JP2792782B2 - Gas concentration measuring method and its measuring device - Google Patents

Gas concentration measuring method and its measuring device

Info

Publication number
JP2792782B2
JP2792782B2 JP4052648A JP5264892A JP2792782B2 JP 2792782 B2 JP2792782 B2 JP 2792782B2 JP 4052648 A JP4052648 A JP 4052648A JP 5264892 A JP5264892 A JP 5264892A JP 2792782 B2 JP2792782 B2 JP 2792782B2
Authority
JP
Japan
Prior art keywords
gas
detection signal
pressure
laser
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4052648A
Other languages
Japanese (ja)
Other versions
JPH05256768A (en
Inventor
隆三 山下
廣 糸井
昌彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP4052648A priority Critical patent/JP2792782B2/en
Publication of JPH05256768A publication Critical patent/JPH05256768A/en
Application granted granted Critical
Publication of JP2792782B2 publication Critical patent/JP2792782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガス濃度測定方法およ
び測定装置に関する。
The present invention relates to a method and a device for measuring gas concentration.

【0002】[0002]

【従来の技術】メタンガスは都市ガスの主成分であり、
メタンガスの検知により都市ガスの漏洩を検知できる。
このため、地下街、高層ビル等の特定地域では、メタン
ガスの有無を安全かつ確実に、しかも迅速に検出するこ
とが必要となる。ところが、従来の半導体、燃焼式など
のガスセンサは、信頼性に劣り、そのため近年、光式ガ
スセンサが開発されるに至った。
2. Description of the Related Art Methane gas is a major component of city gas.
Leakage of city gas can be detected by detecting methane gas.
For this reason, in specific areas such as underground shopping malls and high-rise buildings, it is necessary to detect the presence or absence of methane gas safely, reliably, and quickly. However, conventional gas sensors of the semiconductor type and the combustion type are inferior in reliability. Therefore, in recent years, optical gas sensors have been developed.

【0003】光式ガスセンサは、その原理として特定波
長のレーザ光がある種の気体に吸収され易いことを利用
している。この原理を応用したセンシング技術が工業計
測、公害監視などで広く用いられている。このレーザ光
の伝送路を光ファイバとすれば、遠隔監視も可能とな
る。
An optical gas sensor utilizes the principle that laser light of a specific wavelength is easily absorbed by a certain kind of gas. Sensing technology applying this principle is widely used in industrial measurement, pollution monitoring, and the like. If the transmission path of the laser light is an optical fiber, remote monitoring becomes possible.

【0004】そこで、本発明者らは光ファイバを伝送路
とした新規の遠隔ガス(メタンガス)検出装置を開発し
た。この原理を利用した方法では、半導体レーザの駆動
電流を中心として高周波で変調し、波長および強度の変
調されたレーザ光を発振させる。さらに電流および温度
を制御して発振の中心波長が、メタン吸収線の中心にな
るように半導体レーザの後方に出射するレーザ光をモニ
タ用として用いる。そうして安定化され前方に出射され
たレーザ光を、光ファイバを介して未知濃度を含む測定
ガス用セルに透過させて、その透過光を対向する別の光
ファイバで受光部まで導き、レーザ光の2倍波検波信号
または基本検波信号よりガス濃度を高いS/N比で検出
できる。
Therefore, the present inventors have developed a new remote gas (methane gas) detecting device using an optical fiber as a transmission line. In a method using this principle, a laser beam is modulated at a high frequency around a driving current of a semiconductor laser, and a laser beam having a modulated wavelength and intensity is oscillated. Further, a laser beam emitted backward of the semiconductor laser is used for monitoring so that the center wavelength of the oscillation is at the center of the methane absorption line by controlling the current and the temperature. The stabilized laser light emitted forward is transmitted through the optical fiber to the cell for the measurement gas containing the unknown concentration, and the transmitted light is guided to the light receiving section by another optical fiber facing the laser light. The gas concentration can be detected at a higher S / N ratio than the double detection signal or the basic detection signal of the light.

【0005】ところが、メタンガスの1つの孤立吸収線
に着目すると、吸収係数αは、大気の全圧に依存した値
をもつ。そのため、炭坑やプラントなど気圧変化の激し
い箇所で濃度測定を行う場合、別に圧力センサを設けて
圧力の測定を行い、その値に基づいて補正を行わない
と、正確な濃度測定が行えない。
However, focusing on one isolated absorption line of methane gas, the absorption coefficient α has a value depending on the total pressure of the atmosphere. Therefore, when measuring the concentration in a place where the atmospheric pressure changes rapidly, such as a coal mine or a plant, accurate pressure measurement cannot be performed unless a pressure sensor is separately provided to measure the pressure and correction is performed based on the value.

【0006】そこで本発明者らは、駆動電流および温度
に応じた波長および強度のレーザ光を発振させると共
に、そのレーザ光の中心波長を掃引させ、そのレーザ光
を、測定対象となる一定温度に保たれたガス雰囲気に通
した後の透過光の強度を検出し、この検出信号中の特定
成分を位相敏感検波し、この検出信号から上記雰囲気圧
力下での特定ガス濃度を測定する手法を提案した。
Therefore, the present inventors oscillate a laser beam having a wavelength and intensity corresponding to the drive current and temperature, sweep the center wavelength of the laser beam, and bring the laser beam to a constant temperature to be measured. We propose a method to detect the intensity of transmitted light after passing through a kept gas atmosphere, phase-sensitive detection of specific components in this detection signal, and measure the specific gas concentration under the above atmospheric pressure from this detection signal. did.

【0007】[0007]

【発明が解決しようとする課題】前述の従来の方法にお
いて、レーザの中心周波数のモニタは、レーザの発振周
波数と順方向抵抗の変化量との関係に再現性があること
を利用している。
In the above-mentioned conventional method, monitoring of the center frequency of the laser utilizes the fact that the relationship between the oscillation frequency of the laser and the amount of change in the forward resistance is reproducible.

【0008】まずレーザの端子間電圧と所定の一定電圧
との差分をとり、その差分電圧を増幅してレーザ端子間
電圧の変化量をモニタしている。
First, the difference between the laser terminal voltage and a predetermined constant voltage is obtained, and the difference voltage is amplified to monitor the amount of change in the laser terminal voltage.

【0009】図3は、レーザの中心周波数と2倍波位相
敏感検波信号との関係を示す図であり、ガス濃度検出器
により得られた信号をXYレコーダで記録して得られ
このとき横軸は差分電圧、縦軸はメタンガスを透過
した光を検出して位相敏感検波して得られた2倍波位相
敏感検波信号である。
FIG. 3 shows the center frequency and the second harmonic phase of the laser .
FIG. 4 is a diagram showing a relationship with a sensitive detection signal, obtained by recording a signal obtained by a gas concentration detector with an XY recorder.
You . At this time, the horizontal axis represents the differential voltage, and the vertical axis represents the second-harmonic phase-sensitive detection signal obtained by detecting light transmitted through the methane gas and performing phase-sensitive detection.

【0010】同図において、2つの極小値の幅がガス吸
収線の半値全幅に相当しており、測定雰囲気の圧力によ
って変化する。信号処理部(図示せず)でこれらの2点
間の電圧差と圧力との関係を把握しておけば圧力換算が
できる。
In FIG. 1, the width of the two minimum values corresponds to the full width at half maximum of the gas absorption line, and varies depending on the pressure of the measurement atmosphere. If the signal processing unit (not shown) grasps the relationship between the voltage difference between these two points and the pressure, the pressure can be converted.

