JP4905106B2 - Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method - Google Patents

Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method Download PDF

Info

Publication number
JP4905106B2
JP4905106B2 JP2006335678A JP2006335678A JP4905106B2 JP 4905106 B2 JP4905106 B2 JP 4905106B2 JP 2006335678 A JP2006335678 A JP 2006335678A JP 2006335678 A JP2006335678 A JP 2006335678A JP 4905106 B2 JP4905106 B2 JP 4905106B2
Authority
JP
Japan
Prior art keywords
fundamental wave
laser
component
wave component
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006335678A
Other languages
Japanese (ja)
Other versions
JP2008147557A (en
Inventor
紀友 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006335678A priority Critical patent/JP4905106B2/en
Publication of JP2008147557A publication Critical patent/JP2008147557A/en
Application granted granted Critical
Publication of JP4905106B2 publication Critical patent/JP4905106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明はレーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法に関し、特に、周波数変調されたレーザ光を用いてガスの濃度を測定する方法に適用して好適なものである。   The present invention relates to a laser wavelength control device, a gas concentration measurement device, a laser wavelength control method, and a gas concentration measurement method, and is particularly suitable for application to a method of measuring a gas concentration using a frequency-modulated laser beam. Is.

気体状のガス分子にはそれぞれ固有の光吸収スペクトルが有ることが知られており、ガス分子の吸収線の中心周波数における減衰量はガスの濃度に比例する。このため、ガス分子の吸収線の中心周波数に一致した発振周波数をもつ半導体レーザ光をガスに照射し、その時のレーザ光の減衰量を測定することで、ガスの濃度を推定することができる(特許文献1)。   It is known that each gaseous gas molecule has its own light absorption spectrum, and the attenuation at the center frequency of the absorption line of the gas molecule is proportional to the gas concentration. For this reason, the gas concentration can be estimated by irradiating the gas with semiconductor laser light having an oscillation frequency that matches the center frequency of the absorption line of gas molecules, and measuring the attenuation of the laser light at that time ( Patent Document 1).

この原理を発展させたものとして2波長差分方式及び周波数変調方式があり、2波長差分方式では、半導体レーザの発振周波数はTHzオーダの信号であることから、複雑な信号処理を行うことができないのに対して、周波数変調方式では、数kHzのベースバンド領域で信号処理を行うことができるという利点がある。
ここで、周波数変調方式では、ガスの吸収線幅よりもレーザ光の線幅の方が小さいことから、ガスの吸収波長と半導体レーザの発光波長とを合わせる必要がある。この方法として、予め測定したいガスと同じ成分を封入した参照ガスセルを用いる方法がある(特許文献2)。
The two-wavelength difference method and the frequency modulation method are developed from this principle. In the two-wavelength difference method, since the oscillation frequency of the semiconductor laser is a signal on the order of THz, complicated signal processing cannot be performed. On the other hand, the frequency modulation method has an advantage that signal processing can be performed in a baseband region of several kHz.
Here, in the frequency modulation method, since the line width of the laser beam is smaller than the absorption line width of the gas, it is necessary to match the absorption wavelength of the gas with the emission wavelength of the semiconductor laser. As this method, there is a method using a reference gas cell in which the same component as the gas to be measured is enclosed (Patent Document 2).

図8は、従来の周波数変調方式におけるガス濃度測定装置の概略構成を示す平面図である。
図8において、光源ユニットには、半導体レーザモジュール121、参照ガスセル122およびフォト検出器123が収容され、光源ユニットのケース本体26の底面には、冷却用フィン27が取り付けられたペルチェ素子28が配設されている。ここで、半導体レーザモジュール121には、周波数変調されたレーザ光を両面から出射する半導体レーザが配設されるとともに、コネクタ125aを備えた光ケーブル125が延出され、半導体レーザから出射される一方の光が光ケーブル125を介して測定対象ガスの雰囲気に出射される。
FIG. 8 is a plan view showing a schematic configuration of a gas concentration measuring apparatus in a conventional frequency modulation method.
In FIG. 8, the light source unit accommodates a semiconductor laser module 121, a reference gas cell 122, and a photo detector 123, and a Peltier element 28 to which a cooling fin 27 is attached is arranged on the bottom surface of the case body 26 of the light source unit. It is installed. Here, the semiconductor laser module 121 is provided with a semiconductor laser that emits frequency-modulated laser light from both sides, and an optical cable 125 including a connector 125a is extended to be emitted from the semiconductor laser. Light is emitted to the atmosphere of the measurement target gas via the optical cable 125.

また、参照ガスセル122は、半導体レーザの後ろ側の光路上に配設され、参照ガスセル122を通過したレーザ光は、参照ガスセル122の後ろ側に配設されたフォト検出器123によって受光検出される。
そして、参照ガスセル122を通過したレーザ光を参照しながらペルチェ素子28にて半導体レーザの温度制御を行い、2倍波と基本波との比が最大となるように半導体レーザの発光波長を制御することにより、ガスの吸収波長と半導体レーザの発光波長とを合わせることができる。
特開平7−151681号公報 特開2001−235418号公報
The reference gas cell 122 is disposed on the optical path behind the semiconductor laser, and the laser light that has passed through the reference gas cell 122 is received and detected by a photo detector 123 disposed behind the reference gas cell 122. .
Then, the temperature of the semiconductor laser is controlled by the Peltier element 28 while referring to the laser beam that has passed through the reference gas cell 122, and the emission wavelength of the semiconductor laser is controlled so that the ratio of the second harmonic wave to the fundamental wave is maximized. This makes it possible to match the absorption wavelength of the gas with the emission wavelength of the semiconductor laser.
Japanese Patent Laid-Open No. 7-151681 JP 2001-235418 A

しかしながら、ガスの吸収波長と半導体レーザの発光波長とを合わせるために参照ガスセル122を用いる方法では、測定対象ガスの成分が環境によって変動したり、測定対象ガスと参照ガスセル122に封入されたガスの温度が異なったりすることから、測定対象ガスと参照ガスセル122に封入されたガスの成分や吸収波長を完全に一致させることが困難となり、計測精度の低下を招くという問題があった。   However, in the method of using the reference gas cell 122 to match the gas absorption wavelength and the emission wavelength of the semiconductor laser, the component of the measurement target gas varies depending on the environment, or the measurement target gas and the gas sealed in the reference gas cell 122 Since the temperatures are different, there is a problem that it becomes difficult to completely match the component of the gas to be measured and the gas contained in the reference gas cell 122 and the absorption wavelength, resulting in a decrease in measurement accuracy.

また、HClやHFなどの腐食性ガスでは封入設備も高価となり、参照ガスセル122に封入するのが困難となるという問題があった。
さらに、参照ガスセル122を用いる方法では、部品点数が増加することから、戻り光によって半導体レーザの動作が不安定になり、計測精度の低下を招くという問題があった。
そこで、本発明の目的は、測定環境に依存することなく、ガスの吸収波長と半導体レーザの発光波長とを精度よく合わせることが可能なレーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法を提供することである。
Further, the corrosive gas such as HCl and HF has a problem that the sealing equipment becomes expensive and it is difficult to seal the gas in the reference gas cell 122.
Furthermore, in the method using the reference gas cell 122, the number of parts increases, so that there is a problem that the operation of the semiconductor laser becomes unstable due to the return light and the measurement accuracy is lowered.
Accordingly, an object of the present invention is to provide a laser wavelength control device, a gas concentration measurement device, and a laser wavelength control capable of accurately matching the absorption wavelength of a gas and the emission wavelength of a semiconductor laser without depending on the measurement environment. It is to provide a method and a gas concentration measurement method.

