention, disturbance and noise can be removed and the initial phase of the interference fringes for length measurement can be obtained with high accuracy and at high speed. Therefore, stable measurement with sub-nanometer accuracy is possible. A laser interferometer can be easily obtained at low cost. Further, it is easy to make the light from the light source multi-colored, and it is possible to stably and accurately correct the influence of atmospheric fluctuations at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の光路配置図である。FIG. 1 is an optical path layout diagram of a first embodiment.

【図2】実施例2の光路配置図である。FIG. 2 is an optical path layout diagram of a second embodiment.

【図3】実施例3の回路ブロック図である。FIG. 3 is a circuit block diagram of a third embodiment.

【図4】実施例4のタイミングチヤート図である。FIG. 4 is a timing chart of the fourth embodiment.

【図5】実施例5の回路ブロック図である。FIG. 5 is a circuit block diagram of a fifth embodiment.

【図6】従来の干渉縞計数方式のレーザー干渉測長計の
概要図である。
FIG. 6 is a schematic diagram of a conventional laser fringe measuring system using an interference fringe counting method.

【図7】従来のヘテロダイン方式のレーザー干渉測長計
の概要図である。
FIG. 7 is a schematic diagram of a conventional heterodyne type laser interferometer.

【符合の説明】[Explanation of sign]

