JP2007218783A - Optical fiber type gas concentration detection method and device - Google Patents

Optical fiber type gas concentration detection method and device Download PDF

Info

Publication number
JP2007218783A
JP2007218783A JP2006040968A JP2006040968A JP2007218783A JP 2007218783 A JP2007218783 A JP 2007218783A JP 2006040968 A JP2006040968 A JP 2006040968A JP 2006040968 A JP2006040968 A JP 2006040968A JP 2007218783 A JP2007218783 A JP 2007218783A
Authority
JP
Japan
Prior art keywords
gas
signal
light source
light
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006040968A
Other languages
Japanese (ja)
Inventor
Teruyuki Nakamura
晃之 中村
Yukio Ikeda
幸雄 池田
Tomonori Sato
知典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006040968A priority Critical patent/JP2007218783A/en
Publication of JP2007218783A publication Critical patent/JP2007218783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber type gas concentration detection method and a device suitable for detection of an object gas wherein the range of an absorption band is wider than a wavelength range where modulation and sweeping of laser light are possible. <P>SOLUTION: One sweeping range of a light source part 2 for modulating and sweeping laser light is set in a range including an object gas absorption band center wavelength, and two sweeping ranges are set on the shorter wavelength side and on the longer wavelength side. The laser light is transmitted through the atmosphere to be measured and received, and one-time and double detection signals are measured from a received signal, and each gas signal waveform in each sweeping range comprising the ratio between both detection signals is determined. Each gas signal waveform is synthesized together, and a peak value is determined from the synthesized gas signal waveform, and the concentration of the object gas is determined from the peak value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸収帯の範囲がレーザ光の変調及び掃引可能な波長範囲より広い対象ガスの検出に適した光ファイバ式ガス濃度検出方法及び装置に関する。   The present invention relates to an optical fiber type gas concentration detection method and apparatus suitable for detecting a target gas whose absorption band is wider than a wavelength range in which laser light can be modulated and swept.

ガス分子は、特定波長(吸収帯という)のレーザ光を吸収する性質を持っており、この性質を利用してガスの有無を検出できる。このガス検出方法は、工業計測、公害監視などの分野で用いられる。このレーザ光を光ファイバで伝送することにより、ガスの遠隔検出ができる。   Gas molecules have the property of absorbing laser light having a specific wavelength (referred to as absorption band), and the presence or absence of gas can be detected using this property. This gas detection method is used in fields such as industrial measurement and pollution monitoring. By transmitting this laser light through an optical fiber, it is possible to detect gas remotely.

光ファイバ式ガス濃度検出方法及び装置が特許文献1に記載されている。この技術では、半導体レーザの駆動電流を所定の電流値を中心として高周波数の正弦波で変調することにより、波長及び強度が変調されたレーザ光を発振させる。このレーザ光を光ファイバに入射させガスセルに導き、ガスセル内の未知濃度のガスを透過させて、その透過光を光ファイバで受光器に導き、その受光信号を位相敏感検波して1倍検波信号と2倍検波信号を計測し、この1倍検波信号と2倍検波信号の比からなるガス信号を求め、このガス信号から対象ガスの濃度を求めている。   An optical fiber type gas concentration detection method and apparatus is described in Patent Document 1. In this technique, a laser beam having a modulated wavelength and intensity is oscillated by modulating a driving current of a semiconductor laser with a high-frequency sine wave around a predetermined current value. This laser light is incident on an optical fiber, guided to a gas cell, gas of unknown concentration in the gas cell is transmitted, the transmitted light is guided to a light receiver by an optical fiber, the received light signal is phase-sensitively detected, and a single detection signal The double detection signal is measured, a gas signal comprising the ratio of the single detection signal and the double detection signal is obtained, and the concentration of the target gas is obtained from the gas signal.