上述した課題を解決するために、請求項1記載のレーザの波長制御装置によれば、レーザ光を出射するレーザ素子と、前記レーザ光を基本波で周波数変調する周波数変調部と、前記周波数変調されたレーザ光を検出する光検出部と、前記光検出部にて検出されたレーザ光から基本波成分を検出する基本波成分検出部と、前記光検出部にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部と、前記レーザ光から検出された基本波成分と2倍波成分との振幅比を算出する振幅比算出部と、前記基本波成分と2倍波成分との振幅比に基づいて前記レーザ素子の温度を設定する温度設定部と、測定対象ガスの吸収ピーク波長からシフトされた波長を基準とする波長変調を行った時の前記基本波成分と2倍波成分との振幅比に基づいて前記レーザ素子の駆動電流を制御する駆動電流制御部とを備えることを特徴とする。 In order to solve the above-described problem, a laser wavelength control device according to claim 1, a laser element that emits laser light, a frequency modulation unit that frequency-modulates the laser light with a fundamental wave, and the frequency modulation. A light detection unit that detects the laser beam that has been detected, a fundamental wave component detection unit that detects a fundamental wave component from the laser beam detected by the light detection unit, and a laser beam that is detected from the laser light detected by the light detection unit. A second harmonic component detection unit for detecting a harmonic component; an amplitude ratio calculation unit for calculating an amplitude ratio between the fundamental wave component and the second harmonic component detected from the laser beam; and the fundamental wave component and the second harmonic wave. A temperature setting unit that sets the temperature of the laser element based on an amplitude ratio with the component; and the fundamental wave component when wavelength modulation is performed with reference to a wavelength shifted from the absorption peak wavelength of the measurement target gas; Based on the amplitude ratio with the harmonic component Characterized in that it comprises a drive current control unit for controlling the drive current of the laser element.

また、請求項2記載のレーザの波長制御装置によれば、前記温度設定部は、前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定し、前記駆動電流制御部は、吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように駆動電流を制御することを特徴とする。   According to the laser wavelength control apparatus of claim 2, the temperature setting unit sets the temperature of the laser element so that an amplitude ratio between the fundamental wave component and the second harmonic wave component is maximized, The drive current control unit has an amplitude ratio between a fundamental wave component and a second harmonic component when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side, respectively. The drive current is controlled so as to match.

また、請求項3記載のガス濃度測定装置によれば、レーザ光を出射するレーザ素子と、前記レーザ光を基本波で周波数変調する周波数変調部と、前記周波数変調されたレーザ光を検出する光検出部と、前記光検出部にて検出されたレーザ光から基本波成分を検出する基本波成分検出部と、前記光検出部にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部と、前記レーザ光から検出された基本波成分と2倍波成分との振幅比を算出する振幅比算出部と、前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定する温度設定部と、測定対象ガスの吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御する駆動電流制御部と、前記吸収ピーク波長を基準として周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過したガスの濃度を算出するガス濃度算出部とを備えることを特徴とする。 According to the gas concentration measuring apparatus of claim 3, the laser element that emits laser light, the frequency modulation unit that modulates the frequency of the laser light with a fundamental wave, and the light that detects the frequency-modulated laser light. A detection unit; a fundamental wave component detection unit that detects a fundamental wave component from the laser light detected by the light detection unit; and a double that detects a second harmonic component from the laser light detected by the light detection unit. A wave component detection unit; an amplitude ratio calculation unit that calculates an amplitude ratio between the fundamental wave component and the second harmonic component detected from the laser beam; and an amplitude ratio between the fundamental wave component and the second harmonic component is maximized. A temperature setting unit for setting the temperature of the laser element, and frequency modulation with reference to wavelengths shifted from the absorption peak wavelength of the measurement target gas to the long wavelength side and the short wavelength side by the same shift amount, respectively. Fundamental wave component and double wave formation And a drive current control unit that controls the drive current of the laser element so that the amplitude ratio matches the amplitude ratio between the fundamental wave component and the second harmonic component when frequency-modulated with reference to the absorption peak wavelength. And a gas concentration calculation unit for calculating the concentration of the gas transmitted by the laser beam.

また、請求項4記載のレーザの波長制御方法によれば、基本波で周波数変調しながら測定対象ガスにレーザ光を入射するステップと、前記測定対象ガスを透過したレーザ光を検出するステップと、前記検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記レーザ光から抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ光を発生させるレーザ素子の温度を設定するステップと、前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御するステップとを備えることを特徴とする。   According to the laser wavelength control method of claim 4, the step of making the laser beam incident on the measurement target gas while performing frequency modulation with the fundamental wave, the step of detecting the laser beam that has passed through the measurement target gas, Extracting a fundamental wave component and a second harmonic component from the detected laser beam; calculating an amplitude ratio between the fundamental wave component and the second harmonic component extracted from the laser beam; and the fundamental wave component The step of setting the temperature of the laser element that generates the laser light so that the amplitude ratio between the second harmonic component and the second harmonic component is maximized, and the long wavelength side from the absorption peak wavelength within the range of the absorption line width of the measurement target gas And the drive power of the laser element so that the amplitude ratio of the fundamental wave component and the second harmonic wave component when frequency-modulated with reference to the wavelength shifted by the same shift amount to the short wavelength side is the same. Characterized in that it comprises a step of controlling.

また、請求項5記載のガス濃度測定方法によれば、基本波で周波数変調しながら測定対象ガスにレーザ光を入射するステップと、前記測定対象ガスを透過したレーザ光を検出するステップと、前記検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、前記レーザ光から抽出された基本波成分と2倍波成分との振幅比を算出するステップと、前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ光を発生させるレーザ素子の温度を設定するステップと、前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御するステップと、前記吸収ピーク波長を基準として周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過した測定対象ガスの濃度を算出するステップとを備えることを特徴とする。   According to the gas concentration measurement method of claim 5, the step of making the laser beam incident on the measurement target gas while performing frequency modulation with the fundamental wave, the step of detecting the laser beam that has passed through the measurement target gas, Extracting a fundamental wave component and a second harmonic component from the detected laser beam; calculating an amplitude ratio between the fundamental wave component and the second harmonic component extracted from the laser beam; and the fundamental wave component; A step of setting a temperature of a laser element that generates the laser light so that an amplitude ratio with a second harmonic component is maximized; and a long wavelength side from an absorption peak wavelength within a range of an absorption line width of the measurement target gas; The drive current of the laser element is set so that the amplitude ratio between the fundamental wave component and the second harmonic wave component when frequency-modulated with reference to the wavelength shifted by the same shift amount to the short wavelength side is the same. And a step of calculating a concentration of a measurement target gas transmitted by the laser light based on an amplitude ratio between a fundamental wave component and a second harmonic component when frequency modulation is performed with reference to the absorption peak wavelength; It is characterized by providing.