【0011】しかしながら、そのレーザ端子間の電圧変
化量は1/1000程度の小さい値のため、高利得でし
かも安定動作のできる増幅器が必要となってしまう。
However, since the amount of change in the voltage between the laser terminals is as small as about 1/1000, an amplifier which has a high gain and can operate stably is required.

【0012】そこで、本発明の目的は、上記課題を解決
し、高利得で高安定度の増幅器を用いることなく圧力補
正の行えるガス濃度測定方法およびその測定装置を提供
することにある。
It is an object of the present invention to solve the above-mentioned problems and to provide a gas concentration measuring method and a measuring apparatus capable of performing pressure correction without using a high gain and high stability amplifier.

【0013】上記目的を達成するために、駆動電流およ
び温度に応じた波長および強度のレーザ光を発振するレ
ーザを用い、このレーザの駆動電流あるいは温度を変化
させて、波長および強度が変調されたレーザ光を発振さ
せると共にそのレーザ光の中心波長を掃引させ、そのレ
ーザ光を測定対象とするガス雰囲気に通して得られる透
過光の強度を検出し、この検出信号中の特定成分を位相
敏感検波して、この検波信号から上記雰囲気圧力下での
測定対象ガス中の特定ガスの濃度を測定するガス濃度測
定方法において、上記測定対象となるガス雰囲気に入射
する前のレーザ光を分岐器を介して分岐し、その分岐さ
せたレーザ光を一定温度、一定圧力かつ既知濃度の基準
ガス雰囲気に通してその透過光の強度を検出し検出信号
中から2倍波成分を位相敏感検波すると共に、上記レー
ザ光の中心周波数をレーザ直流電圧の増幅出力でモニタ
し、基準ガスの透過光の検出信号中から検波した2倍波
検波信号に極小値を与えるモニタ電圧と基準ガスの圧力
との関係を表す比を求め、上記測定対象ガスの透過光の
検出信号中から検波した2倍波検波信号に極小値を与え
るモニタ電圧を上記比で補正し、補正した電圧値を用い
上記測定対象ガスの圧力を求めると共にその圧力で上
記測定した測定対象ガス中の特定ガスの濃度を補正する
ものである。
In order to achieve the above object, a laser which oscillates a laser beam having a wavelength and intensity corresponding to the drive current and temperature is used, and the wavelength and intensity are modulated by changing the drive current or temperature of the laser. Oscillates the laser light and sweeps the center wavelength of the laser light, detects the intensity of the transmitted light obtained by passing the laser light through the gas atmosphere to be measured, and detects a specific component in the detection signal by phase-sensitive detection. Then, in the gas concentration measuring method for measuring the concentration of the specific gas in the gas to be measured under the atmospheric pressure from the detection signal, the laser light before being incident on the gas atmosphere to be measured is passed through a branching device. branched, second harmonic component from within the branch is not a laser beam a constant temperature, constant pressure and through a reference gas atmosphere of known concentration detecting the intensity of the transmitted light detection signal Te Along with the phase-sensitive detection, the rate
Monitor the center frequency of the light with the amplified output of laser DC voltage
And the second harmonic detected from the detection signal of the transmitted light of the reference gas.
Monitor voltage and reference gas pressure that give the minimum value to the detection signal
And the ratio representing the relationship between
Gives the minimum value to the double detection signal detected from the detection signal
Monitor voltage is corrected by the above ratio, and the corrected voltage value is used.
Te is intended to correct the concentration of a specific gas in the gas as the object of measurement obtained by the measurement at the pressure with obtaining the pressure of the measurement target gas.

【0014】また、本発明のガス濃度測定装置は、駆動
電流および温度に応じた波長および強度のレーザ光を発
振するレーザと、測定対象とする特定ガスを収容すると
共に、そのガスの温度を一定に保つ測定ガス用セルと、
上記レーザ光をこの測定ガス用セルに通して得られる透
過光の強度を検出する測定ガス側光検出器と、この検出
器からの検出信号中の特定成分を位相敏感検波して、こ
の検波信号から上記特定ガスの濃度を測定する測定手段
とを備えたガス濃度測定装置において、上記測定ガス用
セルに入射するレーザ光を分岐する光分岐器と、該光分
岐器によって分岐されたレーザ光を透過させると共に、
一定温度かつ一定圧力に保たれた既知濃度のガスが収容
された基準ガス用セルと、この基準ガス用セルを透過し
たレーザ光の強度を検出し検出信号中から2倍波成分
位相敏感検波する基準ガス側光検出器と、上記レーザ光
の中心周波数をレーザ直流電圧の増幅出力でモニタする
アンプと、上記基準ガス側光検出器から得られた2倍波
検波信号に極小値を与えるモニタ間電圧と基準ガスの圧
力との関係を表す比を求め、上記測定対象ガスの透過光
の検出信号中から検波した2倍波検波信号に極小値を与
えるモニタ電圧を上記比で補正し、補正した電圧値を用
いて上記測定対象ガスの圧力を求めると共にその圧力で
上記測定した測定対象ガス中の特定ガスの濃度を補正す
る補正手段とを備えたものである。
Further, the gas concentration measuring apparatus of the present invention accommodates a laser that oscillates a laser beam having a wavelength and intensity corresponding to a drive current and a temperature, a specific gas to be measured, and keeps the temperature of the gas constant. A cell for measuring gas to be kept at
A measuring gas-side photodetector for detecting the intensity of transmitted light obtained by passing the laser light through the measuring gas cell; and a phase-sensitive detection of a specific component in a detection signal from the detection gas. A gas concentration measuring device comprising: a measuring means for measuring the concentration of the specific gas, an optical branching device for branching a laser beam incident on the measurement gas cell, and a laser beam branched by the optical branching device. Let it penetrate,
A reference gas cell containing a gas of a known concentration maintained at a constant temperature and a constant pressure, and detecting the intensity of the laser beam transmitted through the reference gas cell and detecting the second harmonic component from the detection signal by phase-sensitive detection. Reference gas side photodetector and laser light
The center frequency of the laser with the amplified output of the laser DC voltage
Amplifier and second harmonic obtained from the reference gas side photodetector
Monitor-to-monitor voltage and reference gas pressure that give the minimum value to the detection signal
Determine the ratio that expresses the relationship with the force and determine the transmitted light
Gives the minimum value to the 2nd harmonic detection signal detected from the detection signal of
The monitor voltage is corrected by the above ratio and the corrected voltage value is used.
The pressure of the gas to be measured
Correct the concentration of the specified gas in the measured gas
Correction means .

