JP4918865B2 - Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method - Google Patents

Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method Download PDF

Info

Publication number
JP4918865B2
JP4918865B2 JP2007007830A JP2007007830A JP4918865B2 JP 4918865 B2 JP4918865 B2 JP 4918865B2 JP 2007007830 A JP2007007830 A JP 2007007830A JP 2007007830 A JP2007007830 A JP 2007007830A JP 4918865 B2 JP4918865 B2 JP 4918865B2
Authority
JP
Japan
Prior art keywords
fundamental wave
gas
amplitude ratio
wave component
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007007830A
Other languages
Japanese (ja)
Other versions
JP2008177262A (en
Inventor
紀友 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007007830A priority Critical patent/JP4918865B2/en
Publication of JP2008177262A publication Critical patent/JP2008177262A/en
Application granted granted Critical
Publication of JP4918865B2 publication Critical patent/JP4918865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明はレーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法に関し、特に、周波数変調されたレーザ光を用いてガスの濃度を測定する方法に適用して好適なものである。   The present invention relates to a laser wavelength control device, a gas concentration measurement device, a laser wavelength control method, and a gas concentration measurement method, and is particularly suitable for application to a method of measuring a gas concentration using a frequency-modulated laser beam. Is.

気体状のガス分子にはそれぞれ固有の光吸収スペクトルが有ることが知られており、ガス分子の吸収線の中心周波数における減衰量はガスの濃度に比例する。このため、ガス分子の吸収線の中心周波数に一致した発振周波数をもつ半導体レーザ光をガスに照射し、その時のレーザ光の減衰量を測定することで、ガスの濃度を推定することができる(特許文献1)。   It is known that each gaseous gas molecule has its own light absorption spectrum, and the attenuation at the center frequency of the absorption line of the gas molecule is proportional to the gas concentration. For this reason, the gas concentration can be estimated by irradiating the gas with semiconductor laser light having an oscillation frequency that matches the center frequency of the absorption line of gas molecules, and measuring the attenuation of the laser light at that time ( Patent Document 1).

この原理を発展させたものとして2波長差分方式及び周波数変調方式があり、2波長差分方式では、半導体レーザの発振周波数はTHzオーダの信号であることから、複雑な信号処理を行うことができないのに対して、周波数変調方式では、数kHzのベースバンド領域で信号処理を行うことができるという利点がある。
ここで、周波数変調方式では、ガスの吸収線幅よりもレーザ光の線幅の方が小さいことから、ガスの吸収波長と半導体レーザの発光波長とを合わせる必要がある。この方法として、予め測定したいガスと同じ成分を封入した参照ガスセルを用いる方法がある(特許文献2)。
The two-wavelength difference method and the frequency modulation method are developed from this principle. In the two-wavelength difference method, since the oscillation frequency of the semiconductor laser is a signal on the order of THz, complicated signal processing cannot be performed. On the other hand, the frequency modulation method has an advantage that signal processing can be performed in a baseband region of several kHz.
Here, in the frequency modulation method, since the line width of the laser beam is smaller than the absorption line width of the gas, it is necessary to match the absorption wavelength of the gas with the emission wavelength of the semiconductor laser. As this method, there is a method using a reference gas cell in which the same component as the gas to be measured is enclosed (Patent Document 2).

図8は、従来の周波数変調方式におけるガス濃度測定装置の概略構成を示す平面図である。
図8において、光源ユニットには、半導体レーザモジュール121、参照ガスセル122およびフォト検出器123が収容され、光源ユニットのケース本体26の底面には、冷却用フィン27が取り付けられたペルチェ素子28が配設されている。ここで、半導体レーザモジュール121には、周波数変調されたレーザ光を両面から出射する半導体レーザが配設されるとともに、コネクタ125aを備えた光ケーブル125が延出され、半導体レーザから出射される一方の光が光ケーブル125を介して測定対象ガスの雰囲気に出射される。
FIG. 8 is a plan view showing a schematic configuration of a gas concentration measuring apparatus in a conventional frequency modulation method.
In FIG. 8, the light source unit accommodates a semiconductor laser module 121, a reference gas cell 122, and a photo detector 123, and a Peltier element 28 to which a cooling fin 27 is attached is arranged on the bottom surface of the case body 26 of the light source unit. It is installed. Here, the semiconductor laser module 121 is provided with a semiconductor laser that emits frequency-modulated laser light from both sides, and an optical cable 125 including a connector 125a is extended to be emitted from the semiconductor laser. Light is emitted to the atmosphere of the measurement target gas via the optical cable 125.

また、参照ガスセル122は、半導体レーザの後ろ側の光路上に配設され、参照ガスセル122を通過したレーザ光は、参照ガスセル122の後ろ側に配設されたフォト検出器123によって受光検出される。
そして、参照ガスセル122を通過したレーザ光を参照しながらペルチェ素子28にて半導体レーザの温度制御を行い、2倍波と基本波との比が最大となるように半導体レーザの発光波長を制御することにより、ガスの吸収波長と半導体レーザの発光波長とを合わせることができる。
特開平7−151681号公報 特開2001−235418号公報
The reference gas cell 122 is disposed on the optical path behind the semiconductor laser, and the laser light that has passed through the reference gas cell 122 is received and detected by a photo detector 123 disposed behind the reference gas cell 122. .
Then, the temperature of the semiconductor laser is controlled by the Peltier element 28 while referring to the laser beam that has passed through the reference gas cell 122, and the emission wavelength of the semiconductor laser is controlled so that the ratio of the second harmonic wave to the fundamental wave is maximized. This makes it possible to match the absorption wavelength of the gas with the emission wavelength of the semiconductor laser.
Japanese Patent Laid-Open No. 7-151681 JP 2001-235418 A

しかしながら、従来の周波数変調方式では、ガスの吸収波長と半導体レーザの発光波長とを合わせるために参照ガスセル122を用いると、測定対象ガスの成分が環境によって変動したり、測定対象ガスと参照ガスセル122に封入されたガスの温度が異なったりすることから、測定対象ガスと参照ガスセル122に封入されたガスの成分や吸収波長を完全に一致させることが困難となり、計測精度の低下を招くという問題があった。
そこで、本発明の目的は、測定環境に依存することなく、ガスの吸収波長と半導体レーザの発光波長とを精度よく合わせることが可能なレーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法を提供することである。
However, in the conventional frequency modulation method, when the reference gas cell 122 is used to match the gas absorption wavelength and the emission wavelength of the semiconductor laser, the component of the measurement target gas varies depending on the environment, or the measurement target gas and the reference gas cell 122. Since the temperature of the gas enclosed in the gas is different, it becomes difficult to completely match the measurement target gas and the component and absorption wavelength of the gas enclosed in the reference gas cell 122, resulting in a decrease in measurement accuracy. there were.
Accordingly, an object of the present invention is to provide a laser wavelength control device, a gas concentration measurement device, and a laser wavelength control capable of accurately matching the absorption wavelength of a gas and the emission wavelength of a semiconductor laser without depending on the measurement environment. It is to provide a method and a gas concentration measurement method.

上述した課題を解決するために、請求項1記載のレーザの波長制御装置によれば、レーザ光を出射するレーザ素子と、前記レーザ光を基本波で周波数変調する周波数変調部と、測定対象ガスと同一のガスが封入されたガスセルと、前記周波数変調されたレーザ光を前記測定対象ガス側と前記ガスセル側に分岐する分岐手段と、前記測定対象ガス側に分岐されたレーザ光を検出する第1の光検出部と、前記第1の光検出部にて検出されたレーザ光から基本波成分を検出する第1の基本波成分検出部と、前記第1の光検出部にて検出されたレーザ光から2倍波成分を検出する第1の2倍波成分検出部と、前記ガスセル側に分岐されたレーザ光を検出する第2の光検出部と、前記第2の光検出部にて検出されたレーザ光から基本波成分を検出する第2の基本波成分検出部と、前記第2の光検出部にて検出されたレーザ光から2倍波成分を検出する第2の2倍波成分検出部と、前記測定対象ガス側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第1の振幅比算出部と、前記ガスセル側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第2の振幅比算出部と、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比のいずれか一方に基づいて、前記レーザ素子の温度を設定する温度設定部と、前記測定対象ガスの吸収ピーク波長からシフトされた波長を基準とする波長変調を行った時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比のいずれか一方に基づいて、前記レーザ素子の駆動電流を制御する駆動電流制御部とを備えることを特徴とする。 In order to solve the above-described problem, according to the laser wavelength control apparatus of claim 1, a laser element that emits laser light, a frequency modulation unit that modulates the frequency of the laser light with a fundamental wave, and a measurement target gas A gas cell in which the same gas is sealed, branching means for branching the frequency-modulated laser light to the measurement object gas side and the gas cell side, and a laser beam branched to the measurement object gas side 1 light detection section, a first fundamental wave component detection section for detecting a fundamental wave component from the laser light detected by the first light detection section, and detected by the first light detection section A first second-harmonic component detector that detects a second-harmonic component from the laser beam, a second photodetector that detects the laser beam branched to the gas cell side, and the second photodetector. Detecting the fundamental wave component from the detected laser beam A fundamental wave component detection unit, a second second harmonic component detection unit that detects a second harmonic component from the laser light detected by the second light detection unit, and a laser that has passed through the measurement target gas side A first amplitude ratio calculation unit for calculating an amplitude ratio between a fundamental wave component detected from light and a second harmonic component; a fundamental wave component detected from laser light transmitted through the gas cell side; and a second harmonic component; A second amplitude ratio calculation unit for calculating an amplitude ratio of the gas, and an amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or an amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side A temperature setting unit configured to set the temperature of the laser element based on any one of the measurement object gas side when the wavelength modulation is performed with reference to a wavelength shifted from the absorption peak wavelength of the measurement object gas The amplitude ratio between the fundamental wave component and the second harmonic wave component or the gas cell Based on one of the amplitude ratio between the fundamental wave component and second harmonic component side, characterized in that it comprises a drive current control unit for controlling the driving current of the laser element.