以上説明したように、本発明によれば、レーザ光の波長が測定対象ガスの吸収ピーク波長に一致するようにレーザ素子の温度を設定した上で、その吸収ピーク波長からシフトされた波長を基準とする波長変調を行いながらレーザ素子の駆動電流を制御することにより、測定対象ガスの成分が環境によって変動したり、測定対象ガスの吸収波長が温度によって変動したりする場合においても、参照ガスセルを用いることなく、測定対象ガスの吸収ピーク波長とレーザ素子の発光波長とを合わせることが可能となり、測定環境に依存することなく、ガス濃度の計測精度を向上させることが可能となる。   As described above, according to the present invention, the temperature of the laser element is set so that the wavelength of the laser light matches the absorption peak wavelength of the measurement target gas, and the wavelength shifted from the absorption peak wavelength is used as a reference. By controlling the drive current of the laser element while performing wavelength modulation, the reference gas cell can be used even when the component of the gas to be measured varies depending on the environment or the absorption wavelength of the gas to be measured varies depending on the temperature. Without using it, it is possible to match the absorption peak wavelength of the gas to be measured and the emission wavelength of the laser element, and it is possible to improve the measurement accuracy of the gas concentration without depending on the measurement environment.

以下、本発明の実施形態に係るガス濃度測定装置について図面を参照しながら説明する。
図1は、本発明の一実施形態に係るガス濃度測定装置の概略構成を示す断面図
である。
図1において、ガス濃度測定装置の送信側には、レーザユニット57から出射されたレーザ光を基本波で周波数変調する送信部基板54、レーザユニット57から出射されたレーザ光を平行ビームに変換するコリメートレンズ56およびレーザ素子が搭載されたレーザユニット57が設けられている。なお、レーザ素子としては半導体レーザを用いることができ、レーザユニット57にはレーザ素子の温度を調整するペルチェ素子を搭載することができる。
Hereinafter, a gas concentration measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a gas concentration measuring apparatus according to an embodiment of the present invention.
In FIG. 1, on the transmission side of the gas concentration measuring apparatus, a transmitter substrate 54 that modulates the frequency of the laser light emitted from the laser unit 57 with a fundamental wave, and the laser light emitted from the laser unit 57 are converted into parallel beams. A laser unit 57 on which a collimating lens 56 and a laser element are mounted is provided. A semiconductor laser can be used as the laser element, and a Peltier element for adjusting the temperature of the laser element can be mounted on the laser unit 57.

また、ガス濃度測定装置の受信側には、測定対象ガスを透過したレーザ光を集光する集光レンズ60、測定対象ガスを透過したレーザ光を検出する光検出部61および測定対象ガスを透過したレーザ光の基本波成分と2倍波成分との振幅比を算出する受信部基板62が設けられている。なお、光検出部61としては、例えば、フォトダイオードを用いることができる。   Further, on the receiving side of the gas concentration measuring apparatus, a condensing lens 60 that condenses the laser light that has passed through the measurement target gas, a light detection unit 61 that detects the laser light that has passed through the measurement target gas, and the measurement target gas are transmitted. A receiving unit substrate 62 for calculating the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam is provided. As the light detection unit 61, for example, a photodiode can be used.

ここで、送信部基板54、コリメートレンズ56およびレーザユニット57はハウジング58に収容されるとともに、集光レンズ60、光検出部61および受信部基板62はハウジング59に収容されている。そして、煙道などの測定対象ガスが流れる配管などの隔壁51a、51bには、フランジ52a、52bが溶接などの方法にて取り付けられる。そして、送信部基板54、コリメートレンズ56およびレーザユニット57が収容されたハウジング58は、ウェッジ窓55aにて配管内と仕切られるようにしてフランジ52aに取り付けられるとともに、集光レンズ60、光検出部61および受信部基板62が収容されたハウジング59は、ウェッジ窓55bにて配管内と仕切られるようにしてフランジ52bに取り付けられる。   Here, the transmission unit substrate 54, the collimating lens 56 and the laser unit 57 are accommodated in the housing 58, and the condenser lens 60, the light detection unit 61 and the reception unit substrate 62 are accommodated in the housing 59. Then, flanges 52a and 52b are attached to partition walls 51a and 51b such as pipes through which a measurement target gas flows such as a flue by a method such as welding. The housing 58 in which the transmission unit substrate 54, the collimating lens 56, and the laser unit 57 are accommodated is attached to the flange 52a so as to be separated from the inside of the pipe by the wedge window 55a, and the condensing lens 60, the light detection unit. The housing 59 in which 61 and the receiving unit board 62 are accommodated is attached to the flange 52b so as to be separated from the inside of the pipe by the wedge window 55b.

そして、中心周波数fc、変調周波数fmでレーザ素子の出力が周波数変調されながら、レーザ光がレーザユニット57から出射され、コリメートレンズ56にて平行ビームに変換された後、ウェッジ窓55aを介して隔壁51a、51b間の測定対象ガスを透過する。そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した波長の吸収を受けた後、ウェッジ窓55bを介して集光レンズ60に入射し、集光レンズ60にて光検出部61上に集光される。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、その電気信号が受信部基板62に送られる。そして、光検出部61にて変換された電気信号が受信部基板62に送られると、レーザ光の基本波成分と2倍波成分との振幅比が受信部基板62にて算出される。そして、レーザ光が周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、隔壁51a、51b間の測定対象ガスの濃度を算出することができる。   Then, the laser light is emitted from the laser unit 57 and converted into a parallel beam by the collimator lens 56 while the output of the laser element is frequency-modulated at the center frequency fc and the modulation frequency fm, and then the partition wall through the wedge window 55a. The measurement target gas between 51a and 51b is transmitted. The laser light that has passed through the measurement target gas is absorbed at a wavelength corresponding to the absorption line of the gas molecule of the measurement target gas, and then enters the condenser lens 60 through the wedge window 55b. Is condensed on the light detection unit 61. When laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the electrical signal is sent to the reception unit substrate 62. Then, when the electrical signal converted by the light detection unit 61 is sent to the reception unit substrate 62, the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light is calculated by the reception unit substrate 62. Based on the amplitude ratio between the fundamental wave component and the second harmonic component when the laser light is frequency-modulated, the concentration of the measurement target gas between the partition walls 51a and 51b can be calculated.

ここで、送信部基板54は、レーザユニット57から出射されるレーザ光の波長が隔壁51a、51b間の測定対象ガスの吸収ピーク波長に一致するようにレーザ素子の温度を設定した上で、その吸収ピーク波長からシフトされた波長を基準とする波長変調を行いながらレーザ素子の駆動電流を制御することにより、隔壁51a、51b間の測定対象ガスの吸収波長とレーザユニット57に搭載されたレーザ素子の発光波長とを合わせることができる。   Here, the transmitter substrate 54 sets the temperature of the laser element so that the wavelength of the laser light emitted from the laser unit 57 matches the absorption peak wavelength of the gas to be measured between the partition walls 51a and 51b. By controlling the drive current of the laser element while performing wavelength modulation based on the wavelength shifted from the absorption peak wavelength, the absorption wavelength of the gas to be measured between the partition walls 51a and 51b and the laser element mounted on the laser unit 57 The emission wavelength can be matched.