【0015】[0015]

【作用】まず、分光測定において、測定感度を向上させ
る方法として周波数変調法がある。これは周波数変調さ
れた光を、検出対象とするガスを含む雰囲気中に透過さ
せると、その透過光の検出信号は直流分の他、変調周波
数と同じ周波数の基本波成分およびその高調波成分が得
られる。このうち、基本波成分と2倍波成分とをそれぞ
れ位相敏感検波すると、その基本波成分は吸収線に関す
る一次微分に対応し、2倍波成分は吸収線に関する二次
微分に対応する。このことから、駆動電流を変調したレ
ーザ光を特定のガスを含む雰囲気に透過させ、その透過
光の検出信号中の特定成分を位相敏感検波すると、その
検出信号からガス濃度に関する情報が得られる。このガ
ス濃度は、圧力の変化の影響をうけるため、レーザ光の
中心波長(中心周波数)を吸収線の前後で掃引させ、中
心周波数に対する2倍波成分の変化から圧力を求め、こ
の圧力で前記得られたガス濃度を補正して雰囲気圧力下
でのガス濃度を正確に測定することができる。
First, in spectral measurement, there is a frequency modulation method as a method for improving measurement sensitivity. This is because when the frequency-modulated light is transmitted through the atmosphere containing the gas to be detected, the detection signal of the transmitted light includes a direct current component, a fundamental wave component having the same frequency as the modulation frequency, and its harmonic components. can get. When the fundamental component and the second harmonic component are phase-sensitive detected respectively, the fundamental component corresponds to the first derivative with respect to the absorption line, and the second harmonic component corresponds to the second derivative with respect to the absorption line. Accordingly, when the laser light whose drive current has been modulated is transmitted through an atmosphere containing a specific gas, and a specific component in a detection signal of the transmitted light is phase-sensitive detected, information on the gas concentration can be obtained from the detection signal. This mo
The laser concentration is affected by changes in pressure,
Sweep the center wavelength (center frequency) before and after the absorption line.
Pressure is obtained from the change of the second harmonic component with respect to the heart frequency, and
The gas concentration obtained above was corrected at the pressure of
The gas concentration at the can be accurately measured.

【0016】雰囲気圧力を求めるにはレーザ光の中心周
波数を知る必要があり、中心周波数はレーザ直流電圧で
モニタすることができるが、このモニタに使用するアン
プの増幅率変動分を補正する必要がある。そこで、一定
温度、一定圧力および既知濃度のガスが収容された基準
ガス用セルを透過したレーザ光を検出し、その検出信号
中から2倍波検波信号を検波する。この2倍波検波信号
に極小値を与えるモニタ電圧と基準ガスの圧力との関係
を表す比を求めておく。次に、測定ガス用セルを透過し
たレーザ光の検出信号中から検波した2倍波検波信号に
極小値を与えるモニタ電圧を、この比で補正し、補正し
た値を用いて測定対象ガスの圧力を求める。この圧力で
上記測定対象ガスとする特定ガスの濃度を補正すること
で正確な濃度が測定できる。ここで、位相敏感検波と
は、特定の周波数および位相をもつ成分だけを抽出し
て、その振幅を測定することである。
To determine the atmospheric pressure, the center circumference of the laser beam
It is necessary to know the wave number, and the center frequency is the laser DC voltage.
Can be monitored, but the
It is necessary to correct the amplification factor fluctuation of the loop. Therefore, the laser beam transmitted through the reference gas cell containing a gas of a constant temperature, a constant pressure, and a known concentration is detected, and the detection signal is obtained.
A double-wave detection signal is detected from the inside. This 2nd harmonic detection signal
Between the monitor voltage which gives the minimum value to the pressure and the pressure of the reference gas
Is determined. Next, it passes through the cell for measuring gas.
From the detection signal of the laser beam
The monitor voltage that gives the minimum value is corrected by this ratio and corrected.
The pressure of the gas to be measured is determined using the obtained value. Correcting the concentration of the specific gas as the measurement target gas with this pressure enables accurate concentration measurement. Here, the phase-sensitive detection is to extract only a component having a specific frequency and phase and measure its amplitude.

【0017】[0017]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。尚、ここでは、半導体レーザを光源とし
て、メタンガスを測定する例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings. Here, an example in which methane gas is measured using a semiconductor laser as a light source will be described.

【0018】半導体レーザの駆動電流を変調してレーザ
光の発振周波数Ωを変調させると、発振周波数だけでな
く発振強度も変調を受ける。今、このように周波数およ
び強度が変調されたレーザ光をメタンガスを含む雰囲気
に透過させると、その透過光の検出信号Pは数1のよう
に表される。
When the oscillation current Ω of the laser light is modulated by modulating the drive current of the semiconductor laser, not only the oscillation frequency but also the oscillation intensity is modulated. Now, when the laser light whose frequency and intensity have been modulated as described above is transmitted through an atmosphere containing methane gas, a detection signal P of the transmitted light is represented by Expression 1.

【0019】[0019]

【数1】 P=A[I0 +ΔIcos(ωt+φ)]×[C0 +ΔΩ・T01cosωt +((ΔΩ)2 /4)T02cos2ωt] ただし、[Number 1] P = A [I 0 + ΔIcos (ωt + φ)] × [C 0 + ΔΩ · T 01 cosωt + ((ΔΩ) 2/4) T 02 cos2ωt] However,

【0020】[0020]

【数2】C0 =T+((ΔΩ)2 /4)・T02 である。この検出信号Pは、直流分のほか、cosωt
成分とcos2ωt成分とを含む。ここで、Aは反射条
件などに依存する定数、I0 はレーザ出力の中心強度、
ΔIは強度振幅変調、ωは駆動電流の変調周波数、φは
ωとΩとの間の位相差、ΔΩは周波数変調振幅である。
また、T、T01、T02はそれぞれ透過率、その一次微分
dT/dΩ、二次微分d2 T/dΩ2 のΩ=Ω0 (ここ
でω0 はレーザの中心周波数)の値であり、その形状を
図4に示す。
[Number 2 is a C 0 = T + ((ΔΩ ) 2/4) · T 02. The detection signal P includes a DC component and cos ωt
Component and a cos2ωt component. Here, A is a constant depending on the reflection conditions and the like, I 0 is the central intensity of the laser output,
ΔI is intensity amplitude modulation, ω is the modulation frequency of the drive current, φ is the phase difference between ω and Ω, and ΔΩ is the frequency modulation amplitude.
T, T 01 , and T 02 are values of transmittance, Ω = Ω 0 of the first derivative dT / dΩ, and the second derivative d 2 T / dΩ 2 (where ω 0 is the center frequency of the laser). The shape is shown in FIG.

【0021】ここで、図4は周波数に対する透過率T
と、その一次微分T01、二次微分T02とを示す図であ
る。各波形において横軸は周波数であり、縦軸は透過率
T(イ)、一次微分T01(ロ)、二次微分T02(ハ)で
ある。
FIG. 4 shows the transmittance T with respect to the frequency.
FIG. 4 shows a first derivative T 01 and a second derivative T 02 . In each waveform, the horizontal axis represents frequency, and the vertical axis represents transmittance T (a), first derivative T 01 (b), and second derivative T 02 (c).

【0022】数1におけるcosωtの周波数、位相成
分φを位相敏感検波すると、
When the frequency and phase component φ of cos ωt in Equation 1 are phase-sensitive detected,

【0023】[0023]

【数3】 P(2ω)=A[I0 ((ΔΩ)2 /4)T02+ΔI・ΔΩcosφ・T01] が得られ、検波信号P(2ω)がT01およびT02に基づ
いて変化することがわかる。
Equation 3] P (2ω) = A [I 0 ((ΔΩ) 2/4) T 02 + ΔI · ΔΩcosφ · T 01] is obtained, the change detection signal P (2 [omega) is based on the T 01 and T 02 You can see that

【0024】検波信号P(2ω)によりメタンガスの吸
収を検知する場合には、レーザ光の中心周波数Ω0 が、
メタンガスの吸収線の中心ω0 に一致したときに最大感
度が得られることを利用する(図4参照)。また、この
ときにはT01が「0」、T02が最大となるため、数3の
第2項は消去されて、第1項のみ残る。即ち、Ω0 =ω
0 のときのT02は、
When detecting the absorption of methane gas by the detection signal P (2ω), the center frequency Ω 0 of the laser beam is
The fact that the maximum sensitivity is obtained when the center coincides with the center ω 0 of the absorption line of methane gas is used (see FIG. 4). At this time, since T01 is "0" and T02 is the maximum, the second term of Equation 3 is deleted, and only the first term remains. That is, Ω 0 = ω
When 0 , T 02 is