1‥‥レーザー光源、 2‥‥アイソレー
ター、3‥‥変調素子、 4‥‥参照
信号検出部、5‥‥干渉測長光学系、 6‥
‥干渉プリズム、7‥‥光ファイバー、
8‥‥光ファイバー、9‥‥サンプリング回路、
10‥‥プリズムユニット、11‥‥ビームスプリッ
ター、 12‥‥偏光ビームスプリッター、13‥
‥λ/4位相板、 14‥‥集光レンズ、1
5‥‥2周波安定化レーザー光源、16‥‥ビームスプ
リッター、17‥‥検出ヘッド、 18‥
‥伝送ケーブル、19‥‥測長回路、
20‥‥単一周波数安定化レーザー光源、21‥‥λ/
4位相板、 22‥‥検出ヘッド、23‥‥
光ファイバー、 24‥‥計数回路。
1 ... Laser light source, 2 ... Isolator, 3 ... Modulation element, 4 ... Reference signal detection unit, 5 ... Interferometric length measurement optical system, 6 ...
Interference prism, 7 Optical fiber,
8: optical fiber, 9: sampling circuit,
10 Prism unit, 11 Beam splitter, 12 Polarizing beam splitter, 13
... λ / 4 phase plate, 14 ... condensing lens, 1
5 ... 2 frequency stabilized laser light source, 16 ... beam splitter, 17 ... detection head, 18 ...
Transmission cable, 19 Length measuring circuit,
20: Single frequency stabilized laser light source, 21: λ /
4 phase plate, 22 ... Detection head, 23 ...
Optical fiber, 24 ... Counting circuit.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】レーザー光源から出射した光束の、偏光状
態を変調する手段を有し、その変調された光束から干渉
縞強度により参照信号を検出し、それをもとに同期信号
を発生する手段を有していて、さらにその変調光束を用
いて、被験物体の変位を光学的な干渉によって検出する
手段を有し、この手段により得られた測長信号を前述の
同期信号に従ってサンプリングすることにより、被験物
体の変位を測長することを特徴とする、干渉縞計数方式
の変位計。
1. A means for modulating the polarization state of a light beam emitted from a laser light source, detecting a reference signal from the modulated light beam by the intensity of interference fringes, and generating a synchronizing signal based on the reference signal. By further using the modulated light flux, and having a means for detecting the displacement of the test object by optical interference, by sampling the length measurement signal obtained by this means according to the synchronization signal described above. An interference fringe counting type displacement meter characterized by measuring the displacement of a test object.
【請求項2】レーザー光源から出射した光束の、偏光状
態を変調する手段を有し、その変調された光束をSHG
素子に通すことにより、複数の波長の光束を同軸に得た
後、その光束から干渉縞強度により参照信号を検出し、
それをもとに同期信号を発生する手段を有していて、さ
らにその変調光束を用いて、被験物体の変位を複数の波
長について光学的な干渉によって検出する手段を有し、
この手段により得られた複数の波長についての測長信号
を、前述の同期信号に従ってサンプリングすることによ
り、被験物体の変位を測長することを特徴とする、干渉
縞計数方式の変位計。
2. A means for modulating the polarization state of a light beam emitted from a laser light source, wherein the modulated light beam is SHG.
By passing through the element, after obtaining the light flux of a plurality of wavelengths coaxially, the reference signal is detected from the light flux by the interference fringe intensity,
Having means for generating a synchronization signal based on it, further using the modulated light flux, having a means for detecting the displacement of the test object by a plurality of wavelengths by optical interference,
An interference fringe counting type displacement meter, characterized in that the displacement of a test object is measured by sampling the length measurement signals for a plurality of wavelengths obtained by this means in accordance with the aforementioned synchronization signal.
【請求項3】上記請求項1又は2の変位計において、光
源光束の偏光状態を変調する際に、単波長又は複数の波
長における参照用干渉縞の強度変化の位相が、変調によ
り90度ずれるごとに同期信号を発生させる手段を有す
ることを特徴とする、干渉縞計数方式の変位計。
3. The displacement meter according to claim 1 or 2, wherein, when modulating the polarization state of the light source luminous flux, the phase of the intensity change of the reference interference fringes at a single wavelength or a plurality of wavelengths is shifted by 90 degrees due to the modulation. An interference fringe counting type displacement meter characterized by having a means for generating a synchronization signal for each.
【請求項4】上記請求項1〜3の変位計において、光源
光束の偏光方向を進行方向を軸として、左又は右回りに
旋光させることによって変調することを特徴とする、干
渉縞計数方式の変位計。
4. The interference fringe counting system according to any one of claims 1 to 3, wherein the polarization direction of the light source luminous flux is modulated by rotating the light flux to the left or right around the traveling direction as an axis. Displacement gauge.
【請求項5】上記請求項1〜3の変位計において、光源
光を互いに垂直な電界又は磁界ベクトルの振動成分に分
けたときに、成分の一方向を、相対的に他方の位相より
も進めること又は遅らせることによって偏光位相変調す
ることを特徴とし、それぞれの方位を干渉によって被験
物の変移を検出する光学系における、参照光及び測長光
の各偏光方向と一致させたことを特徴とする、干渉縞計
数方式の変位計。
5. The displacement gauge according to any one of claims 1 to 3, when the light source light is divided into vibration components of electric field or magnetic field vectors which are perpendicular to each other, one direction of the components is relatively advanced relative to the other phase. Characterized by performing polarization phase modulation by delaying or delaying, and making each azimuth coincide with each polarization direction of the reference light and the length measuring light in the optical system for detecting the displacement of the test object by interference. , Interference fringe counting type displacement meter.
【請求項6】上記請求項1〜5の変位計において、干渉
縞強度による測長信号を、光電変換した後にDC成分を
除去し、さらに参照信号に基づく同期信号に従ってサン
プリングした後、その測長信号の初期位相を求めること
を特徴とする、干渉縞計数方式の変位計。
6. The displacement meter according to any one of claims 1 to 5, wherein the length measurement signal based on the intensity of the interference fringes is photoelectrically converted, the DC component is removed, and further sampling is performed in accordance with the synchronization signal based on the reference signal, and then the length measurement is performed. Displacement meter of interference fringe counting method, which is characterized by obtaining an initial phase of a signal.
【請求項7】上記請求項1〜6の変位計において、干渉
縞強度による測長信号を参照信号に基づく同期信号に従
ってサンプリングし、その複数のサンプリング値に2バ
ケット法を用いて、測長信号の初期位相を求めることを
特徴とする、干渉縞計数方式の変位計。