図2は、本発明の一実施形態に係るガス濃度測定装置の概略構成を示すブロック図である。
図2において、図1のレーザユニット57には、半導体レーザ41および温度設定部42が搭載されている。なお、温度設定部42としては、例えば、ペルチェ素子を用いることができる。また、図1の送信部基板54には、半導体レーザ41に駆動電流を注入するレーザ駆動部11、半導体レーザ41から出射されるレーザ光を基本波で周波数変調する周波数変調部12および半導体レーザ41に注入される駆動電流を制御する駆動電流制御部13が設けられている。
FIG. 2 is a block diagram showing a schematic configuration of a gas concentration measuring apparatus according to an embodiment of the present invention.
In FIG. 2, a semiconductor laser 41 and a temperature setting unit 42 are mounted on the laser unit 57 of FIG. In addition, as the temperature setting part 42, a Peltier device can be used, for example. 1 includes a laser drive unit 11 for injecting a drive current into the semiconductor laser 41, a frequency modulation unit 12 for modulating the laser light emitted from the semiconductor laser 41 with a fundamental wave, and the semiconductor laser 41. A drive current control unit 13 is provided for controlling the drive current injected into the.

また、図1の受信部基板62には、光検出部61にて検出されたレーザ光から基本波成分を検出する基本波成分検出部21、光検出部61にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部22、光検出部61にて検出されたレーザ光の基本波成分と2倍波成分との振幅比を算出する振幅比算出部23および光検出部61にて検出された基本波成分と2倍波成分との振幅比に基づいて測定対象ガスの濃度を算出するガス濃度算出部24が設けられている。   In addition, the receiving unit substrate 62 of FIG. 1 includes a fundamental wave component detection unit 21 that detects a fundamental wave component from the laser light detected by the light detection unit 61, and 2 from the laser light detected by the light detection unit 61. A second harmonic component detection unit 22 that detects a harmonic component, an amplitude ratio calculation unit 23 that calculates an amplitude ratio between the fundamental wave component and the second harmonic component of the laser light detected by the light detection unit 61, and a light detection unit A gas concentration calculation unit 24 that calculates the concentration of the measurement target gas based on the amplitude ratio between the fundamental wave component and the second harmonic component detected at 61 is provided.

そして、周波数変調部12は、中心周波数fc、変調周波数fmで半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、その周波数変調されたレーザ光が半導体レーザ41から出射され、測定対象ガスを透過する。そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、温度設定部42に送られる。   Then, the frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated at the center frequency fc and the modulation frequency fm, so that the frequency-modulated laser light is emitted from the semiconductor laser 41. It is emitted and permeates the measurement target gas. Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculation unit 23, it is sent to the temperature setting unit 42.

ここで、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出される時に、温度設定部42は半導体レーザ41の温度を変化させることができる。そして、温度設定部42は、レーザ光の基本波成分と2倍波成分との振幅比と半導体レーザ41の温度との関係を取得し、レーザ光の基本波成分と2倍波成分との振幅比が最大になるようにレーザ素子の温度を設定することができる。   Here, when the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light is calculated by the amplitude ratio calculation unit 23, the temperature setting unit 42 can change the temperature of the semiconductor laser 41. Then, the temperature setting unit 42 acquires the relationship between the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam and the temperature of the semiconductor laser 41, and the amplitude between the fundamental wave component and the second harmonic component of the laser beam. The temperature of the laser element can be set so that the ratio is maximized.

そして、レーザ光の基本波成分と2倍波成分との振幅比が最大になるように半導体レーザ41の温度が設定されると、駆動電流制御部13は、レーザ光の波長が吸収ピーク波長λcから長波長側にシフトされるように半導体レーザ41の駆動電流を制御する。そして、周波数変調部12は、吸収ピーク波長λcから長波長側にシフトされた波長λLを基準として半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、波長λLを基準として波長変調されたレーザ光が半導体レーザ41から出射され、測定対象ガスを透過する。   When the temperature of the semiconductor laser 41 is set so that the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam is maximized, the drive current control unit 13 causes the wavelength of the laser beam to reach the absorption peak wavelength λc. The drive current of the semiconductor laser 41 is controlled so as to be shifted from 1 to the longer wavelength side. The frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated with reference to the wavelength λL shifted from the absorption peak wavelength λc to the long wavelength side, thereby changing the wavelength λL. As a reference, wavelength-modulated laser light is emitted from the semiconductor laser 41 and passes through the measurement target gas.

そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、駆動電流制御部13に送られる。   Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 23, it is sent to the drive current controller 13.

また、駆動電流制御部13は、吸収ピーク波長λcから短波長側にシフトされるように半導体レーザ41の駆動電流を制御する。そして、周波数変調部12は、吸収ピーク波長λcから短波長側にシフトされた波長λsを基準として半導体レーザ41の出力が周波数変調されるようにレーザ駆動部11を制御することにより、波長λsを基準として波長変調されたレーザ光が半導体レーザ41から出射され、測定対象ガスを透過する。   Further, the drive current control unit 13 controls the drive current of the semiconductor laser 41 so as to be shifted from the absorption peak wavelength λc to the short wavelength side. Then, the frequency modulation unit 12 controls the laser driving unit 11 so that the output of the semiconductor laser 41 is frequency-modulated with reference to the wavelength λs shifted from the absorption peak wavelength λc to the short wavelength side, thereby changing the wavelength λs. As a reference, wavelength-modulated laser light is emitted from the semiconductor laser 41 and passes through the measurement target gas.

そして、測定対象ガスを透過したレーザ光は、測定対象ガスのガス分子の吸収線に対応した吸収を受けた後、光検出部61に入射する。そして、光検出部61にレーザ光が入射すると、光検出部61にて電気信号に変換され、基本波成分検出部21および2倍波成分検出部22にてレーザ光の基本波成分と2倍波成分とがそれぞれ抽出される。そして、基本波成分検出部21および2倍波成分検出部22にて抽出されたレーザ光の基本波成分と2倍波成分は振幅比算出部23に送られ、レーザ光の基本波成分と2倍波成分との振幅比が振幅比算出部23にて算出された後、駆動電流制御部13に送られる。   Then, the laser light that has passed through the measurement target gas enters the light detection unit 61 after receiving absorption corresponding to the absorption lines of the gas molecules of the measurement target gas. When the laser light is incident on the light detection unit 61, the light detection unit 61 converts the laser light into an electrical signal, and the fundamental wave component detection unit 21 and the second harmonic wave component detection unit 22 double the fundamental wave component of the laser light. Each wave component is extracted. Then, the fundamental wave component and the second harmonic component of the laser light extracted by the fundamental wave component detection unit 21 and the second harmonic component detection unit 22 are sent to the amplitude ratio calculation unit 23, and the fundamental wave component of the laser light and 2 After the amplitude ratio with the harmonic component is calculated by the amplitude ratio calculator 23, it is sent to the drive current controller 13.