また、請求項2記載のレーザの波長制御装置によれば、前記温度設定部は、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定し、前記駆動電流制御部は、吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように駆動電流を制御することを特徴とする。   According to the laser wavelength control apparatus of claim 2, the temperature setting unit includes an amplitude ratio between a fundamental wave component on the measurement target gas side and a second harmonic component, or a fundamental wave component on the gas cell side and 2. The temperature of the laser element is set so that the amplitude ratio with the harmonic component is maximized, and the drive current control unit is shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side. So that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas side to be measured or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side when frequency modulation is performed with reference to The drive current is controlled.

また、請求項3記載のガス濃度測定装置によれば、レーザ光を出射するレーザ素子と、前記レーザ光を基本波で周波数変調する周波数変調部と、測定対象ガスと同一のガスが封入されたガスセルと、前記周波数変調されたレーザ光を前記測定対象ガス側と前記ガスセル側に分岐する分岐手段と、前記測定対象ガス側に分岐されたレーザ光を検出する第1の光検出部と、前記第1の光検出部にて検出されたレーザ光から基本波成分を検出する第1の基本波成分検出部と、前記第1の光検出部にて検出されたレーザ光から2倍波成分を検出する第1の2倍波成分検出部と、前記ガスセル側に分岐されたレーザ光を検出する第2の光検出部と、前記第2の光検出部にて検出されたレーザ光から基本波成分を検出する第2の基本波成分検出部と、前記第2の光検出部にて検出されたレーザ光から2倍波成分を検出する第2の2倍波成分検出部と、前記測定対象ガス側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第1の振幅比算出部と、前記ガスセル側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第2の振幅比算出部と、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ素子の温度を設定する温度設定部と、前記測定対象ガスの吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御する駆動電流制御部と、前記吸収ピーク波長を基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過したガスの濃度を算出するガス濃度算出部とを備えることを特徴とする。 According to the gas concentration measuring apparatus of claim 3, a laser element that emits laser light, a frequency modulation unit that modulates the frequency of the laser light with a fundamental wave, and the same gas as the measurement target gas are enclosed. A gas cell; branching means for branching the frequency-modulated laser light into the measurement target gas side and the gas cell; a first light detection unit for detecting the laser light branched into the measurement target gas; A first fundamental wave component detector for detecting a fundamental wave component from the laser light detected by the first light detector; and a second harmonic component from the laser light detected by the first light detector. A fundamental wave from a first second harmonic wave component detection unit to be detected, a second light detection unit to detect a laser beam branched to the gas cell side, and a laser beam detected by the second light detection unit A second fundamental wave component detector for detecting a component; A second harmonic component detection unit that detects a second harmonic component from the laser beam detected by the second optical detection unit, a fundamental wave component detected from the laser beam that has passed through the measurement target gas side, and 2 A first amplitude ratio calculating unit for calculating an amplitude ratio with a harmonic component, and a second amplitude for calculating an amplitude ratio between the fundamental wave component and the second harmonic component detected from the laser light transmitted through the gas cell side. The laser element such that the ratio calculation unit and the amplitude ratio between the fundamental wave component and the second harmonic component on the gas to be measured side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side are maximized. A temperature setting unit for setting the temperature of the gas to be measured, and the gas to be measured when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength of the gas to be measured to the long wavelength side and the short wavelength side, respectively Amplitude ratio between fundamental wave component and double wave component Is a drive current control unit that controls the drive current of the laser element so that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side matches, and when the frequency modulation is performed with reference to the absorption peak wavelength And a gas concentration calculation unit that calculates the concentration of the gas transmitted by the laser beam based on the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side.

また、請求項4記載のガス濃度測定装置によれば、前記ガスセルは、測定対象ガスと吸収波長が一致するように構成されたバンドパス型の光学フィルタであることを特徴とする。
また、請求項5記載のレーザの波長制御方法によれば、基本波で周波数変調されたレーザ光を測定対象ガス側と前記測定対象ガスと同一のガスが封入されたガスセル側とに分岐するステップと、前記分岐されたレーザ光を前記測定対象ガスと前記ガスセルに入射するステップと、前記測定対象ガスおよび前記ガスセルを透過したレーザ光をそれぞれ検出するステップと、前記測定対象ガス側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記ガスセル側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記測定対象ガス側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記ガスセル側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ光を発生させるレーザ素子の温度を設定するステップと、前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御するステップとを備えることを特徴とする。
According to the gas concentration measuring apparatus of the fourth aspect, the gas cell is a band-pass optical filter configured so that the absorption wavelength matches that of the measurement target gas.
According to the laser wavelength control method of claim 5, the step of branching the laser beam frequency-modulated with the fundamental wave to the measurement target gas side and the gas cell side in which the same gas as the measurement target gas is enclosed And the step of making the branched laser light incident on the measurement target gas and the gas cell, the step of detecting the measurement target gas and the laser light transmitted through the gas cell, respectively, and the detection target gas side being detected A step of extracting a fundamental wave component and a second harmonic component from the laser beam; a step of extracting a fundamental wave component and a second harmonic component from the laser beam detected on the gas cell side; A step of calculating an amplitude ratio between a fundamental wave component and a second harmonic component, and a step of calculating an amplitude ratio between the fundamental wave component extracted on the gas cell side and the second harmonic component. The laser light is generated so that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas to be measured side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized. A step of setting the temperature of the laser element, and frequency modulation with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas. Drive current of the laser element so that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas to be measured at the time or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side coincides. And a step of controlling.

また、請求項6記載のガス濃度測定方法によれば、基本波で周波数変調されたレーザ光を測定対象ガス側と前記測定対象ガスと同一のガスが封入されたガスセル側とに分岐するステップと、前記分岐されたレーザ光を前記測定対象ガスと前記ガスセルに入射するステップと、前記測定対象ガスおよび前記ガスセルを透過したレーザ光をそれぞれ検出するステップと、前記測定対象ガス側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記ガスセル側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記測定対象ガス側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記ガスセル側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ光を発生させるレーザ素子の温度を設定するステップと、前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御するステップと、前記吸収ピーク波長を基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過した測定対象ガスの濃度を算出するステップとを備えることを特徴とする。   Further, according to the gas concentration measuring method of claim 6, the step of branching the laser light frequency-modulated with the fundamental wave into the measuring object gas side and the gas cell side filled with the same gas as the measuring object gas; , The step of entering the branched laser light into the measurement target gas and the gas cell, the step of detecting the measurement target gas and the laser light transmitted through the gas cell, respectively, and the laser detected on the measurement target gas side A step of extracting a fundamental wave component and a second harmonic component from the light; a step of extracting a fundamental wave component and a second harmonic component from the laser light detected on the gas cell side; and a fundamental extracted on the gas to be measured side Calculating an amplitude ratio between the wave component and the second harmonic component; calculating an amplitude ratio between the fundamental wave component extracted on the gas cell side and the second harmonic component; Laser element for generating the laser beam so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized When the frequency is modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the gas to be measured. The driving current of the laser element is controlled so that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas side to be measured or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side coincides. And the concentration of the measurement target gas transmitted by the laser light based on the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when frequency-modulated with reference to the absorption peak wavelength The Characterized in that it comprises the step of leaving.

以上説明したように、本発明によれば、半導体レーザの発光波長が測定対象ガスの吸収ピーク波長に一致するように半導体レーザの温度を設定した上で、吸収ピーク波長からシフトされた波長を基準とする波長変調を行いながら半導体レーザの駆動電流を制御することにより、測定対象ガスの成分が環境によって変動したり、測定対象ガスの吸収波長が温度によって変動したりする場合においても、測定対象ガスの吸収ピーク波長と半導体レーザの発光波長とを合わせることが可能となり、測定環境に依存することなく、ガス濃度の計測精度を向上させることが可能となる。   As described above, according to the present invention, the temperature of the semiconductor laser is set so that the emission wavelength of the semiconductor laser matches the absorption peak wavelength of the measurement target gas, and the wavelength shifted from the absorption peak wavelength is used as a reference. By controlling the drive current of the semiconductor laser while performing wavelength modulation, the gas to be measured is measured even when the component of the gas to be measured varies depending on the environment or the absorption wavelength of the gas to be measured varies depending on the temperature. Therefore, the measurement accuracy of the gas concentration can be improved without depending on the measurement environment.