【0025】[0025]

【数4】 T02(Ω0 =ω0 )=2・α(ω0 )・c・L/γ2 となる。そのため、これを数3の第1項に代入すると、[Number 4] T 02 (Ω 0 = ω 0 ) = 2 · α becomes (ω 0) · c · L / γ 2. Therefore, substituting this into the first term of Equation 3 gives

【0026】[0026]

【数5】 P(2ω)=A・I0 (ΔΩ)2 ・α(ω0 )・c・L/2γ2 =K1 α((ω0 )/γ2 )c・L となる。ここで、K1 は定数、α(ω0 )は、Ω0 =ω
0 のときのメタンガスの吸収係数、2γはガス吸収線の
半値全幅、c・Lはガス濃度cと光路長Lとの積であ
る。
P (2ω) = A · I 0 (ΔΩ) 2 · α (ω 0 ) · c · L / 2γ 2 = K 1 α ((ω 0 ) / γ 2 ) c · L Here, K 1 is a constant, and α (ω 0 ) is Ω 0 = ω
The absorption coefficient of methane gas at 0 , 2γ is the full width at half maximum of the gas absorption line, and c · L is the product of the gas concentration c and the optical path length L.

【0027】このように、検波信号P(2ω)はガス濃
度cと光路長Lとの積に比例し、これよりメタンガスの
濃度cを極めて高い感度で検出できる。
As described above, the detection signal P (2ω) is proportional to the product of the gas concentration c and the optical path length L, from which the concentration c of the methane gas can be detected with extremely high sensitivity.

【0028】ところで、数5中のα(ω0 )およびγ2
は、図2に示したように、ガス雰囲気の圧力により変化
する。
By the way, α (ω 0 ) and γ 2 in Expression 5
Varies according to the pressure of the gas atmosphere, as shown in FIG.

【0029】ここで図2は、ガスセル内の圧力に対する
吸収係数α(ω)と検波信号P(2ω)と後述する半値
全幅2γとの関係を示す図である。同図において横軸が
圧力(torr)、縦軸が吸収係数α(ω)、検波信号
P(2ω)、半値全幅2γである。
FIG. 2 is a diagram showing the relationship between the absorption coefficient α (ω) for the pressure in the gas cell, the detection signal P (2ω), and the full width at half maximum 2γ described later. In the figure, the horizontal axis represents pressure (torr), the vertical axis represents absorption coefficient α (ω), detection signal P (2ω), and full width at half maximum 2γ.

【0030】前述した数5により正確にガス濃度を測定
するには、雰囲気圧力下でのα(ω0 )およびγ2 の値
を求めなければならない。これらの正確な値は、レーザ
光の中心周波数Ω0 をメタンガス吸収線の前後で掃引し
たときの、検波信号P(2ω)の出力波形から得ること
ができる。
In order to accurately measure the gas concentration according to the above formula 5, the values of α (ω 0 ) and γ 2 under the atmospheric pressure must be obtained. These accurate values can be obtained from the output waveform of the detection signal P (2ω) when the center frequency Ω 0 of the laser beam is swept before and after the methane gas absorption line.

【0031】今、レーザ光の中心周波数Ω0 を変化させ
ると、数3の第1項はT02に、第2項はT01にそれぞれ
ある係数を積算した形の波形となる。その係数は、
0 、ΔΩ等であり、半導体レーザの発振条件を設定し
ておけば、定数として取り扱っても支障がない。したが
って、検波信号P(2ω)の波形は、図4の(ロ)と
(ハ)とをそれぞれある係数でもって積算して、これら
を互いに加算した形状となる(図3参照)。しかし、実
際には、数3の第1項は第2項よりも優位であるため、
図4(ハ)に示す低波長側の極小値と高波長側の極小値
との間の中心周波数Ω0 の幅が、ガス雰囲気圧力におけ
る半値全幅2γに相当する。こうして半値全幅2γが求
まれば、図2に基づいて圧力を得ることができ、さらに
その圧力下での吸収係数α(ω0 )を得ることができ
る。なお、図2に示したP(2ω)は、数5中のα(ω
0 )/γ2 の圧力による変化であり、全圧100tor
r近傍で最大値を示している。
Now, when the center frequency Ω 0 of the laser beam is changed, the first term of the equation (3) becomes a waveform in which a certain coefficient is added to T 02 , and the second term becomes a waveform in which a coefficient is added to T 01 . The coefficient is
I 0 , ΔΩ, etc. If the oscillation conditions of the semiconductor laser are set, there is no problem even if they are treated as constants. Therefore, the waveform of the detection signal P (2ω) has a shape in which (b) and (c) in FIG. 4 are integrated with a certain coefficient, respectively, and these are added to each other (see FIG. 3). However, in practice, the first term in Equation 3 is superior to the second term,
The width of the center frequency Omega 0 between the minimum value of the minimum value and the higher wavelength side of the low-wavelength side shown in FIG. 4 (c) corresponds to the full width at half maximum 2γ in a gas atmosphere pressure. When the full width at half maximum 2γ is obtained in this manner, a pressure can be obtained based on FIG. 2, and an absorption coefficient α (ω 0 ) under the pressure can be obtained. It should be noted that P (2ω) shown in FIG.
0 ) / γ 2 due to pressure change, total pressure 100 torr
The maximum value is shown near r.

【0032】この図2から雰囲気圧力を求めるには、α
(ω0 )あるいはγのいずれか一方が分かれば、圧力が
わかり、圧力補正をした濃度の検出ができる。
In order to determine the atmospheric pressure from FIG.
If either (ω 0 ) or γ is known, the pressure can be known, and the pressure-corrected concentration can be detected.

【0033】図1は本発明の一実施例としてのガス濃度
測定装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a gas concentration measuring device as one embodiment of the present invention.

【0034】同図において、1は半導体レーザで、単一
波長のレーザ光を発振させる必要から分布帰還形レーザ
を用いている。2は半導体レーザ1からのレーザ光を石
英系光ファイバ3aにカップリングするための光学系
で、集光レンズと戻り光をカットするための光アイソレ
ータとからなる。光学系2の端面にはさらに無反射コー
ティング処理が施され、半導体レーザ1への戻り光を極
力小さくしてある。また4は半導体レーザ1をマウント
してその温度を(図示しない外部の電流源)により制御
するためのペルチェ素子であり、以上によりレーザモジ
ュール5が構成されている。
In FIG. 1, reference numeral 1 denotes a semiconductor laser, which uses a distributed feedback laser because it is necessary to oscillate laser light of a single wavelength. Reference numeral 2 denotes an optical system for coupling the laser light from the semiconductor laser 1 to the quartz optical fiber 3a, and includes a condenser lens and an optical isolator for cutting return light. The end face of the optical system 2 is further subjected to an anti-reflection coating process to minimize return light to the semiconductor laser 1. Reference numeral 4 denotes a Peltier element for mounting the semiconductor laser 1 and controlling its temperature by an external current source (not shown). The laser module 5 is constituted as described above.