なお、レーザ光の波長を吸収ピーク波長λcから長波長側および短波長側にシフトさせる場合、波長のずれ量Δλは、測定対象ガスの吸収線幅の範囲内においてΔλ=λc−λL=λc−λsとなるように設定することが好ましい。
そして、駆動電流制御部13は、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とを受け取ると、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とを比較する。
When the wavelength of the laser beam is shifted from the absorption peak wavelength λc to the long wavelength side and the short wavelength side, the wavelength shift amount Δλ is Δλ = λc−λL = λc− within the range of the absorption line width of the measurement target gas. It is preferable to set so as to be λs.
Then, the drive current control unit 13 determines the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam when wavelength-modulated with the wavelength λL, and the laser beam when wavelength-modulated with the wavelength λs as a reference. When the amplitude ratio between the fundamental wave component and the second harmonic wave component is received, the amplitude ratio between the fundamental wave component and the second harmonic wave component of the laser light when the wavelength is modulated with reference to the wavelength λL, and the wavelength λs are referenced. As a comparison, the amplitude ratio of the fundamental wave component and the second harmonic component of the laser light when wavelength modulation is performed is compared.

そして、駆動電流制御部13は、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とが一致するようになるまで、半導体レーザ41の駆動電流を制御しながら、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比との比較を繰り返す。   Then, the drive current control unit 13 determines the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam when wavelength-modulated with the wavelength λL, and the laser beam when wavelength-modulated with the wavelength λs as a reference. The fundamental wave component of the laser light when the wavelength is modulated with reference to the wavelength λL while controlling the drive current of the semiconductor laser 41 until the amplitude ratio between the fundamental wave component and the second harmonic wave component becomes equal. The comparison is repeated between the amplitude ratio of the second harmonic component and the amplitude ratio of the fundamental component and the second harmonic component of the laser light when the wavelength is modulated with reference to the wavelength λs.

そして、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とが一致すると、駆動電流制御部13は、それらの振幅比が一致するような吸収ピーク波長λcを基準として波長変調されるように半導体レーザ41の駆動電流を設定する。   Then, the amplitude ratio between the fundamental wave component and the double wave component of the laser light when the wavelength is modulated with respect to the wavelength λL, and the double of the fundamental wave component of the laser light when the wavelength is modulated with the wavelength λs as a reference. When the amplitude ratio with the wave component matches, the drive current control unit 13 sets the drive current of the semiconductor laser 41 so as to be wavelength-modulated with reference to the absorption peak wavelength λc that matches the amplitude ratio.

例えば、レーザ駆動部11は、吸収ピーク波長λcを基準としてレーザ光を波長変調する場合、30mA±5mAの電流で半導体レーザ41を駆動し、波長λLを基準としてレーザ光を波長変調する場合、40mA±5mAの電流で半導体レーザ41を駆動し、波長λsを基準としてレーザ光を波長変調する場合、20mA±5mAの電流で半導体レーザ41を駆動することができる。   For example, the laser driving unit 11 drives the semiconductor laser 41 with a current of 30 mA ± 5 mA when wavelength-modulating the laser light with the absorption peak wavelength λc as a reference, and 40 mA when wavelength-modulating the laser light with the wavelength λL as a reference. When the semiconductor laser 41 is driven with a current of ± 5 mA and the laser light is wavelength-modulated with reference to the wavelength λs, the semiconductor laser 41 can be driven with a current of 20 mA ± 5 mA.

そして、ガス濃度算出部24は、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とが一致するような吸収ピーク波長λcを基準として波長変調された時の基本波成分と2倍波成分との振幅比に基づいて、隔壁51a、51b間の測定対象ガスの濃度を算出することができる。   Then, the gas concentration calculation unit 24 calculates the amplitude ratio between the fundamental wave component and the second harmonic wave component of the laser beam when wavelength-modulated with the wavelength λL and the laser beam when wavelength-modulated with the wavelength λs as a reference. Based on the amplitude ratio between the fundamental wave component and the second harmonic component when wavelength-modulated with reference to the absorption peak wavelength λc such that the amplitude ratio between the fundamental wave component and the second harmonic component coincides, the partition wall 51a , 51b, the concentration of the measurement target gas can be calculated.

これにより、半導体レーザ41の発光波長が測定対象ガスの吸収ピーク波長λcに一致するように半導体レーザ41の温度を設定した上で、吸収ピーク波長λcからシフトされた波長を基準とする波長変調を行いながら半導体レーザ41の駆動電流を制御することにより、測定対象ガスの成分が環境によって変動したり、測定対象ガスの吸収波長が温度によって変動したりする場合においても、参照ガスセルを用いることなく、測定対象ガスの吸収ピーク波長λcと半導体レーザ41の発光波長とを合わせることが可能となり、測定環境に依存することなく、ガス濃度の計測精度を向上させることが可能となる。   As a result, the temperature of the semiconductor laser 41 is set so that the emission wavelength of the semiconductor laser 41 coincides with the absorption peak wavelength λc of the measurement target gas, and wavelength modulation based on the wavelength shifted from the absorption peak wavelength λc is performed. By controlling the drive current of the semiconductor laser 41 while performing, even when the component of the measurement target gas varies depending on the environment or the absorption wavelength of the measurement target gas varies depending on the temperature, the reference gas cell is not used. The absorption peak wavelength λc of the measurement target gas and the emission wavelength of the semiconductor laser 41 can be matched, and the measurement accuracy of the gas concentration can be improved without depending on the measurement environment.

図3は、本発明の一実施形態に係る周波数変調方式によるガス濃度の測定原理を説明する図である。
図3において、中心周波数fc、変調周波数fmで半導体レーザ41の出力を周波数変調し、測定対象ガスに照射されたものとする。ここで、測定対象ガスの吸収線は変調周波数に対してほぼ2次関数となっているので、この吸収線が弁別器の役割を果たし、光検出部61では変調周波数fmの2倍の周波数の成分(2倍波成分)が得られる。ここで、変調周波数fmは任意の周波数でよいので、例えば、変調周波数fmを数kHz程度に選ぶと、ディジタル信号処理装置(DSP)または汎用のプロセッサを用い高度な信号処理を施すことが可能となる。
FIG. 3 is a diagram for explaining the principle of measuring the gas concentration by the frequency modulation method according to one embodiment of the present invention.
In FIG. 3, it is assumed that the output of the semiconductor laser 41 is frequency-modulated with a center frequency fc and a modulation frequency fm, and the measurement target gas is irradiated. Here, since the absorption line of the gas to be measured has a substantially quadratic function with respect to the modulation frequency, this absorption line serves as a discriminator, and the light detection unit 61 has a frequency twice as high as the modulation frequency fm. A component (second harmonic component) is obtained. Here, since the modulation frequency fm may be an arbitrary frequency, for example, when the modulation frequency fm is selected to be about several kHz, it is possible to perform advanced signal processing using a digital signal processing device (DSP) or a general-purpose processor. Become.

そして、半導体レーザ41と光検出部61との距離に起因するレーザ光の減衰量の影響を周波数変調方式にてキャンセルするためには、半導体レーザ41の出力に周波数変調を行うと同時に変調周波数fmで振幅変調を行えばよく、半導体レーザ41の出力に周波数変調をかけることで振幅変調もかけることができる。そして、光検出部61でエンベロープ検波を行うことで振幅変調による基本波成分を推定することができ、この基本波成分の振幅と2倍波成分の振幅の比を位相同期させて取ることで、半導体レーザ41と光検出部61との距離に依存することなく、測定対象ガスの濃度に比例した値を得ることができる。   In order to cancel the influence of the attenuation amount of the laser beam due to the distance between the semiconductor laser 41 and the light detection unit 61 by the frequency modulation method, the output of the semiconductor laser 41 is modulated at the same time as the modulation frequency fm. Amplitude modulation may be performed by the above, and amplitude modulation can also be performed by applying frequency modulation to the output of the semiconductor laser 41. Then, the fundamental wave component by amplitude modulation can be estimated by performing envelope detection at the light detection unit 61, and by taking the phase ratio of the ratio of the amplitude of the fundamental wave component and the amplitude of the second harmonic component, A value proportional to the concentration of the measurement target gas can be obtained without depending on the distance between the semiconductor laser 41 and the light detection unit 61.