7. The displacement meter according to any one of claims 1 to 6, wherein the length measurement signal based on the intensity of interference fringes is sampled in accordance with a synchronization signal based on a reference signal, and the plurality of sampling values are measured by the 2-bucket method. Displacement meter of interference fringes counting method, characterized in that the initial phase of is calculated.
【請求項8】上記請求項1〜6の変位計において、干渉
縞強度による測長信号を参照信号に基づく同期信号に従
ってサンプリングし、その複数のサンプリング値に3バ
ケット法を用いて、測長信号の初期位相を求めることを
特徴とする、干渉縞計数方式の変位計。
8. The displacement meter according to any one of claims 1 to 6, wherein the length measurement signal based on the intensity of interference fringes is sampled in accordance with a synchronization signal based on a reference signal, and the three-bucket method is used for a plurality of sampling values to measure the length measurement signal. Displacement meter of interference fringes counting method, characterized in that the initial phase of is calculated.
【請求項9】上記請求項1〜6の変位計において、干渉
縞強度による測長信号を参照信号に基づく同期信号に従
ってサンプリングし、その複数のサンプリング値に4バ
ケット法を用いて、測長信号の初期位相を求めることを
特徴とする、干渉縞計数方式の変位計。
9. The displacement meter according to any one of claims 1 to 6, wherein the length measurement signal based on the intensity of interference fringes is sampled in accordance with a synchronizing signal based on a reference signal, and the length measurement signal is obtained by using the 4-bucket method for a plurality of sampling values. Displacement meter of interference fringes counting method, characterized in that the initial phase of is calculated.
【請求項10】上記請求項1〜6の変位計において、干
渉縞強度による測長信号を参照信号に基づく同期信号に
従ってサンプリングし、その複数のサンプリング値に5
バケット法を用いて、測長信号の初期位相を求めること
を特徴とする、干渉縞計数方式の変位計。
10. The displacement meter according to any one of claims 1 to 6, wherein a length measurement signal based on the intensity of interference fringes is sampled in accordance with a synchronization signal based on a reference signal, and the plurality of sampling values are set to 5
An interference fringe counting type displacement meter characterized in that the initial phase of a length measurement signal is obtained using the bucket method.
【請求項11】上記請求項7〜10において、測長信号
の初期位相を求める際に、参照信号に基づく同期信号に
従ってサンプリングした複数の測長信号の干渉縞強度値
をデジタル化し、その値を直接または他の干渉縞強度値
と加減算した結果をメモリのアドレスに接続して、それ
らのアドレスの値で一義的に決まる、予めメモリに記憶
させた演算結果を、メモリのデータより読み出すこと
で、測長信号の初期位相を求めることを特徴とする、変
位計。
11. The method according to any one of claims 7 to 10, wherein, when obtaining the initial phase of the length measurement signal, the interference fringe intensity values of a plurality of length measurement signals sampled in accordance with the synchronization signal based on the reference signal are digitized and By connecting the result of addition or subtraction with the interference fringe intensity value directly or to the address of the memory and uniquely determined by the value of those addresses, the calculation result stored in the memory in advance is read from the data of the memory, A displacement meter characterized by obtaining an initial phase of a length measurement signal.
【請求項12】上記請求項7〜10において、測長信号
の振幅を求める際に、参照信号に基づく同期信号に従っ
てサンプリングした複数の測長信号の干渉縞強度値をデ
ジタル化し、その値を直接または他の干渉縞強度値と加
減算した結果をメモリのアドレスに接続して、それらの
アドレスの値で一義的に決まる、予めメモリに記憶させ
た演算結果を、メモリのデータより読み出すことで、測
長信号の振幅を求めることを特徴とする、変位計。
12. When obtaining the amplitude of a length measurement signal, the interference fringe intensity values of a plurality of length measurement signals sampled in accordance with a synchronization signal based on a reference signal are digitized and the values are directly measured. Alternatively, the result of addition and subtraction with other interference fringe intensity values is connected to the addresses of the memory, and the calculation result stored in advance in the memory, which is uniquely determined by the values of those addresses, is read out from the data of the memory. Displacement meter characterized by obtaining the amplitude of a long signal.
【請求項13】上記請求項1〜12において、検出した
参照信号を、同期信号を発生させる電気回路または測長
信号の初期位相を求める電気回路に伝送するのに、光フ
ァイバーを用いたことを特徴とする、変位計。
13. The optical fiber according to claim 1, wherein the detected reference signal is transmitted to an electric circuit for generating a synchronizing signal or an electric circuit for determining an initial phase of a length measuring signal. Let's say a displacement meter.
【請求項14】上記請求項1〜13において、偏光位相
変調が周期的に行なわれ、変調によって光束の位相差が
増加する領域と減少する領域において、それぞれ参照信
号に基づく同期信号で測長信号をサンプリングし、それ
を平均化したのちにその初期位相を求めることを特徴と
する、変位計。
14. The measurement signal according to any one of claims 1 to 13, wherein the polarization phase modulation is periodically performed, and a synchronization signal based on a reference signal is used in each of a region where a phase difference of a light beam increases and a region where the phase difference decreases due to the modulation. A displacement meter characterized in that the initial phase is obtained after sampling, averaging it, and averaging it.
【請求項15】上記請求項1〜13において、偏光位相
変調が周期的に行なわれ、変調によって光束の位相差が
増加する領域と減少する領域において、それぞれ参照信
号に基づく同期信号で測長信号をサンプリングし、その
初期位相を求めた後に、それを平均化して測長値とする
ことを特徴とする、変位計。
15. The length measurement signal according to any one of claims 1 to 13, wherein the polarization phase modulation is periodically performed, and a synchronization signal based on a reference signal is used in each of a region where a phase difference of a light beam increases and a region where the phase difference decreases due to the modulation. Displacement meter characterized by sampling and measuring the initial phase, and averaging it to obtain a length measurement value.
JP4354344A 1992-11-30 1992-11-30 Displacement sensor Pending JPH06167304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354344A JPH06167304A (en) 1992-11-30 1992-11-30 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354344A JPH06167304A (en) 1992-11-30 1992-11-30 Displacement sensor