【0035】6は光ファイバ3aからのレーザ光を分岐
する光分岐器で光ファイバ3a、3bに接続されてい
る。7は光ファイバ3bからの光が透過する測定ガス用
セルで一定温度の未知濃度のメタンガスが含まれてい
る。8は光ファイバ3cからの光が透過する基準ガス用
セルで、一定温度、一定圧力の既知濃度のメタンガスが
含まれている。基準ガス用セル8は、一定温度と一定圧
力に設定される必要から、外乱の影響を受けにくい構造
にする必要があるので、断熱材で覆うと共に温度制御さ
れ、一定温度に保たれている。
Reference numeral 6 denotes an optical splitter for splitting a laser beam from the optical fiber 3a, which is connected to the optical fibers 3a and 3b. Reference numeral 7 denotes a measuring gas cell through which light from the optical fiber 3b passes, which contains methane gas of an unknown concentration at a constant temperature. Reference numeral 8 denotes a reference gas cell through which light from the optical fiber 3c passes, and contains methane gas of a known concentration at a constant temperature and a constant pressure. Since the reference gas cell 8 needs to be set to a constant temperature and a constant pressure, it is necessary to have a structure that is not easily affected by disturbance. Therefore, the reference gas cell 8 is covered with a heat insulating material, is temperature-controlled, and is kept at a constant temperature.

【0036】3dは測定ガス用セル7を透過したレーザ
光を伝搬する復路用の石英系光ファイバ、9は光ファイ
バ3dからのレーザ光の強度を検出するpinフォトダ
イオード等からなる光検出器である。3cは分岐器6で
分岐されたレーザ光が基準ガス用セル8を透過するため
の光ファイバ、10は基準ガス用セル8を透過したレー
ザ光の強度を検出するpinフォトダイオード等からな
る光検出器である。
Reference numeral 3d denotes a return optical fiber for transmitting the laser beam transmitted through the measuring gas cell 7, and reference numeral 9 denotes a photodetector comprising a pin photodiode for detecting the intensity of the laser beam from the optical fiber 3d. is there. Reference numeral 3c denotes an optical fiber through which the laser beam split by the splitter 6 passes through the reference gas cell 8, and reference numeral 10 denotes a light detection comprising a pin photodiode for detecting the intensity of the laser beam passing through the reference gas cell 8. It is a vessel.

【0037】ここで、光ファイバ3a〜3dの端面は、
斜めカット無反射コーティング等により内部で干渉系が
発生しないように処理されている。
Here, the end faces of the optical fibers 3a to 3d are:
The oblique cut anti-reflection coating or the like is processed so as not to generate an interference system inside.

【0038】一方、11は周波数ωの正弦波信号を出力
する発振器、12はこの周波数ωの信号により周波数2
ωの2倍波信号を作る倍周器、13は半導体レーザ1に
バイアス電流を付加するための定電流電源であり、以上
によりレーザ駆動回路14が構成されている。
On the other hand, 11 is an oscillator for outputting a sine wave signal of frequency ω, and 12 is an oscillator for outputting a sine wave signal of frequency ω.
A frequency multiplier 13 for generating a second harmonic signal of ω is a constant current power supply for applying a bias current to the semiconductor laser 1, and the laser drive circuit 14 is configured as described above.

【0039】レーザ駆動回路14は、発振器11からの
周波数ωの正弦波信号が、定電流電源13からの出力に
重畳されて、半導体レーザ1を駆動する。この例では、
変調周波数としてω=50KHzとした。また、定電流
電源13の出力側には、発振器11の出力による影響を
防ぐためにインダクタンスLが接続されており、発振器
11の出力側にはコンデンサCが接続されている。
The laser drive circuit 14 drives the semiconductor laser 1 by superimposing a sine wave signal of the frequency ω from the oscillator 11 on the output from the constant current power supply 13. In this example,
The modulation frequency was ω = 50 KHz. In addition, an inductance L is connected to the output side of the constant current power supply 13 to prevent the influence of the output of the oscillator 11, and a capacitor C is connected to the output side of the oscillator 11.

【0040】15は発振器11からの正弦波信号の周波
数ωに同期して光検出器9の出力の位相敏感検波を行う
ロックインアンプ、16は倍周器12の正弦波信号の周
波数2ωに同期して光検出器9の出力の位相敏感検波を
行うロックインアンプ、17は両ロックインアンプ1
5、16の出力比を求める割算器である。18は割算器
17の出力から濃度を補正するための濃度計算器であ
る。19は倍周器12の正弦波信号の周波数2ωに同期
して光検出器10の出力の位相敏感検波を行うロックイ
ンアンプである。
Reference numeral 15 denotes a lock-in amplifier that performs phase-sensitive detection of the output of the photodetector 9 in synchronization with the frequency ω of the sine wave signal from the oscillator 11, and 16 synchronizes with the frequency 2ω of the sine wave signal of the frequency multiplier 12. And a lock-in amplifier 17 for performing phase-sensitive detection of the output of the photodetector 9.
This is a divider for calculating the output ratio of 5 and 16. Reference numeral 18 denotes a density calculator for correcting the density from the output of the divider 17. Reference numeral 19 denotes a lock-in amplifier that performs phase-sensitive detection of the output of the photodetector 10 in synchronization with the frequency 2ω of the sine wave signal of the frequency multiplier 12.

【0041】一方、20は変調周波数ω成分をカットす
るローパスフィルタ、21は所定の基準電圧を発生する
基準電源、22は半導体レーザ1の順方向電圧の直流分
の変化を得るべく、ローパスフィルタ20の出力電圧の
値と基準電圧の値との差を求める減算器、23は減算器
22からの出力を増幅するアンプである。さらに、24
はアンプ23の出力をX軸に、ロックインアンプ19の
出力をY1 軸に、ロックインアンプ16の出力をY2
にそれぞれ入力して記録するXYレコーダであり、以上
により測定手段25が構成されている。なお、この測定
手段25にはさらに、図示しない信号処理装置がXYレ
コーダ24に接続されて設けられている。
On the other hand, reference numeral 20 denotes a low-pass filter for cutting the modulation frequency ω component, reference numeral 21 denotes a reference power supply for generating a predetermined reference voltage, and reference numeral 22 denotes a low-pass filter for obtaining a change in the DC component of the forward voltage of the semiconductor laser 1. A subtractor 23 calculates the difference between the value of the output voltage and the value of the reference voltage, and an amplifier 23 amplifies the output from the subtractor 22. In addition, 24
The output of the amplifier 23 to the X-axis, the output of the lock-in amplifier 19 to Y 1 axis, an XY recorder for recording by inputting the outputs of the lock-in amplifier 16 to the Y 2 axis, is the measuring means 25 by the above It is configured. The measuring means 25 is further provided with a signal processing device (not shown) connected to the XY recorder 24.

【0042】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0043】図1において、測定は、まず半導体レーザ
1にある一定の発振しきい値以上の大きさの電流を定電
流電源13から供給する。この電流に変調周波数ωの正
弦波電流を重畳し、レーザ光の周波数および強度を変調
する。そして、ペルチェ素子4の印加電流を調整して、
半導体レーザ1の中心周波数を変化させていく。
In FIG. 1, the measurement is performed by first supplying a current having a magnitude equal to or larger than a certain oscillation threshold to the semiconductor laser 1 from the constant current power supply 13. A sine wave current having a modulation frequency ω is superimposed on this current to modulate the frequency and intensity of the laser light. Then, by adjusting the applied current of the Peltier element 4,
The center frequency of the semiconductor laser 1 is changed.