図4は、本発明の一実施形態に係るレーザ光の中心周波数制御方法を示す図である。
図4において、中心周波数fc、変調周波数fmで周波数変調された半導体レーザ41の出力が測定対象ガスに照射されると、測定対象ガスの吸収線は変調周波数に対してほぼ2次関数となっているので、光検出部61では変調周波数fmの2倍の周波数の成分(2倍波成分)が得られる。
FIG. 4 is a diagram illustrating a method for controlling the center frequency of laser light according to an embodiment of the present invention.
In FIG. 4, when the measurement target gas is irradiated with the output of the semiconductor laser 41 that is frequency-modulated with the center frequency fc and the modulation frequency fm, the absorption line of the measurement target gas becomes a substantially quadratic function with respect to the modulation frequency. Therefore, the light detection unit 61 can obtain a component having a frequency twice the modulation frequency fm (double wave component).

そして、レーザ光の基本波成分と2倍波成分との振幅比を振幅比算出部23にて算出する場合、温度設定部42は半導体レーザ41の温度を変化させることができる。そして、温度設定部42は、レーザ光の基本波成分と2倍波成分との振幅比と半導体レーザ41の温度との関係を取得し、レーザ光の基本波成分と2倍波成分との振幅比が最大になるようにレーザ素子の温度を設定することにより、半導体レーザ41の波長を吸収ピーク波長λcに合わせることができる。   When the amplitude ratio calculation unit 23 calculates the amplitude ratio between the fundamental wave component and the second harmonic component of the laser light, the temperature setting unit 42 can change the temperature of the semiconductor laser 41. Then, the temperature setting unit 42 acquires the relationship between the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam and the temperature of the semiconductor laser 41, and the amplitude between the fundamental wave component and the second harmonic component of the laser beam. By setting the temperature of the laser element so that the ratio becomes maximum, the wavelength of the semiconductor laser 41 can be matched with the absorption peak wavelength λc.

また、レーザ光の基本波成分と2倍波成分との振幅比が最大になるように半導体レーザ41の温度が温度設定部42にて設定されると、駆動電流制御部13は、測定対象ガスの吸収線幅の範囲内で長波長側および短波長側に同一のずれ量Δλだけシフトされた波長λL、λsをそれぞれ基準として周波数変調KL、Ksが行われた時の基本波成分と2倍波成分との振幅比が一致するように、半導体レーザ41の駆動電流を制御することができる。   When the temperature of the semiconductor laser 41 is set by the temperature setting unit 42 so that the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam is maximized, the drive current control unit 13 2 times the fundamental wave component when frequency modulation KL and Ks are performed with reference to wavelengths λL and λs shifted by the same shift amount Δλ on the long wavelength side and short wavelength side within the range of the absorption line width The drive current of the semiconductor laser 41 can be controlled so that the amplitude ratio with the wave component matches.

そして、駆動電流制御部13は、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比と、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比とが一致するような吸収ピーク波長λcを基準として波長変調されるように半導体レーザ41の駆動電流を設定し、ガス濃度算出部24は、その吸収ピーク波長λcを基準として波長変調Kcが行われた時の基本波成分と2倍波成分との振幅比に基づいて、測定対象ガスの濃度を算出することができる。   Then, the drive current control unit 13 determines the amplitude ratio between the fundamental wave component and the second harmonic component of the laser beam when wavelength-modulated with the wavelength λL, and the laser beam when wavelength-modulated with the wavelength λs as a reference. The driving current of the semiconductor laser 41 is set so as to be wavelength-modulated with reference to the absorption peak wavelength λc such that the amplitude ratio of the fundamental wave component and the second harmonic wave component of the gas component coincides with each other. The concentration of the measurement target gas can be calculated based on the amplitude ratio between the fundamental wave component and the second harmonic wave component when wavelength modulation Kc is performed with the absorption peak wavelength λc as a reference.

ここで、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比が、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比よりも大きい場合、温度設定部42にて設定された発光波長が吸収ピーク波長λcに対して長波長側にずれていることから、駆動電流制御部13は、半導体レーザ41の駆動電流を減少させることで、半導体レーザ41の発光波長を短波長側にずらすことで、半導体レーザ41の発光波長を吸収ピーク波長λcに近づけることができる。   Here, the amplitude ratio between the fundamental wave component of the laser beam and the second harmonic component when the wavelength is modulated with respect to the wavelength λL is 2 and the fundamental wave component of the laser beam when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio with the harmonic component is larger, the emission wavelength set by the temperature setting unit 42 is shifted to the longer wavelength side with respect to the absorption peak wavelength λc. By reducing the drive current of 41, the emission wavelength of the semiconductor laser 41 can be made closer to the absorption peak wavelength λc by shifting the emission wavelength of the semiconductor laser 41 to the short wavelength side.

また、波長λLを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比が、波長λsを基準として波長変調された時のレーザ光の基本波成分と2倍波成分との振幅比よりも小さい場合、温度設定部42にて設定された発光波長が吸収ピーク波長λcに対して短波長側にずれていることから、駆動電流制御部13は、半導体レーザ41の駆動電流を増加させることで、半導体レーザ41の発光波長を長波長側にずらすことで、半導体レーザ41の発光波長を吸収ピーク波長λcに近づけることができる。   Further, the amplitude ratio between the fundamental wave component and the double wave component of the laser light when the wavelength is modulated with respect to the wavelength λL is twice the fundamental wave component of the laser light when the wavelength is modulated with respect to the wavelength λs. When the amplitude ratio is smaller than the wave component, the emission wavelength set by the temperature setting unit 42 is shifted to the short wavelength side with respect to the absorption peak wavelength λc. By increasing the drive current, the emission wavelength of the semiconductor laser 41 can be made closer to the absorption peak wavelength λc by shifting the emission wavelength of the semiconductor laser 41 to the longer wavelength side.

図5は、本発明の一実施形態に係る駆動電流と半導体レーザの発光波長との関係を示す図である。
図5において、半導体レーザ41の発光波長は駆動電流が増加するに従って長くなる。このため、半導体レーザ41の駆動電流を制御することにより、半導体レーザ41の発光波長を調整することができる。
図6は、本発明の一実施形態に係る温度と半導体レーザの発光波長との関係を示す図である。
図6において、半導体レーザ41の発光波長は温度が増加するに従って長くなる。このため、半導体レーザ41の温度を制御することにより、半導体レーザ41の発光波長を調整することができる。
FIG. 5 is a diagram showing the relationship between the drive current and the emission wavelength of the semiconductor laser according to one embodiment of the present invention.
In FIG. 5, the emission wavelength of the semiconductor laser 41 becomes longer as the drive current increases. For this reason, the emission wavelength of the semiconductor laser 41 can be adjusted by controlling the drive current of the semiconductor laser 41.
FIG. 6 is a diagram showing the relationship between the temperature and the emission wavelength of the semiconductor laser according to one embodiment of the present invention.
In FIG. 6, the emission wavelength of the semiconductor laser 41 becomes longer as the temperature increases. For this reason, the emission wavelength of the semiconductor laser 41 can be adjusted by controlling the temperature of the semiconductor laser 41.