以下、本発明の実施形態に係るガス濃度測定装置について図面を参照しながら説明する。
図1は、本発明の一実施形態に係るガス濃度測定装置の概略構成を示す断面図である。
図1において、ガス濃度測定装置の送信側には、レーザユニット57から出射されたレーザ光を基本波で周波数変調する送信部基板54、レーザユニット57から出射されたレーザ光を平行ビームに変換するコリメートレンズ56およびレーザ素子が搭載されたレーザユニット57が設けられている。なお、レーザ素子としては半導体レーザを用いることができ、レーザユニット57には、レーザ素子の温度を検出するサーミスタおよびレーザ素子の温度を調整するペルチェ素子を搭載することができる。
Hereinafter, a gas concentration measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a gas concentration measuring apparatus according to an embodiment of the present invention.
In FIG. 1, on the transmission side of the gas concentration measuring apparatus, a transmitter substrate 54 that modulates the frequency of the laser light emitted from the laser unit 57 with a fundamental wave, and the laser light emitted from the laser unit 57 are converted into parallel beams. A laser unit 57 on which a collimating lens 56 and a laser element are mounted is provided. A semiconductor laser can be used as the laser element, and the thermistor for detecting the temperature of the laser element and a Peltier element for adjusting the temperature of the laser element can be mounted on the laser unit 57.

また、レーザユニット57には、測定対象ガスと同一のガスが封入されたガスセルが設けられるとともに、周波数変調されたレーザ光を測定対象ガス側とガスセル側に分岐する光学系およびガスセルを透過したレーザ光を検出する光検出部が設けられている。また、送信部基板54には、ガスセルを透過したレーザ光の基本波成分と2倍波成分との振幅比を算出する振幅比算出部が搭載されている。   The laser unit 57 is provided with a gas cell filled with the same gas as the measurement target gas, and an optical system for branching the frequency-modulated laser light into the measurement target gas side and the gas cell side, and a laser transmitted through the gas cell. A light detection unit for detecting light is provided. In addition, the transmission unit substrate 54 is equipped with an amplitude ratio calculation unit that calculates the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light transmitted through the gas cell.

また、ガス濃度測定装置の受信側には、測定対象ガスを透過したレーザ光を集光する集光レンズ60、測定対象ガスを透過したレーザ光を検出する光検出部61および測定対象ガスを透過したレーザ光の基本波成分と2倍波成分との振幅比を算出する受信部基板62が設けられている。なお、光検出部61としては、例えば、フォトダイオードを用いることができる。   Further, on the receiving side of the gas concentration measuring apparatus, a condensing lens 60 that condenses the laser light that has passed through the measurement target gas, a light detection unit 61 that detects the laser light that has passed through the measurement target gas, and the measurement target gas are transmitted. A receiving unit substrate 62 for calculating the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam is provided. As the light detection unit 61, for example, a photodiode can be used.

ここで、送信部基板54、コリメートレンズ56およびレーザユニット57はハウジング58に収容されるとともに、集光レンズ60、光検出部61および受信部基板62はハウジング59に収容されている。そして、煙道などの測定対象ガスが流れる配管などの隔壁51a、51bには、フランジ52a、52bが溶接などの方法にて取り付けられる。そして、送信部基板54、コリメートレンズ56およびレーザユニット57が収容されたハウジング58は、ウェッジ窓55aにて配管内と仕切られるようにしてフランジ52aに取り付けられるとともに、集光レンズ60、光検出部61および受信部基板62が収容されたハウジング59は、ウェッジ窓55bにて配管内と仕切られるようにしてフランジ52bに取り付けられる。   Here, the transmission unit substrate 54, the collimating lens 56 and the laser unit 57 are accommodated in the housing 58, and the condenser lens 60, the light detection unit 61 and the reception unit substrate 62 are accommodated in the housing 59. Then, flanges 52a and 52b are attached to partition walls 51a and 51b such as pipes through which a measurement target gas flows such as a flue by a method such as welding. The housing 58 in which the transmission unit substrate 54, the collimating lens 56, and the laser unit 57 are accommodated is attached to the flange 52a so as to be separated from the inside of the pipe by the wedge window 55a, and the condensing lens 60, the light detection unit. The housing 59 in which 61 and the receiving unit board 62 are accommodated is attached to the flange 52b so as to be separated from the inside of the pipe by the wedge window 55b.

そして、中心周波数fc、変調周波数fmでレーザ素子の出力が周波数変調されながら、レーザ光がレーザユニット57から出射され、コリメートレンズ56にて平行ビームに変換された後、ウェッジ窓55aを介して隔壁51a、51b間の測定対象ガスを透過する。そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した波長の吸収を受けた後、ウェッジ窓55bを介して集光レンズ60に入射し、集光レンズ60にて光検出部61上に集光される。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、その電気信号が受信部基板62に送られる。そして、光検出部61にて変換された電気信号が受信部基板62に送られると、レーザ光の基本波成分と2倍波成分との振幅比が受信部基板62にて算出される。そして、レーザ光が周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、隔壁51a、51b間の測定対象ガスの濃度を算出することができる。   Then, the laser light is emitted from the laser unit 57 and converted into a parallel beam by the collimator lens 56 while the output of the laser element is frequency-modulated at the center frequency fc and the modulation frequency fm, and then the partition wall through the wedge window 55a. The measurement target gas between 51a and 51b is transmitted. The laser light that has passed through the measurement target gas is absorbed at a wavelength corresponding to the absorption line of the gas molecule of the measurement target gas, and then enters the condenser lens 60 through the wedge window 55b. Is condensed on the light detection unit 61. When laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the electrical signal is sent to the reception unit substrate 62. Then, when the electrical signal converted by the light detection unit 61 is sent to the reception unit substrate 62, the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light is calculated by the reception unit substrate 62. Based on the amplitude ratio between the fundamental wave component and the second harmonic component when the laser light is frequency-modulated, the concentration of the measurement target gas between the partition walls 51a and 51b can be calculated.

ここで、送信部基板54は、レーザユニット57から出射されるレーザ光の波長が隔壁51a、51b間の測定対象ガスの吸収ピーク波長に一致するようにレーザ素子の温度を設定した上で、その吸収ピーク波長からシフトされた波長を基準とする波長変調を行いながらレーザ素子の駆動電流を制御することにより、隔壁51a、51b間の測定対象ガスの吸収波長とレーザユニット57に搭載されたレーザ素子の発光波長とを合わせることができる。   Here, the transmitter substrate 54 sets the temperature of the laser element so that the wavelength of the laser light emitted from the laser unit 57 matches the absorption peak wavelength of the gas to be measured between the partition walls 51a and 51b. By controlling the drive current of the laser element while performing wavelength modulation based on the wavelength shifted from the absorption peak wavelength, the absorption wavelength of the gas to be measured between the partition walls 51a and 51b and the laser element mounted on the laser unit 57 The emission wavelength can be matched.

また、周波数変調されたレーザ光はガスセル側に分岐され、ガスセルを透過した後、送信側の光検出部に入射する。そして、送信側の光検出部にて変換された電気信号が送信部基板54に送られると、ガスセルを透過したレーザ光の基本波成分と2倍波成分との振幅比が送信部基板54にて算出される。
そして、送信部基板54は、レーザユニット57から出射されるレーザ光の波長がガスセルの吸収ピーク波長に一致するようにレーザ素子の温度を設定した上で、その吸収ピーク波長からシフトされた波長を基準とする波長変調を行いながらレーザ素子の駆動電流を制御することにより、ガスセルの吸収波長とレーザユニット57に搭載されたレーザ素子の発光波長とを合わせることができる。
Further, the frequency-modulated laser light is branched to the gas cell side, passes through the gas cell, and then enters the light detection unit on the transmission side. When the electrical signal converted by the light detection unit on the transmission side is sent to the transmission unit substrate 54, the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light transmitted through the gas cell is transmitted to the transmission unit substrate 54. Is calculated.
The transmitter substrate 54 sets the temperature of the laser element so that the wavelength of the laser light emitted from the laser unit 57 matches the absorption peak wavelength of the gas cell, and then changes the wavelength shifted from the absorption peak wavelength. By controlling the drive current of the laser element while performing reference wavelength modulation, the absorption wavelength of the gas cell and the emission wavelength of the laser element mounted on the laser unit 57 can be matched.