【0044】このとき半導体レーザ1の中心周波数が、
減算器22の出力を増幅したアンプ23の出力値により
モニタされる。これは、個々の半導体レーザの発振周波
数の変化量と順方向抵抗成分の変化量との関係には再現
性があるからである。そのため、中心周波数のモニタと
してアンプ23の出力をXYレコーダ24のX軸成分に
いれる。
At this time, the center frequency of the semiconductor laser 1 is
The output of the subtracter 22 is monitored based on the output value of the amplifier 23 that has amplified the output. This is because the relationship between the variation in the oscillation frequency of each semiconductor laser and the variation in the forward resistance component has reproducibility. Therefore, the output of the amplifier 23 is put into the X-axis component of the XY recorder 24 as a center frequency monitor.

【0045】一方、半導体レーザ1で発振されたレーザ
光は、光ファイバ3aを介し、光分岐器6によりその一
部が測定ガス用セル7内の未知濃度、一定温度のメタン
ガス雰囲気を透過後、光ファイバ3dを介して光検出器
9に導かれ、そこで強度検出される。
On the other hand, a part of the laser light oscillated by the semiconductor laser 1 is transmitted through the optical fiber 3a by the optical branching device 6 through the methane gas atmosphere of unknown concentration and constant temperature in the measuring gas cell 7, The light is guided to the photodetector 9 via the optical fiber 3d, where the intensity is detected.

【0046】他方、光分岐器6を介して残りの光が、光
ファイバ3cを介し既知濃度、一定温度、一定圧力の測
定ガスと同一種類のガスを含んだ基準ガス用セル8に透
過後、光検出器10に導かれ、そこで強度検出される。
On the other hand, after the remaining light passes through the optical splitter 6 and passes through the optical fiber 3c to the reference gas cell 8 containing a gas of the same type as the measurement gas of known concentration, constant temperature and constant pressure, The light is guided to the photodetector 10 where the intensity is detected.

【0047】測定ガス用セル7からの検出信号は、ロッ
クインアンプ15、16により位相敏感検波されて、基
本波信号PS (ω)および2倍波検波信号PS (2ω)
が得られると共に、割算器17に入力されて、PS (2
ω)/PS (ω)より圧力換算前の濃度が求まる。
The detection signal from the measuring gas cell 7 is phase-sensitive detected by the lock-in amplifiers 15 and 16, and the fundamental wave signal P S (ω) and the second harmonic detection signal P S (2ω) are detected.
Is input to the divider 17 and P S (2
ω) / P s (ω) gives the concentration before pressure conversion.

【0048】次に各受光器9、10から得られた2倍波
検波信号P (2ω)をXYレコーダ24のY 軸に入
力し、2倍波検波信号P (2ω)をY 軸に入力す
る。
[0048] then enter the second harmonic detection signal P R (2ω) obtained from the light receiver 9, 10 Y 1 axis XY recorder 24, the second harmonic detection signal P S a (2 [omega) Y 2 Input to the axis.

【0049】図3に、以上のようにしてXYレコーダ2
4により得られた出力波形の一部を示す。図3はレーザ
の中心周波数と2倍波位相敏感検波信号との関係を示す
図であり、同図において横軸が周波数、縦軸が吸収係数
α、濃度c、光路長Lおよび定数kの積k・α・c・L
である。XYレコーダ24により得られた波形は同図の
横軸をアンプ23の出力電圧としたものとなる。
FIG . 3 shows the XY recorder 2 as described above .
4 shows a part of the output waveform obtained from FIG . Figure 3 shows a laser
Shows the relationship between the center frequency of the signal and the second-harmonic phase-sensitive detection signal
In the figure, the horizontal axis represents frequency, and the vertical axis represents absorption coefficient α, concentration c, product k · α · c · L of optical path length L and constant k.
It is. The waveform obtained by the XY recorder 24 is shown in FIG.
The horizontal axis is the output voltage of the amplifier 23.

【0050】同図に示した波形の極大値を与える周波数
と極小値を与える周波数との差(アンプ23の出力電圧
の差)γから測定ガス用セル7内の圧力が求められる。
吸収線の中心の低波長側の極小値と長波長側の極小値と
の周波数差2γから圧力を求めてもよい。信号処理部で
は、この2点間の電圧差と圧力との関係を予め記憶して
おき、この関係から濃度を補正すればよいが、アンプ2
3が周囲温度、使用素子の温度等により増幅率が変動す
るのでその変動分の出力電圧を補正する必要がある。
The difference between the frequency giving the local maximum value and the frequency giving the local minimum value of the waveform shown in FIG.
The pressure in the measurement gas cell 7 is determined from the difference (γ).
The minimum value on the low wavelength side and the minimum value on the long wavelength side at the center of the absorption line
Pressure may be determined from the frequency difference 2γ of In the signal processing unit, the relationship between the voltage difference between the two points and the pressure may be stored in advance, and the density may be corrected from this relationship.
3, the amplification factor varies depending on the ambient temperature, the temperature of the element used, and the like. Therefore, it is necessary to correct the output voltage corresponding to the variation .

【0051】そこで、まず基準ガス用セルの透過光か
ら得られるロックインアンプ19の2倍波電圧に極小値
を与えるモニタ電圧と基準ガス用セル8内の圧力との関
係を表わす比を予め記憶する。次に測定ガス用セル7の
透過光から得られるロックインアンプ16の2倍波電圧
に極小値を与えるモニタ電圧を、この比で補正し、補正
した値と信号処理部内のテーブルの値とから測定ガスの
圧力を求める。求めた圧力と補正前の濃度とから正確な
濃度が求められる。
Therefore, first, the second harmonic voltage of the lock-in amplifier 19 obtained from the transmitted light of the reference gas cell 8 has a minimum value.
Is stored in advance, the ratio representing the relationship between the monitor voltage giving the pressure and the pressure in the reference gas cell 8. Next, the second harmonic voltage of the lock-in amplifier 16 obtained from the transmitted light of the measurement gas cell 7
The monitor voltage that gives the minimum value is corrected by this ratio, and the pressure of the measurement gas is determined from the corrected value and the value in the table in the signal processing unit. An accurate density is obtained from the obtained pressure and the density before correction.

【0052】このように本実施例によれば、変調された
レーザ光を分岐器6で分岐し、分岐光の一方を未知濃
度、未知圧力の測定ガス用セル7内のメタンガスを透過
させ、光検出器9を介してロックインアンプ15、16
で位相敏感検波して得られた二次微分信号T 02 を一次
微分信号T 01 で割算器17で割算す1ることで圧力補
正前のガス濃度を算出すると共に、一定温度、一定圧力
および既知濃度のメタンガスを収容した基準ガス用セル
8を透過させ、光検出器10を介してロックインアンプ
19で位相敏感検波し、得られた二次微分信号に極小値
を与えるモニタ電圧と基準ガス圧力との関係を求め、ロ
ックインアンプ16で位相敏感検波して得られた二次微
分信号に極小値を与えるモニタ電圧を補正し、この補正
した電圧値を用いて測定ガス圧力を求め、前記算出した
濃度を補正するので、高利得で高安定度の増幅器を用い
ることなく、圧力補正の行えるガス濃度測定方法および
その測定装置を実現することができる。したがって、従
来方式では圧力センサを用いないと不可能であった炭坑
やプラントなど気圧変化の激しい場所あるいは環境下に
おいても、何等新たに圧力センサを設けることなく、正
確にメタンガス濃度を測定することができる。
As described above, according to the present embodiment, the modulated laser light is branched by the branching device 6, and one of the branched lights is transmitted through the methane gas in the measuring gas cell 7 of unknown concentration and unknown pressure. Lock-in amplifiers 15 and 16 via detector 9
In phase-sensitive detection-obtained secondary differential signal T 02 the pressure accessory in divided to 1 Rukoto in divider 17 in a first-order derivative signal T 01
The gas concentration at the front is calculated, and the gas is transmitted through the reference gas cell 8 containing methane gas at a constant temperature, a constant pressure, and a known concentration, and phase-sensitive detection is performed by the lock-in amplifier 19 via the photodetector 10 to obtain a signal. Minimum value of the obtained second derivative signal
Find the relationship between the monitor voltage that gives
Secondary fine phase obtained by phase-sensitive detection
The monitor voltage that gives the minimum value to the minute signal is corrected, and this correction
A gas concentration measuring method and a measuring apparatus capable of performing pressure correction without using a high-gain and high-stability amplifier because the measured gas pressure is obtained using the obtained voltage value and the calculated concentration is corrected. Can be realized. Therefore, it is possible to accurately measure the methane gas concentration without installing a new pressure sensor even in a place or environment where the atmospheric pressure changes rapidly, such as a coal mine or a plant, which was not possible without using a pressure sensor in the conventional method. it can.