図7は、本発明の一実施形態に係るHCNが封入されたガスセルにレーザ光を照射した時の発光波長と受光電圧との関係を示す図である。なお、P1はガスセルがある場合、P2はガスセルがない場合の波形を示す。
図7において、気体状のガス分子には、それぞれ固有の光吸収スペクトルがある。そして、レーザ光をガスセルに照射した場合、そのガス分子に固有の光吸収スペクトルの波長でレーザ光が吸収されることから、その波長の位置で光検出部61による受光電圧が低下する。
そして、図5および図6に示すように、半導体レーザ41の発光波長は駆動電流または温度によって変化することから、半導体レーザ41の駆動電流または温度を制御することにより、半導体レーザ41の発光波長を吸収ピーク波長λcに一致させることができる。
FIG. 7 is a diagram showing a relationship between a light emission wavelength and a light reception voltage when a laser beam is irradiated to a gas cell in which HCN is sealed according to an embodiment of the present invention. P1 shows a waveform when there is a gas cell, and P2 shows a waveform when there is no gas cell.
In FIG. 7, each gaseous gas molecule has its own light absorption spectrum. When the gas cell is irradiated with laser light, the laser light is absorbed at the wavelength of the light absorption spectrum unique to the gas molecule, so that the light reception voltage by the light detection unit 61 decreases at the position of the wavelength.
As shown in FIGS. 5 and 6, since the emission wavelength of the semiconductor laser 41 changes depending on the drive current or temperature, the emission wavelength of the semiconductor laser 41 is controlled by controlling the drive current or temperature of the semiconductor laser 41. It can be matched with the absorption peak wavelength λc.

本発明の一実施形態に係るガス濃度測定装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the gas concentration measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るガス濃度測定装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a gas concentration measuring device concerning one embodiment of the present invention. 本発明の一実施形態に係る周波数変調方式によるガス濃度の測定原理を説明する図である。It is a figure explaining the measurement principle of the gas concentration by the frequency modulation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ光の中心周波数制御方法を示す図である。It is a figure which shows the center frequency control method of the laser beam which concerns on one Embodiment of this invention. 本発明の一実施形態に係る駆動電流と半導体レーザの発光波長との関係を示す図である。It is a figure which shows the relationship between the drive current which concerns on one Embodiment of this invention, and the light emission wavelength of a semiconductor laser. 本発明の一実施形態に係る温度と半導体レーザの発光波長との関係を示す図である。It is a figure which shows the relationship between the temperature which concerns on one Embodiment of this invention, and the light emission wavelength of a semiconductor laser. 本発明の一実施形態に係るHCNが封入されたガスセルにレーザ光を照射した時の発光波長と受光電圧との関係を示す図である。It is a figure which shows the relationship between the light emission wavelength when a laser beam is irradiated to the gas cell with which HCN enclosed with one Embodiment of this invention was irradiated, and a light reception voltage. 従来の周波数変調方式におけるガス濃度測定装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the gas concentration measuring apparatus in the conventional frequency modulation system.

符号の説明Explanation of symbols

11 レーザ駆動部
12 周波数変調部
13 駆動電流制御部
21 基本波成分検出部
22 2倍波成分検出部
23 振幅比算出部
24 ガス濃度算出部
41 半導体レーザ
42 温度設定部
51a、51b 隔壁
52a、52b フランジ
54 送信部基板
55a、55b ウェッジ窓
56 コリメートレンズ
57 レーザユニット
58、59 ハウジング
60 集光レンズ
61 光検出部
62 受信部基板
DESCRIPTION OF SYMBOLS 11 Laser drive part 12 Frequency modulation part 13 Drive current control part 21 Fundamental wave component detection part 22 2nd harmonic component detection part 23 Amplitude ratio calculation part 24 Gas concentration calculation part 41 Semiconductor laser 42 Temperature setting part 51a, 51b Partition 52a, 52b Flange 54 Transmitter board 55a, 55b Wedge window 56 Collimator lens 57 Laser unit 58, 59 Housing 60 Condensing lens 61 Light detector 62 Receiver board

Claims (5)