図2は、本発明の一実施形態に係るガス濃度測定装置の概略構成を示すブロック図である。
図2において、図1のレーザユニット57には、半導体レーザ41および温度設定部42が搭載されている。なお、温度設定部42としては、例えば、半導体レーザ41の温度を検出するサーミスタおよび半導体レーザ41の温度を調整するペルチェ素子を用いることができる。さらに、図1のレーザユニット57には、測定対象ガスと同一のガスが封入されたガスセル44が設けられるとともに、周波数変調されたレーザ光を測定対象ガス側とガスセル44側に分岐するビームスピリッタ43およびガスセル44を透過したレーザ光を検出する光検出部45が設けられている。なお、ガスセル44は、測定対象ガスと吸収波長が一致するように構成されたバンドパス型の光学フィルタであってもよい。
FIG. 2 is a block diagram showing a schematic configuration of a gas concentration measuring apparatus according to an embodiment of the present invention.
In FIG. 2, a semiconductor laser 41 and a temperature setting unit 42 are mounted on the laser unit 57 of FIG. For example, a thermistor that detects the temperature of the semiconductor laser 41 and a Peltier element that adjusts the temperature of the semiconductor laser 41 can be used as the temperature setting unit 42. Further, the laser unit 57 in FIG. 1 is provided with a gas cell 44 in which the same gas as the measurement target gas is sealed, and a beam spiriter for branching the frequency-modulated laser light to the measurement target gas side and the gas cell 44 side. 43 and a light detector 45 for detecting the laser light transmitted through the gas cell 44 is provided. The gas cell 44 may be a band-pass optical filter configured so that the absorption wavelength matches that of the measurement target gas.

また、図1の送信部基板54には、半導体レーザ41に駆動電流を注入するレーザ駆動部11、半導体レーザ41から出射されるレーザ光を基本波で周波数変調する周波数変調部12および半導体レーザ41に注入される駆動電流を制御する駆動電流制御部13が設けられている。さらに、図1の送信部基板54には、光検出部45にて検出されたレーザ光から基本波成分を検出する基本波成分検出部14、光検出部45にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部15および光検出部45にて検出されたレーザ光の基本波成分と2倍波成分との振幅比を算出する振幅比算出部16が設けられている。   1 includes a laser drive unit 11 for injecting a drive current into the semiconductor laser 41, a frequency modulation unit 12 for modulating the laser light emitted from the semiconductor laser 41 with a fundamental wave, and the semiconductor laser 41. A drive current control unit 13 is provided for controlling the drive current injected into the. Further, the transmission unit substrate 54 of FIG. 1 includes a fundamental wave component detection unit 14 that detects a fundamental wave component from the laser light detected by the light detection unit 45, and 2 from the laser light detected by the light detection unit 45. A second harmonic component detection unit 15 that detects a harmonic component and an amplitude ratio calculation unit 16 that calculates an amplitude ratio between the fundamental wave component and the second harmonic component of the laser light detected by the light detection unit 45 are provided. Yes.

また、図1の受信部基板62には、光検出部61にて検出されたレーザ光から基本波成分を検出する基本波成分検出部21、光検出部61にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部22、光検出部61にて検出されたレーザ光の基本波成分と2倍波成分との振幅比を算出する振幅比算出部23および光検出部61にて検出された基本波成分と2倍波成分との振幅比に基づいて測定対象ガスの濃度を算出するガス濃度算出部24が設けられている。   In addition, the receiving unit substrate 62 of FIG. 1 includes a fundamental wave component detection unit 21 that detects a fundamental wave component from the laser light detected by the light detection unit 61, and 2 from the laser light detected by the light detection unit 61. A second harmonic component detection unit 22 that detects a harmonic component, an amplitude ratio calculation unit 23 that calculates an amplitude ratio between the fundamental wave component and the second harmonic component of the laser light detected by the light detection unit 61, and a light detection unit A gas concentration calculation unit 24 that calculates the concentration of the measurement target gas based on the amplitude ratio between the fundamental wave component and the second harmonic component detected at 61 is provided.

そして、周波数変調部12は、中心周波数fc、変調周波数fmで半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、その周波数変調されたレーザ光が半導体レーザ41から出射される。そして、半導体レーザ41から出射されたレーザ光はビームスピリッタ43にて分岐され、ビームスピリッタ43にて分岐された一方の光ビームは測定対象ガスを透過するとともに、ビームスピリッタ43にて分岐された他方の光ビームはガスセル44を透過する。   Then, the frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated at the center frequency fc and the modulation frequency fm, so that the frequency-modulated laser light is emitted from the semiconductor laser 41. Emitted. The laser light emitted from the semiconductor laser 41 is branched by the beam spiriter 43, and one light beam branched by the beam spiriter 43 passes through the measurement target gas and is branched by the beam spiriter 43. The other light beam transmitted through the gas cell 44.

そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、温度設定部42に送られる。   Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculation unit 23, it is sent to the temperature setting unit 42.

一方、ガスセル44を透過したレーザ光は、ガスセル44の吸収線に対応した吸収を受けた後、光検出部45に入射する。そして、光検出部45にレーザ光が入射すると、光検出部45にて電気信号に変換され、基本波成分検出部14および2倍波成分検出部15にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部14および2倍波成分検出部15にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部16に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部16にて算出された後、温度設定部42に送られる。   On the other hand, the laser light transmitted through the gas cell 44 is incident on the light detection unit 45 after receiving absorption corresponding to the absorption line of the gas cell 44. When the laser light is incident on the light detection unit 45, the light detection unit 45 converts the laser light into an electrical signal, and the fundamental wave component detection unit 14 and the second harmonic wave component detection unit 15 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 14 and the second harmonic component detection unit 15 are sent to the amplitude ratio calculation unit 16, and the fundamental wave component of the laser beam and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculation unit 16, it is sent to the temperature setting unit 42.

ここで、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部16、23にて算出される時に、温度設定部42は半導体レーザ41の温度を変化させることができる。そして、温度設定部42は、測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比と半導体レーザ41の温度との関係を取得し、測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比が最大になるようにレーザ素子の温度を設定することができる。   Here, when the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light is calculated by the amplitude ratio calculation units 16 and 23, the temperature setting unit 42 can change the temperature of the semiconductor laser 41. Then, the temperature setting unit 42 acquires the relationship between the amplitude ratio between the fundamental wave component and the second harmonic wave component on the measurement target gas side or gas cell 44 side and the temperature of the semiconductor laser 41, and the measurement target gas side or gas cell 44 side The temperature of the laser element can be set so that the amplitude ratio between the fundamental wave component and the second harmonic wave component becomes maximum.

そして、測定対象ガス側またはガスセル側44の基本波成分と2倍波成分との振幅比が最大になるように半導体レーザ41の温度が設定されると、駆動電流制御部13は、レーザ光の波長が吸収ピーク波長λcから長波長側にシフトされるように半導体レーザ41の駆動電流を制御する。そして、周波数変調部12は、吸収ピーク波長λcから長波長側にシフトされた波長λLを基準として半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、波長λLを基準として波長変調されたレーザ光が半導体レーザ41から出射される。そして、半導体レーザ41から出射されたレーザ光はビームスピリッタ43にて分岐され、ビームスピリッタ43にて分岐された一方の光ビームは測定対象ガスを透過するとともに、ビームスピリッタ43にて分岐された他方の光ビームはガスセル44を透過する。   When the temperature of the semiconductor laser 41 is set so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or gas cell side 44 is maximized, the drive current control unit 13 The drive current of the semiconductor laser 41 is controlled so that the wavelength is shifted from the absorption peak wavelength λc to the longer wavelength side. The frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated with reference to the wavelength λL shifted from the absorption peak wavelength λc to the long wavelength side, thereby changing the wavelength λL. As a reference, wavelength-modulated laser light is emitted from the semiconductor laser 41. The laser light emitted from the semiconductor laser 41 is branched by the beam spiriter 43, and one light beam branched by the beam spiriter 43 passes through the measurement target gas and is branched by the beam spiriter 43. The other light beam transmitted through the gas cell 44.

そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、駆動電流制御部13に送られる。   Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 23, it is sent to the drive current controller 13.

一方、ガスセル44を透過したレーザ光は、ガスセル44の吸収線に対応した吸収を受けた後、光検出部45に入射する。そして、光検出部45にレーザ光が入射すると、光検出部45にて電気信号に変換され、基本波成分検出部14および2倍波成分検出部15にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部14および2倍波成分検出部15にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部16に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部16にて算出された後、駆動電流制御部13に送られる。   On the other hand, the laser light transmitted through the gas cell 44 is incident on the light detection unit 45 after receiving absorption corresponding to the absorption line of the gas cell 44. When the laser light is incident on the light detection unit 45, the light detection unit 45 converts the laser light into an electrical signal, and the fundamental wave component detection unit 14 and the second harmonic wave component detection unit 15 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 14 and the second harmonic component detection unit 15 are sent to the amplitude ratio calculation unit 16, and the fundamental wave component of the laser beam and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 16, it is sent to the drive current controller 13.

また、駆動電流制御部13は、吸収ピーク波長λcから短波長側にシフトされるように半導体レーザ41の駆動電流を制御する。そして、周波数変調部12は、吸収ピーク波長λcから短波長側にシフトされた波長λsを基準として半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、波長λsを基準として波長変調されたレーザ光が半導体レーザ41から出射される。そして、半導体レーザ41から出射されたレーザ光はビームスピリッタ43にて分岐され、ビームスピリッタ43にて分岐された一方の光ビームは測定対象ガスを透過するとともに、ビームスピリッタ43にて分岐された他方の光ビームはガスセル44を透過する。   Further, the drive current control unit 13 controls the drive current of the semiconductor laser 41 so as to be shifted from the absorption peak wavelength λc to the short wavelength side. Then, the frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated with reference to the wavelength λs shifted from the absorption peak wavelength λc to the short wavelength side, thereby changing the wavelength λs. As a reference, wavelength-modulated laser light is emitted from the semiconductor laser 41. The laser light emitted from the semiconductor laser 41 is branched by the beam spiriter 43, and one light beam branched by the beam spiriter 43 passes through the measurement target gas and is branched by the beam spiriter 43. The other light beam transmitted through the gas cell 44.

そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、駆動電流制御部13に送られる。   Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 23, it is sent to the drive current controller 13.

一方、ガスセル44を透過したレーザ光は、ガスセル44の吸収線に対応した吸収を受けた後、光検出部45に入射する。そして、光検出部45にレーザ光が入射すると、光検出部45にて電気信号に変換され、基本波成分検出部14および2倍波成分検出部15にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部14および2倍波成分検出部15にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部16に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部16にて算出された後、駆動電流制御部13に送られる。   On the other hand, the laser light transmitted through the gas cell 44 is incident on the light detection unit 45 after receiving absorption corresponding to the absorption line of the gas cell 44. When the laser light is incident on the light detection unit 45, the light detection unit 45 converts the laser light into an electrical signal, and the fundamental wave component detection unit 14 and the second harmonic wave component detection unit 15 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 14 and the second harmonic component detection unit 15 are sent to the amplitude ratio calculation unit 16, and the fundamental wave component of the laser beam and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 16, it is sent to the drive current controller 13.

なお、レーザ光の波長を吸収ピーク波長λcから長波長側および短波長側にシフトさせる場合、波長のずれ量Δλは、測定対象ガスの吸収線幅の範囲内においてΔλ=λc−λL=λc−λsとなるように設定することが好ましい。
そして、駆動電流制御部13は、波長λLを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比とを振幅比算出部16から受け取ると、波長λLを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比とを比較することができる。
When the wavelength of the laser beam is shifted from the absorption peak wavelength λc to the long wavelength side and the short wavelength side, the wavelength shift amount Δλ is Δλ = λc−λL = λc− within the range of the absorption line width of the measurement target gas. It is preferable to set so as to be λs.
The drive current control unit 13 then determines the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell 44 side when the wavelength is modulated with respect to the wavelength λL, and the gas cell when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio between the fundamental wave component on the 44 side and the second harmonic component is received from the amplitude ratio calculation unit 16, the fundamental wave component on the gas cell 44 side and the second harmonic component when the wavelength is modulated with reference to the wavelength λL, Can be compared with the amplitude ratio between the fundamental wave component on the gas cell 44 side and the second harmonic component when wavelength modulation is performed with reference to the wavelength λs.

そして、駆動電流制御部13は、波長λLを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比とが一致するようになるまで、半導体レーザ41の駆動電流を制御しながら、波長λLを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比との比較を繰り返すことができる。   The drive current control unit 13 then determines the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell 44 side when the wavelength is modulated with respect to the wavelength λL, and the gas cell when the wavelength is modulated with respect to the wavelength λs. While controlling the drive current of the semiconductor laser 41 until the amplitude ratio between the fundamental wave component on the 44 side and the second harmonic component matches, the gas cell 44 side when the wavelength is modulated with respect to the wavelength λL is used. The comparison of the amplitude ratio between the fundamental wave component and the second harmonic component and the amplitude ratio between the fundamental wave component on the gas cell 44 side and the second harmonic component when wavelength modulation is performed with reference to the wavelength λs can be repeated.

そして、波長λLを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のガスセル44側の基本波成分と2倍波成分との振幅比とが一致すると、駆動電流制御部13は、それらの振幅比が一致するような吸収ピーク波長λcを基準として波長変調されるように半導体レーザ41の駆動電流を設定することができる。   The amplitude ratio between the fundamental wave component on the gas cell 44 side and the second harmonic wave component when the wavelength is modulated with respect to the wavelength λL, and the fundamental wave component on the gas cell 44 side when the wavelength is modulated with respect to the wavelength λs When the amplitude ratio with the second harmonic component matches, the drive current control unit 13 sets the drive current of the semiconductor laser 41 so as to be wavelength-modulated with reference to the absorption peak wavelength λc where the amplitude ratios match. can do.

あるいは、駆動電流制御部13は、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比とを振幅比算出部23から受け取ると、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側側の基本波成分と2倍波成分との振幅比とを比較することができる。   Alternatively, the drive current control unit 13 may perform the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when the wavelength modulation is performed with the wavelength λL as a reference, and the wavelength modulation with the wavelength λs as a reference. When the amplitude ratio between the fundamental wave component on the measurement target gas side and the second harmonic component is received from the amplitude ratio calculator 23, the fundamental wave component on the measurement target gas side is doubled with respect to the wavelength λL as a reference. The amplitude ratio with the wave component can be compared with the amplitude ratio between the fundamental wave component on the gas side to be measured and the second harmonic component when wavelength modulation is performed with reference to the wavelength λs.

そして、駆動電流制御部13は、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比とが一致するようになるまで、半導体レーザ41の駆動電流を制御しながら、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比との比較を繰り返すことができる。   Then, the drive current control unit 13 determines the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when the wavelength modulation is performed with the wavelength λL as a reference, and the wavelength modulation with the wavelength λs as a reference. Measurement target when wavelength modulation is performed with reference to the wavelength λL while controlling the drive current of the semiconductor laser 41 until the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side matches. The comparison of the amplitude ratio between the fundamental component on the gas side and the second harmonic component and the amplitude ratio between the fundamental component on the gas side to be measured and the second harmonic component when the wavelength is modulated with reference to the wavelength λs is repeated. be able to.

そして、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比とが一致すると、駆動電流制御部13は、それらの振幅比が一致するような吸収ピーク波長λcを基準として波長変調されるように半導体レーザ41の駆動電流を設定することができる。   Then, the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when the wavelength is modulated with respect to the wavelength λL, and the fundamental wave on the measurement target gas side when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio of the component and the second harmonic component match, the drive current control unit 13 drives the drive current of the semiconductor laser 41 so that the wavelength is modulated with reference to the absorption peak wavelength λc so that the amplitude ratios match. Can be set.

例えば、レーザ駆動部11は、吸収ピーク波長λcを基準としてレーザ光を波長変調する場合、30mA±5mAの電流で半導体レーザ41を駆動し、波長λLを基準としてレーザ光を波長変調する場合、40mA±5mAの電流で半導体レーザ41を駆動し、波長λsを基準としてレーザ光を波長変調する場合、20mA±5mAの電流で半導体レーザ41を駆動することができる。   For example, the laser driving unit 11 drives the semiconductor laser 41 with a current of 30 mA ± 5 mA when wavelength-modulating the laser light with the absorption peak wavelength λc as a reference, and 40 mA when wavelength-modulating the laser light with the wavelength λL as a reference. When the semiconductor laser 41 is driven with a current of ± 5 mA and the laser light is wavelength-modulated with reference to the wavelength λs, the semiconductor laser 41 can be driven with a current of 20 mA ± 5 mA.

そして、ガス濃度算出部24は、波長λLを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比とが一致するような吸収ピーク波長λcを基準として波長変調された時の測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、隔壁51a、51b間の測定対象ガスの濃度を算出することができる。   Then, the gas concentration calculation unit 24 calculates the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when the wavelength modulation is performed with the wavelength λL as a reference, and the wavelength modulation with the wavelength λs as a reference. A fundamental wave component and a second harmonic component on the measurement target gas side when wavelength modulation is performed with reference to an absorption peak wavelength λc such that the amplitude ratio between the fundamental wave component on the measurement target gas side and the second harmonic component matches. Based on the amplitude ratio, the concentration of the measurement target gas between the partition walls 51a and 51b can be calculated.

これにより、半導体レーザ41の発光波長が測定対象ガスの吸収ピーク波長λcに一致するように半導体レーザ41の温度を設定した上で、吸収ピーク波長λcからシフトされた波長を基準とする波長変調を行いながら半導体レーザ41の駆動電流を制御することにより、測定対象ガスの成分が環境によって変動したり、測定対象ガスの吸収波長が温度によって変動したりする場合においても、測定対象ガスの吸収ピーク波長λcと半導体レーザ41の発光波長とを合わせることが可能となり、測定環境に依存することなく、ガス濃度の計測精度を向上させることが可能となる。   As a result, the temperature of the semiconductor laser 41 is set so that the emission wavelength of the semiconductor laser 41 coincides with the absorption peak wavelength λc of the measurement target gas, and wavelength modulation based on the wavelength shifted from the absorption peak wavelength λc is performed. By controlling the drive current of the semiconductor laser 41 while performing the measurement, the absorption peak wavelength of the measurement target gas can be obtained even when the component of the measurement target gas varies depending on the environment or the absorption wavelength of the measurement target gas varies depending on the temperature. It becomes possible to match λc and the emission wavelength of the semiconductor laser 41, and it is possible to improve the measurement accuracy of the gas concentration without depending on the measurement environment.