【0053】また、本実施例では圧力補正用の位相敏感
検波信号として基準ガス用セル及び測定ガス用セルに2
倍波信号を用いているが、これに限らず基本波信号を用
いてもよい。さらに、本実施例では基準ガス用セルにメ
タンガスを収容してメタンガスの測定を行ったが、基準
ガス用セルに他のガスを収容して他のガスの濃度を測定
してもよい。
Further, in this embodiment, the phase sensitive detection signal for pressure correction is applied to the reference gas cell and the measurement gas cell.
Although the harmonic signal is used, the present invention is not limited to this, and a fundamental signal may be used. Further, in this embodiment, the methane gas is stored in the reference gas cell and the methane gas is measured. However, another gas may be stored in the reference gas cell and the concentration of the other gas may be measured.

【0054】[0054]

【発明の効果】以上要するに本発明によれば、測定対象
となるガス雰囲気に入射する前のレーザ光を分岐器を介
して分岐し、その分岐させたレーザ光を一定温度、圧力
および濃度の基準ガス雰囲気に通してその透過光の検出
信号中から検波した2倍波検波信号に極小値を与えるモ
ニタ電圧と基準ガスの圧力との関係を表す比を検出する
と共に、この比でモニタ電圧を補正して測定ガス圧力を
求めるので、高利得で高安定度の増幅器を用いることな
く圧力補正の行えるガス濃度測定方法およびその測定装
置を実現することができる。
In summary, according to the present invention, a laser beam before being incident on a gas atmosphere to be measured is branched via a branching device, and the branched laser beam is defined as a reference for constant temperature, pressure and concentration. Detection of transmitted light through gas atmosphere
A mode that gives a minimum value to the double detection signal detected from the signal.
The ratio indicating the relationship between the monitor voltage and the pressure of the reference gas is detected, and the monitor voltage is corrected by this ratio to reduce the measured gas pressure.
Since finding, it is possible to realize a gas concentration measuring method and measuring apparatus capable of pressure compensation without using a high stability of the amplifier with high gain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としてのガス濃度測定装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a gas concentration measuring device as one embodiment of the present invention.

【図2】図1に示したガス濃度測定装置に用いられるセ
ル内の圧力に対する吸収係数α(ω)と検波信号P(2
ω)と半値幅2γとの関係を示す図である。
FIG. 2 shows an absorption coefficient α (ω) and a detection signal P (2) with respect to pressure in a cell used in the gas concentration measuring device shown in FIG.
FIG. 6 is a diagram illustrating a relationship between ω) and a half width 2γ.

【図3】レーザの中心周波数と2倍波位相敏感検波信号
との関係を示す図であり、図1に示したガス濃度測定装
置に用いられたXYレコーダにより得られた出力波形の
一部を示す図である。
FIG. 3 shows a laser center frequency and a second-harmonic phase-sensitive detection signal.
FIG. 3 is a diagram showing a relationship between the output waveform and a part of an output waveform obtained by an XY recorder used in the gas concentration measuring device shown in FIG.

【図4】周波数に対する透過率Tと、その一次微分T
01 、二次微分T 02 とを示す図である。
FIG. 4 shows the transmittance T with respect to frequency and its first derivative T
01 and the second derivative T02 .

【符号の説明】[Explanation of symbols]

1 半導体レーザ 6 分岐器 7 測定ガス用セル 8 基準ガス用セル 9、10 受光器 11 発振器 12 倍周器 13 定電流電源 15、16、19 ロックインアンプ 17 割算器 24 XYレコーダ DESCRIPTION OF SYMBOLS 1 Semiconductor laser 6 Branch device 7 Cell for measurement gas 8 Cell for reference gas 9, 10 Photodetector 11 Oscillator 12 Doubler 13 Constant current power supply 15, 16, 19 Lock-in amplifier 17 Divider 24 XY recorder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 昌彦 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (56)参考文献 特開 平4−326041(JP,A) 特開 平3−277945(JP,A) 特開 昭62−88943(JP,A) 特開 平1−100437(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masahiko Uchida 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Nippon Electric Cable Co., Ltd. Opto-System Laboratories (56) References JP-A-4-326604 ( JP, A) JP-A-3-277945 (JP, A) JP-A-62-88943 (JP, A) JP-A-1-100437 (JP, A) (58) Fields investigated (Int. Cl. 6 , (DB name) G01N 21/00-21/01 G01N 21/17-21/61