特開平5−256769号公報JP-A-5-256769

一方、半導体レーザの中心波長は安定させにくいという問題があるので、駆動電流を制御して中心波長を吸収帯の中心付近で掃引している。   On the other hand, since the center wavelength of the semiconductor laser is difficult to stabilize, the drive current is controlled to sweep the center wavelength near the center of the absorption band.

しかしながら、半導体レーザを電流制御してレーザ光を変調及び掃引可能な波長範囲の大きさは、0.2nm〜1.4nm程度である。対象ガスの吸収帯の範囲が変調及び掃引可能な波長範囲より広い場合、濃度検出が難しくなる。   However, the size of the wavelength range in which the laser beam can be modulated and swept by controlling the current of the semiconductor laser is about 0.2 nm to 1.4 nm. When the range of the absorption band of the target gas is wider than the wavelength range that can be modulated and swept, concentration detection becomes difficult.

そこで、本発明の目的は、上記課題を解決し、吸収帯の範囲がレーザ光の変調及び掃引可能な波長範囲より広い対象ガスの検出に適した光ファイバ式ガス濃度検出方法及び装置を提供することにある。   Therefore, an object of the present invention is to provide an optical fiber type gas concentration detection method and apparatus suitable for detecting a target gas in which the above-mentioned problem is solved and the absorption band range is wider than the wavelength range in which laser light can be modulated and swept. There is.

上記目的を達成するために本発明の方法は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する3個以上の光源部を設けて、うち1個の光源部の掃引範囲は対象ガスの吸収帯の中心波長を含む範囲に設定し、2個の光源部の掃引範囲は対象ガスの吸収帯の中心波長より短波長側と長波長側に設定し、これらのレーザ光を被測定雰囲気中に透過させて受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号と2倍検波信号を計測し、これら1倍検波信号と2倍検波信号の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求めるものである。   In order to achieve the above object, the method of the present invention includes three or more light source units that linearly sweep the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of the laser light with a sine wave. The sweep range of one light source unit is set to a range including the center wavelength of the absorption band of the target gas, and the sweep range of the two light source units is shorter and longer than the center wavelength of the absorption band of the target gas. Set to the wavelength side, transmit these laser lights through the atmosphere to be measured and receive them, phase-detection of the received light signals for each sweep range, measure the 1x detection signal and 2x detection signal, Obtain a gas signal waveform for each sweep range consisting of the ratio of these 1-fold detection signal and 2-fold detection signal, synthesize these gas signal waveforms, find the peak value from the synthesized gas signal waveform, and calculate the peak value of the target gas from this peak value. The concentration is obtained.

また、本発明の方法は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する3個以上の光源部を設けて、うち1個の光源部の掃引範囲は対象ガスの吸収帯の中心波長を含む範囲に設定し、2個の光源部の掃引範囲は対象ガスの吸収帯の中心波長より短波長側と長波長側に設定し、これらのレーザ光を被測定雰囲気中に透過させて受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号を計測し、この1倍検波信号の傾きの大きさからなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求めるものである。   Further, the method of the present invention is provided with three or more light source units that modulate the wavelength and intensity of laser light with a sine wave and linearly sweep the modulation center wavelength within a predetermined sweep range, one of which is provided. The sweep range of the light source unit is set to a range including the center wavelength of the absorption band of the target gas, and the sweep range of the two light source units is set to the short wavelength side and the long wavelength side from the center wavelength of the absorption band of the target gas. These laser beams are transmitted through the atmosphere to be measured and received, and the received signals are phase-sensitively detected for each sweep range to measure a single detection signal. The magnitude of the inclination of the single detection signal A gas signal waveform for each sweep range is obtained, these gas signal waveforms are synthesized, a peak value is obtained from the synthesized gas signal waveform, and a concentration of the target gas is obtained from the peak value.

短波長側のガス信号波形と長波長側のガス信号波形とを結んだ直線を波高値の基準線とし、中心波長範囲のガス信号波形のうち上記基準線から最も高い値を波高値としてもよい。   A straight line connecting the gas signal waveform on the short wavelength side and the gas signal waveform on the long wavelength side may be used as the reference line of the peak value, and the highest value from the reference line among the gas signal waveforms in the central wavelength range may be used as the peak value. .