図3は、本発明の一実施形態に係る周波数変調方式によるガス濃度の測定原理を説明する図である。
図3において、中心周波数fc、変調周波数fmで半導体レーザ41の出力を周波数変調し、測定対象ガスまたはガスセル44に照射されたものとする。ここで、測定対象ガスまたはガスセル44の吸収線は変調周波数に対してほぼ2次関数となっているので、この吸収線が弁別器の役割を果たし、光検出部45、61では変調周波数fmの2倍の周波数の成分(2倍波成分)が得られる。ここで、変調周波数fmは任意の周波数でよいので、例えば、変調周波数fmを数kHz程度に選ぶと、ディジタル信号処理装置(DSP)または汎用のプロセッサを用い高度な信号処理を施すことが可能となる。
FIG. 3 is a diagram for explaining the principle of measuring the gas concentration by the frequency modulation method according to one embodiment of the present invention.
In FIG. 3, it is assumed that the output of the semiconductor laser 41 is frequency-modulated with a center frequency fc and a modulation frequency fm, and the measurement target gas or gas cell 44 is irradiated. Here, since the absorption line of the gas to be measured or the gas cell 44 is substantially a quadratic function with respect to the modulation frequency, this absorption line serves as a discriminator, and the light detection units 45 and 61 have the modulation frequency fm. A double frequency component (double wave component) is obtained. Here, since the modulation frequency fm may be an arbitrary frequency, for example, when the modulation frequency fm is selected to be about several kHz, it is possible to perform advanced signal processing using a digital signal processing device (DSP) or a general-purpose processor. Become.

そして、半導体レーザ41と光検出部45、61との距離に起因するレーザ光の減衰量の影響を周波数変調方式にてキャンセルするためには、半導体レーザ41の出力に周波数変調を行うと同時に変調周波数fmで振幅変調を行えばよく、半導体レーザ41の出力に周波数変調をかけることで振幅変調もかけることができる。そして、光検出部45、61でエンベロープ検波をそれぞれ行うことで振幅変調による基本波成分を推定することができ、この基本波成分の振幅と2倍波成分の振幅の比を位相同期させて取ることで、半導体レーザ41と光検出部45、61との距離に依存することなく、測定対象ガスの濃度に比例した値をそれぞれ得ることができる。   In order to cancel the influence of the attenuation amount of the laser beam due to the distance between the semiconductor laser 41 and the light detection units 45 and 61 by the frequency modulation method, the output of the semiconductor laser 41 is modulated simultaneously with the frequency modulation. Amplitude modulation may be performed at the frequency fm, and amplitude modulation can also be performed by applying frequency modulation to the output of the semiconductor laser 41. Then, the fundamental wave component by amplitude modulation can be estimated by performing envelope detection in the light detection units 45 and 61, respectively, and the ratio of the amplitude of the fundamental wave component and the amplitude of the second harmonic component is phase-synchronized. Thus, it is possible to obtain values proportional to the concentration of the measurement target gas without depending on the distance between the semiconductor laser 41 and the light detection units 45 and 61.

図4は、本発明の一実施形態に係るレーザ光の中心周波数制御方法を示す図である。
図4において、中心周波数fc、変調周波数fmで周波数変調された半導体レーザ41の出力が測定対象ガスに照射されると、測定対象ガスまたはガスセル44の吸収線は変調周波数に対してほぼ2次関数となっているので、光検出部45、61では変調周波数fmの2倍の周波数の成分(2倍波成分)が得られる。
FIG. 4 is a diagram illustrating a method for controlling the center frequency of laser light according to an embodiment of the present invention.
In FIG. 4, when the measurement target gas is irradiated with the output of the semiconductor laser 41 frequency-modulated with the center frequency fc and the modulation frequency fm, the absorption line of the measurement target gas or the gas cell 44 is approximately a quadratic function with respect to the modulation frequency. Therefore, the light detection units 45 and 61 can obtain a frequency component (double wave component) twice the modulation frequency fm.

そして、レーザ光の基本波成分と2倍波成分との振幅比を振幅比算出部16、23にてそれぞれ算出する場合、温度設定部42は半導体レーザ41の温度を変化させることができる。そして、温度設定部42は、測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比と半導体レーザ41の温度との関係を取得し、測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比が最大になるようにレーザ素子の温度を設定することにより、半導体レーザ41の波長を吸収ピーク波長λcに合わせることができる。   When the amplitude ratio calculation unit 16 or 23 calculates the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light, the temperature setting unit 42 can change the temperature of the semiconductor laser 41. Then, the temperature setting unit 42 acquires the relationship between the amplitude ratio between the fundamental wave component and the second harmonic wave component on the measurement target gas side or gas cell 44 side and the temperature of the semiconductor laser 41, and the measurement target gas side or gas cell 44 side By setting the temperature of the laser element so that the amplitude ratio between the fundamental wave component and the second harmonic wave component becomes maximum, the wavelength of the semiconductor laser 41 can be matched with the absorption peak wavelength λc.

また、測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比が最大になるように半導体レーザ41の温度が温度設定部42にて設定されると、駆動電流制御部13は、測定対象ガスの吸収線幅の範囲内で長波長側および短波長側に同一のずれ量Δλだけシフトされた波長λL、λsをそれぞれ基準として周波数変調KL、Ksが行われた時の測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比が一致するように、半導体レーザ41の駆動電流を制御することができる。   When the temperature setting unit 42 sets the temperature of the semiconductor laser 41 so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or gas cell 44 side is maximized, the drive current control unit 13 shows the case where the frequency modulation KL and Ks are performed with reference to the wavelengths λL and λs shifted by the same shift amount Δλ on the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas, respectively. The drive current of the semiconductor laser 41 can be controlled so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or gas cell 44 side matches.

そして、駆動電流制御部13は、波長λLを基準として波長変調された時の測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時の測定対象ガス側またはガスセル44側の基本波成分と2倍波成分との振幅比とが一致するような吸収ピーク波長λcを基準として波長変調されるように半導体レーザ41の駆動電流を設定することができる。そして、ガス濃度算出部24は、吸収ピーク波長λcを基準として波長変調Kcが行われた時の測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、測定対象ガスの濃度を算出することができる。   Then, the drive current control unit 13 modulates the wavelength with reference to the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or gas cell 44 side when the wavelength is modulated with the wavelength λL as a reference, and the wavelength λs. Drive current of the semiconductor laser 41 so as to be wavelength-modulated with reference to the absorption peak wavelength λc so that the amplitude ratio of the fundamental wave component and the second harmonic component on the measurement object gas side or gas cell 44 side coincides with each other. Can be set. Then, the gas concentration calculation unit 24 determines the measurement target gas based on the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when the wavelength modulation Kc is performed with the absorption peak wavelength λc as a reference. The concentration can be calculated.

ここで、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比が、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比よりも大きい場合、温度設定部42にて設定された発光波長が吸収ピーク波長λcに対して長波長側にずれていることから、駆動電流制御部13は、半導体レーザ41の駆動電流を減少させることで、半導体レーザ41の発光波長を短波長側にずらすことで、半導体レーザ41の発光波長を吸収ピーク波長λcに近づけることができる。   Here, the amplitude ratio between the fundamental wave component of the laser beam and the second harmonic component when the wavelength is modulated with respect to the wavelength λL is 2 and the fundamental wave component of the laser beam when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio with the harmonic component is larger, the emission wavelength set by the temperature setting unit 42 is shifted to the longer wavelength side with respect to the absorption peak wavelength λc. By reducing the drive current of 41, the emission wavelength of the semiconductor laser 41 can be made closer to the absorption peak wavelength λc by shifting the emission wavelength of the semiconductor laser 41 to the short wavelength side.

また、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比が、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比よりも小さい場合、温度設定部42にて設定された発光波長が吸収ピーク波長λcに対して短波長側にずれていることから、駆動電流制御部13は、半導体レーザ41の駆動電流を増加させることで、半導体レーザ41の発光波長を長波長側にずらすことで、半導体レーザ41の発光波長を吸収ピーク波長λcに近づけることができる。   Further, the amplitude ratio between the fundamental wave component and the double wave component of the laser light when the wavelength is modulated with respect to the wavelength λL is twice the fundamental wave component of the laser light when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio is smaller than the wave component, the emission wavelength set by the temperature setting unit 42 is shifted to the short wavelength side with respect to the absorption peak wavelength λc. By increasing the drive current, the emission wavelength of the semiconductor laser 41 can be made closer to the absorption peak wavelength λc by shifting the emission wavelength of the semiconductor laser 41 to the longer wavelength side.