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザを用い、このレーザの
駆動電流あるいは温度を変化させて、波長および強度が
変調されたレーザ光を発振させると共にそのレーザ光の
中心波長を掃引させ、そのレーザ光を測定対象とするガ
ス雰囲気に通して得られる透過光の強度を検出し、この
検出信号中の特定成分を位相敏感検波して、この検波信
号から上記雰囲気圧力下での測定対象ガス中の特定ガス
の濃度を測定するガス濃度測定方法において、上記測定
対象となるガス雰囲気に入射する前のレーザ光を分岐器
を介して分岐し、その分岐させたレーザ光を一定温度、
一定圧力かつ既知濃度の基準ガス雰囲気に通してその透
過光の強度を検出し検出信号中から2倍波成分を位相敏
感検波すると共に、上記レーザ光の中心周波数をレーザ
直流電圧の増幅出力でモニタし、基準ガスの透過光の検
出信号中から検波した2倍波検波信号に極小値を与える
モニタ電圧と基準ガスの圧力との関係を表す比を求め、
上記測定対象ガスの透過光の検出信号中から検波した2
倍波検波信号に極小値を与えるモニタ電圧を上記比で補
正し、補正した電圧値を用いて上記測定対象ガスの圧力
を求めると共にその圧力で上記測定した測定対象ガス中
の特定ガスの濃度を補正することを特徴とするガス濃度
測定方法。
1. A laser which oscillates a laser beam having a wavelength and intensity corresponding to a drive current and a temperature, and oscillates a laser beam whose wavelength and intensity are modulated by changing the drive current or the temperature of the laser. The central wavelength of the laser light is swept, the intensity of the transmitted light obtained by passing the laser light through the gas atmosphere to be measured is detected, a specific component in the detection signal is phase-sensitive detected, and the detection signal is detected. In the gas concentration measuring method for measuring the concentration of a specific gas in the gas to be measured under the above-mentioned atmospheric pressure, the laser light before being incident on the gas atmosphere to be measured is branched via a branching device, and the branching is performed. The laser beam that has been
It passes through a reference gas atmosphere of constant pressure and known concentration, detects the intensity of the transmitted light, and detects the second harmonic component from the detection signal.
Detect and detect the center frequency of the laser light
Monitor with the amplified output of DC voltage and detect the transmitted light of the reference gas.
Gives a minimum value to the double-wave detection signal detected from the output signal
Find the ratio that represents the relationship between the monitor voltage and the pressure of the reference gas,
2 detected from the detection signal of the transmitted light of the gas to be measured
The monitor voltage that gives the minimum value to the harmonic detection signal is compensated by the above ratio.
Correct, the gas concentration measuring method and correcting the concentration of a specific gas in the gas as the object of measurement obtained by the measurement at the pressure with obtaining the pressure of the measurement target gas by using the correction voltage value.
【請求項2】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザと、測定対象とする特
定ガスを収容すると共に、そのガスの温度を一定に保つ
測定ガス用セルと、上記レーザ光をこの測定ガス用セル
に通して得られる透過光の強度を検出する測定ガス側光
検出器と、この検出器からの検出信号中の特定成分を位
相敏感検波して、この検波信号から上記特定ガスの濃度
を測定する測定手段とを備えたガス濃度測定装置におい
て、上記測定ガス用セルに入射するレーザ光を分岐する
光分岐器と、該光分岐器によって分岐されたレーザ光を
透過させると共に、一定温度かつ一定圧力に保たれた既
知濃度のガスが収容された基準ガス用セルと、この基準
ガス用セルを透過したレーザ光の強度を検出し検出信号
中から2倍波成分を位相敏感検波する基準ガス側光検出
器と、上記レーザ光の中心周波数をレーザ直流電圧の増
幅出力でモニタするアンプと、上記基準ガス側光検出器
から得られた2倍波検波信号に極小値を与えるモニタ電
圧と基準ガ スの圧力との関係を表す比を求め、上記測定
対象ガスの透過光の検出信号中から検波した2倍波検波
信号に極小値を与えるモニタ電圧を上記比で補正し、補
正した電圧値を用いて上記測定対象ガスの圧力を求める
と共にその圧力で上記測定した測定対象ガス中の特定ガ
スの濃度を補正する補正手段とを備えたことを特徴とす
るガス濃度測定装置。
2. A laser for oscillating a laser beam having a wavelength and an intensity corresponding to a drive current and a temperature, a measurement gas cell containing a specific gas to be measured and keeping the temperature of the gas constant, A measuring gas side photodetector that detects the intensity of transmitted light obtained by passing the laser beam through the measuring gas cell, and a phase-sensitive detection of a specific component in a detection signal from the detector, and from the detection signal, A gas concentration measuring device having a measuring means for measuring the concentration of the specific gas, wherein an optical splitter for splitting a laser beam incident on the cell for measuring gas and a laser beam split by the optical splitter are transmitted; At the same time, a reference gas cell containing a gas of a known concentration kept at a constant temperature and a constant pressure, and the intensity of laser light transmitted through the reference gas cell are detected, and a second harmonic component is detected from the detection signal. A reference gas side photodetector for phase sensitive detection, and the center frequency of the laser beam is increased by increasing the laser DC voltage.
Amplifier to monitor with width output and photo detector on the reference gas side
Monitor that gives a minimum value to the second harmonic detection signal obtained from
Obtains a ratio representing the relationship between the pressure of the pressure and the reference gas, the measurement
Second-harmonic detection detected from the detection signal of the transmitted light of the target gas
The monitor voltage that gives the minimum value to the signal is corrected by the above ratio,
Using the corrected voltage value, find the pressure of the gas to be measured
And the specified gas in the gas to be measured
A gas concentration measuring device comprising: a correcting unit that corrects a gas concentration.
JP4052648A 1992-03-11 1992-03-11 Gas concentration measuring method and its measuring device Expired - Lifetime JP2792782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052648A JP2792782B2 (en) 1992-03-11 1992-03-11 Gas concentration measuring method and its measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052648A JP2792782B2 (en) 1992-03-11 1992-03-11 Gas concentration measuring method and its measuring device

Publications (2)

Publication Number Publication Date
JPH05256768A JPH05256768A (en) 1993-10-05
JP2792782B2 true JP2792782B2 (en) 1998-09-03

Family

ID=12920670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052648A Expired - Lifetime JP2792782B2 (en) 1992-03-11 1992-03-11 Gas concentration measuring method and its measuring device

Country Status (1)

Country Link
JP (1) JP2792782B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114959B2 (en) * 1994-09-29 2000-12-04 東京電力株式会社 Gas concentration detection method and apparatus
JP3459564B2 (en) 1998-03-11 2003-10-20 日本酸素株式会社 Gas spectrometer and spectrometer
EP1291642A1 (en) * 2001-09-05 2003-03-12 Linde Medical Sensors AG Sensor system comprising an integrated optical waveguide for the detection of chemical substances
US7196786B2 (en) * 2003-05-06 2007-03-27 Baker Hughes Incorporated Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples
JP4918865B2 (en) * 2007-01-17 2012-04-18 富士電機株式会社 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JP2008232920A (en) * 2007-03-22 2008-10-02 Anritsu Corp Gas detection device, and calibration method and wavelength confirmation method using device
JP6624505B2 (en) * 2015-12-07 2019-12-25 富士電機株式会社 Laser gas analyzer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288943A (en) * 1985-10-16 1987-04-23 Toyota Motor Corp Exhaust gas analyzer
SE459126B (en) * 1987-09-15 1989-06-05 Gambro Engstrom Ab OPTICAL GAS ANALYZER
JPH03277945A (en) * 1990-03-27 1991-12-09 Tokyo Gas Co Ltd Gas detecting apparatus

Also Published As

Publication number Publication date
JPH05256768A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US6040914A (en) Simple, low cost, laser absorption sensor system
JP3108420B2 (en) Method and apparatus for measuring gas concentration by spectroscopy
US5202570A (en) Gas detection device
JP4331741B2 (en) Gas detection method and gas detection apparatus
JP3450938B2 (en) Gas concentration measuring method and apparatus
CN110319827B (en) light source relative intensity noise self-adaptive suppression device for fiber optic gyroscope
JP3114959B2 (en) Gas concentration detection method and apparatus
US5502558A (en) Laser doppler velocimeter
JP2744742B2 (en) Gas concentration measuring method and its measuring device
JPS608735B2 (en) How to measure contaminated gas
JP2792782B2 (en) Gas concentration measuring method and its measuring device
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JP2703835B2 (en) Gas concentration measuring method and its measuring device
JPH08247939A (en) Gas concentration measuring instrument
US4156571A (en) Laser mirror scatter and reflectivity measuring system
KR100316487B1 (en) Method of spectrochemical analysis of impurity in gas
JP2796650B2 (en) Multi-gas detector
JP2540670B2 (en) Multi-type gas detector using optical fiber
EP0185385B1 (en) Phase modulation fiber optic gyroscope
JPH03277945A (en) Gas detecting apparatus
JP2004361129A (en) Multipoint gas concentration detection method
JPH10132737A (en) Device and method for measuring remote gas concentration
JPH08162705A (en) Stabilizer of oscillating wavelength of semiconductor laser
JPS60253953A (en) Measurement system for gas concentration
JPS63188704A (en) High-sensitivity optical fiber sensor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14