Publications (1)

Publication Number Publication Date
JPH06167304A true JPH06167304A (en) 1994-06-14

Family

ID=18436924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354344A Pending JPH06167304A (en) 1992-11-30 1992-11-30 Displacement sensor

Country Status (1)

Country Link
JP (1) JPH06167304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250786A (en) * 2008-04-07 2009-10-29 Mitsutoyo Corp Laser interferometer, and laser interferometry
JP2010060561A (en) * 2008-09-04 2010-03-18 Mitsutoyo Corp Interferometer using polarization modulation
CN116878394A (en) * 2023-08-02 2023-10-13 哈尔滨工业大学 Interference displacement measurement system and method for polarized light phase modulation of microprobe
CN116878394B (en) * 2023-08-02 2024-04-19 哈尔滨工业大学 Interference displacement measurement system and method for polarized light phase modulation of microprobe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250786A (en) * 2008-04-07 2009-10-29 Mitsutoyo Corp Laser interferometer, and laser interferometry
JP2010060561A (en) * 2008-09-04 2010-03-18 Mitsutoyo Corp Interferometer using polarization modulation
CN116878394A (en) * 2023-08-02 2023-10-13 哈尔滨工业大学 Interference displacement measurement system and method for polarized light phase modulation of microprobe
CN116878394B (en) * 2023-08-02 2024-04-19 哈尔滨工业大学 Interference displacement measurement system and method for polarized light phase modulation of microprobe

Similar Documents

Publication Publication Date Title
JP4046243B2 (en) Optical fiber apparatus and method for precision current sensing
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US20210199418A1 (en) Differential sinusoidal phase modulation laser interferometric nanometer displacement measuring apparatus and method
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
US4480916A (en) Phase-modulated polarizing interferometer
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
US6014216A (en) Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer
US7006562B2 (en) Phase demodulator, phase difference detector, and interferometric system using the phase difference detector
US3707329A (en) Apparatus for electronically analyzing modulated light beams
CN113687329A (en) Non-cooperative target ranging system and method combining frequency sweep and heterodyne interferometer
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JPH06167304A (en) Displacement sensor
JP2726881B2 (en) Backscattered light measurement device
JPH06186337A (en) Laser distance measuring equipment
JPH07190712A (en) Interferometer
JP5088915B2 (en) Displacement measuring device
Dandliker et al. Two-wavelength laser interferometry using super-heterodyne detection
Nejad et al. Accuracy improvement by nonlinearity reduction in two-frequency laser heterodyne interferometer
Usuda et al. Development of laser interferometer for a sine-approximation method
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JPH0431068B2 (en)
JPH0674964B2 (en) Optical signal beat detector for dual frequency polarization heterodyne interferometry
JP2723966B2 (en) Michelson interferometer
Dalhoff et al. Interferometry for high resolution absolute distance measuring by larger distances
Mahal et al. Distance Measurements Using Frequency Stabilized Nd: YAG Lasers