図5は、本発明の一実施形態に係る駆動電流と半導体レーザの発光波長との関係を示す図である。
図5において、半導体レーザ41の発光波長は駆動電流が増加するに従って長くなる。このため、半導体レーザ41の駆動電流を制御することにより、半導体レーザ41の発光波長を調整することができる。
図6は、本発明の一実施形態に係る温度と半導体レーザの発光波長との関係を示す図である。
図6において、半導体レーザ41の発光波長は温度が増加するに従って長くなる。このため、半導体レーザ41の温度を制御することにより、半導体レーザ41の発光波長を調整することができる。
FIG. 5 is a diagram showing the relationship between the drive current and the emission wavelength of the semiconductor laser according to one embodiment of the present invention.
In FIG. 5, the emission wavelength of the semiconductor laser 41 becomes longer as the drive current increases. For this reason, the emission wavelength of the semiconductor laser 41 can be adjusted by controlling the drive current of the semiconductor laser 41.
FIG. 6 is a diagram showing the relationship between the temperature and the emission wavelength of the semiconductor laser according to one embodiment of the present invention.
In FIG. 6, the emission wavelength of the semiconductor laser 41 becomes longer as the temperature increases. For this reason, the emission wavelength of the semiconductor laser 41 can be adjusted by controlling the temperature of the semiconductor laser 41.

図7は、本発明の一実施形態に係るHCNが封入されたガスセルにレーザ光を照射した時の発光波長と受光電圧との関係を示す図である。なお、P1はガスセルがある場合、P2はガスセルがない場合の波形を示す。
図7において、気体状のガス分子には、それぞれ固有の光吸収スペクトルがある。そして、レーザ光をガスセル44に照射した場合、そのガス分子に固有の光吸収スペクトルの波長でレーザ光が吸収されることから、その波長の位置で光検出部45による受光電圧が低下する。
そして、図5および図6に示すように、半導体レーザ41の発光波長は駆動電流または温度によって変化することから、半導体レーザ41の駆動電流または温度を制御することにより、半導体レーザ41の発光波長を吸収ピーク波長λcに一致させることができる。
FIG. 7 is a diagram showing a relationship between a light emission wavelength and a light reception voltage when a laser beam is irradiated to a gas cell in which HCN is sealed according to an embodiment of the present invention. P1 shows a waveform when there is a gas cell, and P2 shows a waveform when there is no gas cell.
In FIG. 7, each gaseous gas molecule has its own light absorption spectrum. When the gas cell 44 is irradiated with the laser light, the laser light is absorbed at the wavelength of the light absorption spectrum unique to the gas molecule, so that the light reception voltage by the light detection unit 45 decreases at the position of the wavelength.
As shown in FIGS. 5 and 6, since the emission wavelength of the semiconductor laser 41 changes depending on the drive current or temperature, the emission wavelength of the semiconductor laser 41 is controlled by controlling the drive current or temperature of the semiconductor laser 41. It can be matched with the absorption peak wavelength λc.

本発明の一実施形態に係るガス濃度測定装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the gas concentration measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るガス濃度測定装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a gas concentration measuring device concerning one embodiment of the present invention. 本発明の一実施形態に係る周波数変調方式によるガス濃度の測定原理を説明する図である。It is a figure explaining the measurement principle of the gas concentration by the frequency modulation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ光の中心周波数制御方法を示す図である。It is a figure which shows the center frequency control method of the laser beam which concerns on one Embodiment of this invention. 本発明の一実施形態に係る駆動電流と半導体レーザの発光波長との関係を示す図である。It is a figure which shows the relationship between the drive current which concerns on one Embodiment of this invention, and the light emission wavelength of a semiconductor laser. 本発明の一実施形態に係る温度と半導体レーザの発光波長との関係を示す図である。It is a figure which shows the relationship between the temperature which concerns on one Embodiment of this invention, and the light emission wavelength of a semiconductor laser. 本発明の一実施形態に係るHCNが封入されたガスセルにレーザ光を照射した時の発光波長と受光電圧との関係を示す図である。It is a figure which shows the relationship between the light emission wavelength when a laser beam is irradiated to the gas cell with which HCN enclosed with one Embodiment of this invention was irradiated, and a light reception voltage. 従来の周波数変調方式におけるガス濃度測定装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the gas concentration measuring apparatus in the conventional frequency modulation system.

符号の説明Explanation of symbols

11 レーザ駆動部
12 周波数変調部
13 駆動電流制御部
14、21 基本波成分検出部
15、22 2倍波成分検出部
16、23 振幅比算出部
24 ガス濃度算出部
41 半導体レーザ
42 温度設定部
43 ビームスプリッタ
44 ガスセル
45、61 光検出部
51a、51b 隔壁
52a、52b フランジ
54 送信部基板
55a、55b ウェッジ窓
56 コリメートレンズ
57 レーザユニット
58、59 ハウジング
60 集光レンズ
62 受信部基板
DESCRIPTION OF SYMBOLS 11 Laser drive part 12 Frequency modulation part 13 Drive current control part 14, 21 Fundamental wave component detection part 15, 22 Double wave component detection part 16, 23 Amplitude ratio calculation part 24 Gas concentration calculation part 41 Semiconductor laser 42 Temperature setting part 43 Beam splitter 44 Gas cell 45, 61 Photodetector 51a, 51b Bulkhead 52a, 52b Flange 54 Transmitter substrate 55a, 55b Wedge window 56 Collimator lens 57 Laser unit 58, 59 Housing 60 Condensing lens 62 Receiver substrate

Claims (6)