レーザ光を出射するレーザ素子と、
前記レーザ光を基本波で周波数変調する周波数変調部と、
前記周波数変調されたレーザ光を検出する光検出部と、
前記光検出部にて検出されたレーザ光から基本波成分を検出する基本波成分検出部と、
前記光検出部にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部と、
前記レーザ光から検出された基本波成分と2倍波成分との振幅比を算出する振幅比算出部と、
前記基本波成分と2倍波成分との振幅比に基づいて前記レーザ素子の温度を設定する温度設定部と、
測定対象ガスの吸収ピーク波長からシフトされた波長を基準とする波長変調を行った時の前記基本波成分と2倍波成分との振幅比に基づいて前記レーザ素子の駆動電流を制御する駆動電流制御部とを備えることを特徴とするレーザの波長制御装置。
A laser element that emits laser light;
A frequency modulation unit for frequency-modulating the laser beam with a fundamental wave;
A light detector for detecting the frequency-modulated laser light;
A fundamental wave component detector that detects a fundamental wave component from the laser light detected by the light detector; and
A second harmonic component detection unit for detecting a second harmonic component from the laser light detected by the light detection unit;
An amplitude ratio calculation unit for calculating an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser beam;
A temperature setting unit that sets the temperature of the laser element based on the amplitude ratio of the fundamental wave component and the second harmonic wave component;
Drive current for controlling the drive current of the laser element based on the amplitude ratio between the fundamental wave component and the second harmonic wave component when wavelength modulation is performed with reference to the wavelength shifted from the absorption peak wavelength of the measurement target gas A laser wavelength control device comprising: a control unit.
前記温度設定部は、前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定し、
前記駆動電流制御部は、吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように駆動電流を制御することを特徴とする請求項1記載のレーザの波長制御装置。
The temperature setting unit sets the temperature of the laser element so that the amplitude ratio between the fundamental wave component and the second harmonic component is maximized,
The drive current control unit has an amplitude ratio between a fundamental wave component and a second harmonic component when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side, respectively. 2. The laser wavelength control apparatus according to claim 1, wherein the drive current is controlled so that the two coincide with each other.
レーザ光を出射するレーザ素子と、
前記レーザ光を基本波で周波数変調する周波数変調部と、
前記周波数変調されたレーザ光を検出する光検出部と、
前記光検出部にて検出されたレーザ光から基本波成分を検出する基本波成分検出部と、
前記光検出部にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部と、
前記レーザ光から検出された基本波成分と2倍波成分との振幅比を算出する振幅比算出部と、
前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ素子の温度を設定する温度設定部と、
測定対象ガスの吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御する駆動電流制御部と、
前記吸収ピーク波長を基準として周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過したガスの濃度を算出するガス濃度算出部とを備えることを特徴とするガス濃度測定装置。
A laser element that emits laser light;
A frequency modulation unit for frequency-modulating the laser beam with a fundamental wave;
A light detector for detecting the frequency-modulated laser light;
A fundamental wave component detector that detects a fundamental wave component from the laser light detected by the light detector; and
A second harmonic component detection unit for detecting a second harmonic component from the laser light detected by the light detection unit;
An amplitude ratio calculation unit for calculating an amplitude ratio between a fundamental wave component and a second harmonic component detected from the laser beam;
A temperature setting unit that sets the temperature of the laser element so that the amplitude ratio between the fundamental wave component and the second harmonic wave component is maximized;
The amplitude ratio between the fundamental wave component and the second harmonic wave component when the frequency is modulated with reference to the wavelength shifted by the same shift amount from the absorption peak wavelength of the measurement target gas to the long wavelength side and the short wavelength side is the same. A drive current control unit for controlling the drive current of the laser element,
A gas concentration calculation unit that calculates the concentration of the gas transmitted by the laser beam based on an amplitude ratio between a fundamental wave component and a second harmonic component when frequency-modulated with respect to the absorption peak wavelength. A gas concentration measuring device.
基本波で周波数変調しながら測定対象ガスにレーザ光を入射するステップと、
前記測定対象ガスを透過したレーザ光を検出するステップと、
前記検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記レーザ光から抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ光を発生させるレーザ素子の温度を設定するステップと、
前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御するステップとを備えることを特徴とするレーザの波長制御方法。
Injecting laser light into the gas to be measured while modulating the frequency with the fundamental wave;
Detecting laser light transmitted through the measurement target gas;
Extracting a fundamental wave component and a second harmonic component from the detected laser beam;
Calculating an amplitude ratio between a fundamental wave component and a second harmonic component extracted from the laser beam;
Setting the temperature of the laser element that generates the laser beam so that the amplitude ratio between the fundamental wave component and the second harmonic component is maximized;
The fundamental wave component and the second harmonic wave when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas. And a step of controlling the drive current of the laser element so that the amplitude ratio with the component matches.
基本波で周波数変調しながら測定対象ガスにレーザ光を入射するステップと、
前記測定対象ガスを透過したレーザ光を検出するステップと、
前記検出されたレーザ光から基本波成分および2倍波成分を抽出するステップと、
前記レーザ光から抽出された基本波成分と2倍波成分との振幅比を算出するステップと、
前記基本波成分と2倍波成分との振幅比が最大になるように前記レーザ光を発生させるレーザ素子の温度を設定するステップと、
前記測定対象ガスの吸収線幅の範囲内で吸収ピーク波長から長波長側および短波長側に同一のずれ量だけシフトされた波長をそれぞれ基準として周波数変調された時の基本波成分と2倍波成分との振幅比が一致するように前記レーザ素子の駆動電流を制御するステップと、
前記吸収ピーク波長を基準として周波数変調された時の基本波成分と2倍波成分との振幅比に基づいて、前記レーザ光が透過した測定対象ガスの濃度を算出するステップとを備えることを特徴とするガス濃度測定方法。
Injecting laser light into the gas to be measured while modulating the frequency with the fundamental wave;
Detecting laser light transmitted through the measurement target gas;
Extracting a fundamental wave component and a second harmonic component from the detected laser beam;
Calculating an amplitude ratio between a fundamental wave component and a second harmonic component extracted from the laser beam;
Setting the temperature of the laser element that generates the laser beam so that the amplitude ratio between the fundamental wave component and the second harmonic component is maximized;
The fundamental wave component and the second harmonic wave when frequency-modulated with reference to wavelengths shifted by the same shift amount from the absorption peak wavelength to the long wavelength side and the short wavelength side within the range of the absorption line width of the measurement target gas. Controlling the drive current of the laser element so that the amplitude ratio with the component matches;
Calculating the concentration of the measurement target gas transmitted by the laser beam based on the amplitude ratio between the fundamental wave component and the second harmonic wave component when frequency-modulated with respect to the absorption peak wavelength. Gas concentration measurement method.
JP2006335678A 2006-12-13 2006-12-13 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method Active JP4905106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335678A JP4905106B2 (en) 2006-12-13 2006-12-13 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335678A JP4905106B2 (en) 2006-12-13 2006-12-13 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2008147557A JP2008147557A (en) 2008-06-26
JP4905106B2 true JP4905106B2 (en) 2012-03-28

Family

ID=39607369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335678A Active JP4905106B2 (en) 2006-12-13 2006-12-13 Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP4905106B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277763B2 (en) * 2008-07-14 2013-08-28 富士電機株式会社 Laser gas analyzer
JP5169586B2 (en) * 2008-07-30 2013-03-27 富士電機株式会社 Laser gas analyzer, oxygen gas concentration measurement method
US8896835B2 (en) 2011-12-27 2014-11-25 Horiba, Ltd. Gas measurement apparatus and the setting method of width of wavelength modulation in gas measurement apparatus
CA2964052A1 (en) * 2014-10-08 2016-04-14 Nec Corporation Optical transmitter and optical transceiver

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703835B2 (en) * 1991-04-26 1998-01-26 東京瓦斯株式会社 Gas concentration measuring method and its measuring device
JP2866230B2 (en) * 1991-09-20 1999-03-08 東京瓦斯株式会社 Gas concentration measurement device
JPH07151682A (en) * 1993-11-30 1995-06-16 Anritsu Corp Gas density measuring processor
JP3051808B2 (en) * 1993-11-30 2000-06-12 アンリツ株式会社 Gas concentration measurement device
JP3305904B2 (en) * 1994-12-02 2002-07-24 アンリツ株式会社 Semiconductor laser oscillation wavelength stabilizer
JP3342446B2 (en) * 1999-08-31 2002-11-11 三菱重工業株式会社 Gas concentration measurement device
JP4217108B2 (en) * 2003-06-02 2009-01-28 東京電力株式会社 Multipoint optical gas concentration detection method and system

Also Published As

Publication number Publication date
JP2008147557A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5045480B2 (en) Gas concentration measuring device and gas concentration measuring method
JP5176535B2 (en) Laser gas analyzer
JP4331741B2 (en) Gas detection method and gas detection apparatus
JPH0315742A (en) Gas detector
CN110160989B (en) Trace gas detection method and detection device
JPWO2014109126A1 (en) Laser gas analyzer
JP2008175611A (en) Device and method for measuring gas concentration
US9506807B2 (en) Optical gas temperature sensor
KR20070105875A (en) Gas detection method and gas detection device
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
JP4905106B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JP5045479B2 (en) Gas concentration measuring device and gas concentration measuring method
JP5169586B2 (en) Laser gas analyzer, oxygen gas concentration measurement method
JP2009041941A (en) Gas concentration measuring device and method
JP3114959B2 (en) Gas concentration detection method and apparatus
JP5594514B2 (en) Laser gas analyzer
JP2010032454A (en) Gas analyzer and gas analysis method
JP2008268064A (en) Multicomponent responsive laser type gas analyzer
JP4918865B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JP2013156113A (en) Laser type gas analyzer
KR100316487B1 (en) Method of spectrochemical analysis of impurity in gas
JP5277763B2 (en) Laser gas analyzer
JP4993213B2 (en) Laser gas analyzer
JP2009014661A (en) Gas concentration measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250