レーザ光を出射するレーザ素子と、
前記レーザ光を基本波で周波数変調する周波数変調部と、
測定対象ガスと同一のガスが封入されたガスセルと、
前記周波数変調されたレーザ光を前記測定対象ガス側と前記ガスセル側に分岐する分岐手段と、
前記測定対象ガス側に分岐されたレーザ光を検出する第1の光検出部と、
前記第1の光検出部にて検出されたレーザ光から基本波成分を検出する第1の基本波成分検出部と、
前記第1の光検出部にて検出されたレーザ光から2倍波成分を検出する第1の2倍波成分検出部と、
前記ガスセル側に分岐されたレーザ光を検出する第2の光検出部と、
前記第2の光検出部にて検出されたレーザ光から基本波成分を検出する第2の基本波成分検出部と、
前記第2の光検出部にて検出されたレーザ光から2倍波成分を検出する第2の2倍波成分検出部と、
前記測定対象ガス側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第1の振幅比算出部と、
前記ガスセル側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第2の振幅比算出部と、
前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比のいずれか一方に基づいて、前記レーザ素子の温度を設定する温度設定部と、
前記測定対象ガスの吸収ピーク波長からシフトされた波長を基準とする波長変調を行った時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比のいずれか一方に基づいて、前記レーザ素子の駆動電流を制御する駆動電流制御部とを備えることを特徴とするレーザの波長制御装置。
A laser element that emits laser light;
A frequency modulation unit for frequency-modulating the laser beam with a fundamental wave;
A gas cell filled with the same gas as the measurement target gas;
Branching means for branching the frequency-modulated laser light to the gas to be measured side and the gas cell side;
A first light detection unit for detecting a laser beam branched to the measurement target gas side;
A first fundamental wave component detection unit that detects a fundamental wave component from the laser light detected by the first light detection unit;
A first second harmonic component detection unit that detects a second harmonic component from the laser light detected by the first light detection unit;
A second light detection unit for detecting a laser beam branched to the gas cell side;
A second fundamental wave component detection unit for detecting a fundamental wave component from the laser light detected by the second light detection unit;
A second second harmonic component detection unit that detects a second harmonic component from the laser light detected by the second light detection unit;
A first amplitude ratio calculator that calculates an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser light transmitted through the measurement target gas side;
A second amplitude ratio calculator for calculating an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser light transmitted through the gas cell side;
The temperature of the laser element is set based on either the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side. A temperature setting unit to
The amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the fundamental component on the gas cell side when wavelength modulation is performed with reference to a wavelength shifted from the absorption peak wavelength of the measurement target gas And a drive current control unit that controls the drive current of the laser element based on one of the amplitude ratios of the second harmonic component and the second harmonic component.
前記温度設定部は、前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定し、
前記駆動電流制御部は、吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように駆動電流を制御することを特徴とする請求項1記載のレーザの波長制御装置。
The temperature setting unit may be configured such that the amplitude ratio between the fundamental wave component and the second harmonic component on the gas to be measured side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized. Set the temperature of
The drive current control unit doubles the fundamental wave component on the measurement target gas side when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side, respectively. 2. The laser wavelength control device according to claim 1, wherein the drive current is controlled so that an amplitude ratio with a wave component or an amplitude ratio between a fundamental wave component on the gas cell side and a second harmonic component coincides.
レーザ光を出射するレーザ素子と、
前記レーザ光を基本波で周波数変調する周波数変調部と、
測定対象ガスと同一のガスが封入されたガスセルと、
前記周波数変調されたレーザ光を前記測定対象ガス側と前記ガスセル側に分岐する分岐手段と、
前記測定対象ガス側に分岐されたレーザ光を検出する第1の光検出部と、
前記第1の光検出部にて検出されたレーザ光から基本波成分を検出する第1の基本波成分検出部と、
前記第1の光検出部にて検出されたレーザ光から2倍波成分を検出する第1の2倍波成分検出部と、
前記ガスセル側に分岐されたレーザ光を検出する第2の光検出部と、
前記第2の光検出部にて検出されたレーザ光から基本波成分を検出する第2の基本波成分検出部と、
前記第2の光検出部にて検出されたレーザ光から2倍波成分を検出する第2の2倍波成分検出部と、
前記測定対象ガス側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第1の振幅比算出部と、
前記ガスセル側を透過したレーザ光から検出された基本波成分と2倍波成分との振幅比を算出する第2の振幅比算出部と、
前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ素子の温度を設定する温度設定部と、
前記測定対象ガスの吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御する駆動電流制御部と、
前記吸収ピーク波長を基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過したガスの濃度を算出するガス濃度算出部とを備えることを特徴とするガス濃度測定装置。
A laser element that emits laser light;
A frequency modulation unit for frequency-modulating the laser beam with a fundamental wave;
A gas cell filled with the same gas as the measurement target gas;
Branching means for branching the frequency-modulated laser light to the gas to be measured side and the gas cell side;
A first light detection unit for detecting laser light branched to the measurement target gas side;
A first fundamental wave component detection unit that detects a fundamental wave component from the laser light detected by the first light detection unit;
A first second harmonic component detection unit that detects a second harmonic component from the laser light detected by the first light detection unit;
A second light detection unit for detecting a laser beam branched to the gas cell side;
A second fundamental wave component detection unit for detecting a fundamental wave component from the laser light detected by the second light detection unit;
A second second harmonic component detection unit that detects a second harmonic component from the laser light detected by the second light detection unit;
A first amplitude ratio calculator that calculates an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser light transmitted through the measurement target gas side;
A second amplitude ratio calculator for calculating an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser light transmitted through the gas cell side;
The temperature of the laser element is set so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized. A temperature setting unit;
The fundamental wave component and the second harmonic component on the measurement target gas side when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength of the measurement target gas to the long wavelength side and the short wavelength side, respectively. A drive current control unit that controls the drive current of the laser element so that the amplitude ratio of the fundamental wave component on the gas cell side and the amplitude ratio of the second harmonic component coincide with each other,
Gas concentration calculation for calculating the concentration of the gas transmitted by the laser beam based on the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when frequency modulation is performed with respect to the absorption peak wavelength And a gas concentration measuring device.
前記ガスセルは、測定対象ガスと吸収波長が一致するように構成されたバンドパス型の光学フィルタであることを特徴とする請求項3記載のガス濃度測定装置。   4. The gas concentration measuring apparatus according to claim 3, wherein the gas cell is a band-pass optical filter configured so that an absorption wavelength coincides with a measurement target gas. 基本波で周波数変調されたレーザ光を測定対象ガス側と前記測定対象ガスと同一のガスが封入されたガスセル側とに分岐するステップと、
前記分岐されたレーザ光を前記測定対象ガスと前記ガスセルに入射するステップと、
前記測定対象ガスおよび前記ガスセルを透過したレーザ光をそれぞれ検出するステップと、
前記測定対象ガス側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記ガスセル側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記測定対象ガス側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記ガスセル側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ光を発生させるレーザ素子の温度を設定するステップと、
前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御するステップとを備えることを特徴とするレーザの波長制御方法。
Branching a laser beam frequency-modulated with a fundamental wave to a measurement target gas side and a gas cell side in which the same gas as the measurement target gas is sealed;
Making the branched laser light incident on the gas to be measured and the gas cell;
Detecting each of the measurement target gas and the laser beam transmitted through the gas cell;
Extracting a fundamental wave component and a second harmonic component from the laser light detected on the measurement target gas side;
Extracting a fundamental wave component and a second harmonic component from the laser light detected on the gas cell side;
Calculating an amplitude ratio between a fundamental wave component and a second harmonic component extracted on the measurement target gas side;
Calculating an amplitude ratio between a fundamental wave component extracted on the gas cell side and a second harmonic component;
Laser element that generates the laser beam so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized Setting the temperature of the
Basics on the measurement target gas side when frequency modulation is performed with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas. And a step of controlling the drive current of the laser element so that the amplitude ratio between the wave component and the second harmonic component or the amplitude ratio between the fundamental wave component on the gas cell side and the second harmonic component coincides with each other. And a laser wavelength control method.
基本波で周波数変調されたレーザ光を測定対象ガス側と前記測定対象ガスと同一のガスが封入されたガスセル側とに分岐するステップと、
前記分岐されたレーザ光を前記測定対象ガスと前記ガスセルに入射するステップと、
前記測定対象ガスおよび前記ガスセルを透過したレーザ光をそれぞれ検出するステップと、
前記測定対象ガス側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記ガスセル側で検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記測定対象ガス側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記ガスセル側で抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が最大になるように、前記レーザ光を発生させるレーザ素子の温度を設定するステップと、
前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比または前記ガスセル側の基本波成分と2倍波成分との振幅比が一致するように、前記レーザ素子の駆動電流を制御するステップと、
前記吸収ピーク波長を基準として周波数変調された時の前記測定対象ガス側の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過した測定対象ガスの濃度を算出するステップとを備えることを特徴とするガス濃度測定方法。
Branching a laser beam frequency-modulated with a fundamental wave to a measurement target gas side and a gas cell side in which the same gas as the measurement target gas is sealed;
Making the branched laser light incident on the gas to be measured and the gas cell;
Detecting each of the measurement target gas and the laser beam transmitted through the gas cell;
Extracting a fundamental wave component and a second harmonic component from the laser light detected on the measurement target gas side;
Extracting a fundamental wave component and a second harmonic component from the laser light detected on the gas cell side;
Calculating an amplitude ratio between a fundamental wave component and a second harmonic component extracted on the measurement target gas side;
Calculating an amplitude ratio between a fundamental wave component extracted on the gas cell side and a second harmonic component;
Laser element for generating the laser beam so that the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side or the amplitude ratio between the fundamental wave component and the second harmonic component on the gas cell side is maximized Setting the temperature of the
Basics on the measurement target gas side when frequency modulation is performed with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas. Controlling the drive current of the laser element so that the amplitude ratio between the wave component and the second harmonic component or the amplitude ratio between the fundamental wave component on the gas cell side and the second harmonic component coincides;
Calculating the concentration of the measurement target gas transmitted by the laser beam based on the amplitude ratio between the fundamental wave component and the second harmonic component on the measurement target gas side when frequency-modulated with respect to the absorption peak wavelength. A gas concentration measurement method comprising:
JP2007007830A 2007-01-17 2007-01-17 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method Active JP4918865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007830A JP4918865B2 (en) 2007-01-17 2007-01-17 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007830A JP4918865B2 (en) 2007-01-17 2007-01-17 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2008177262A JP2008177262A (en) 2008-07-31
JP4918865B2 true JP4918865B2 (en) 2012-04-18

Family

ID=39704091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007830A Active JP4918865B2 (en) 2007-01-17 2007-01-17 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP4918865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128733B2 (en) * 2018-12-05 2022-08-31 株式会社堀場エステック Absorption analyzer
KR102255960B1 (en) * 2019-06-19 2021-05-25 주식회사 템퍼스 Gas sensing apparatus and its calibration method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792782B2 (en) * 1992-03-11 1998-09-03 東京電力株式会社 Gas concentration measuring method and its measuring device
JP3051808B2 (en) * 1993-11-30 2000-06-12 アンリツ株式会社 Gas concentration measurement device
JP3114959B2 (en) * 1994-09-29 2000-12-04 東京電力株式会社 Gas concentration detection method and apparatus
JP3305904B2 (en) * 1994-12-02 2002-07-24 アンリツ株式会社 Semiconductor laser oscillation wavelength stabilizer
JP3342446B2 (en) * 1999-08-31 2002-11-11 三菱重工業株式会社 Gas concentration measurement device
JP4217108B2 (en) * 2003-06-02 2009-01-28 東京電力株式会社 Multipoint optical gas concentration detection method and system

Also Published As

Publication number Publication date
JP2008177262A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5045480B2 (en) Gas concentration measuring device and gas concentration measuring method
JP4331741B2 (en) Gas detection method and gas detection apparatus
JP5176535B2 (en) Laser gas analyzer
JPH0315742A (en) Gas detector
JP5314301B2 (en) Gas concentration measuring method and apparatus
WO2010050255A1 (en) Method and apparatus for measuring concentration
JP2008175611A (en) Device and method for measuring gas concentration
CN110160989B (en) Trace gas detection method and detection device
KR20070105875A (en) Gas detection method and gas detection device
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
US20100193703A1 (en) Fret detection method and device
JP5045479B2 (en) Gas concentration measuring device and gas concentration measuring method
JP3114959B2 (en) Gas concentration detection method and apparatus
JP4905106B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JP2009041941A (en) Gas concentration measuring device and method
JP2010032454A (en) Gas analyzer and gas analysis method
JP5594514B2 (en) Laser gas analyzer
JPH04151546A (en) Gas detecting apparatus
JP2008268064A (en) Multicomponent responsive laser type gas analyzer
JP4918865B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JP2013156113A (en) Laser type gas analyzer
EP0977028A1 (en) Method of spectrochemical analysis of impurity in gas
JP4993213B2 (en) Laser gas analyzer
JP5370248B2 (en) Gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4918865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250