本発明の装置は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する光源部であって、掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定した1個と掃引範囲を対象ガスの吸収帯の中心波長より短波長側と長波長側に設定した2個とを含む3個以上の光源部と、これらのレーザ光を被測定雰囲気中に透過させる光学系と、その透過光を受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号と2倍検波信号を計測し、これら1倍検波信号と2倍検波信号の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める信号処理部とを備えたものである。   The apparatus of the present invention is a light source unit that linearly sweeps the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of the laser beam with a sine wave, and the sweep range is within the absorption band of the target gas. Three or more light source units including one set in the range including the center wavelength and two set the sweep range on the shorter wavelength side and the longer wavelength side than the center wavelength of the absorption band of the target gas, and these laser beams The optical system that transmits light into the atmosphere to be measured and the transmitted light are received, the received signal is phase-sensitively detected for each sweep range, and the 1-fold detection signal and the 2-fold detection signal are measured. A gas signal waveform for each sweep range consisting of a ratio of the detection signal and the double detection signal is obtained, these gas signal waveforms are synthesized, a peak value is obtained from the synthesized gas signal waveform, and a concentration of the target gas is obtained from the peak value. And a signal processing unit.

また、本発明の装置は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する光源部であって、掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定した1個と掃引範囲を対象ガスの吸収帯の中心波長より短波長側と長波長側に設定した2個とを含む3個以上の光源部と、これらのレーザ光を被測定雰囲気中に透過させる光学系と、その透過光を受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号を計測し、この1倍検波信号の傾きの大きさからなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める信号処理部とを備えたものである。   The apparatus of the present invention is a light source unit that linearly sweeps the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of laser light with a sine wave, and the sweep range is absorbed by the target gas. Three or more light source units including one set to a range including the center wavelength of the band and two set the sweep range to a shorter wavelength side and a longer wavelength side than the center wavelength of the absorption band of the target gas, An optical system that transmits laser light into the atmosphere to be measured, and the transmitted light are received. The received light signal is phase-sensitively detected for each sweep range to measure a 1 × detection signal. A signal processing unit that obtains a gas signal waveform for each sweep range having a magnitude of inclination, synthesizes these gas signal waveforms, obtains a peak value from the synthesized gas signal waveform, and obtains the concentration of the target gas from the peak value; It is provided.

上記光学系は、各光源部からのレーザ光を合波する光合波器と、合波されたレーザ光を被測定雰囲気に導く光源部側光ファイバと、被測定雰囲気中を透過したレーザ光を信号処理部に導く受光側光ファイバとを備えてもよい。   The optical system includes an optical multiplexer that combines the laser beams from the respective light source units, a light source side optical fiber that guides the combined laser beams to the measurement atmosphere, and a laser beam that has passed through the measurement atmosphere. You may provide the light reception side optical fiber guide | induced to a signal processing part.

各光源部に対して光源部を1つずつ順に選択するクロックを供給する選択クロック発生器を設けてもよい。   You may provide the selection clock generator which supplies the clock which selects a light source part one by one with respect to each light source part.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)吸収帯の範囲がレーザ光の変調及び掃引可能な波長範囲より広い対象ガスを検出することができる。   (1) It is possible to detect a target gas whose absorption band is wider than the wavelength range in which laser light can be modulated and swept.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光ファイバ式ガス濃度検出装置1は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する光源部2a,2b,2cであって、掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定した1個(光源部2b)と掃引範囲を対象ガスの吸収帯の中心波長より短波長側と長波長側に設定した2個(光源部2a,2c)とを含む3個以上の光源部2a,2b,2cと、これらのレーザ光を被測定雰囲気中に透過させる光学系3と、その透過光を受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号K(1f)と2倍検波信号K(2f)を計測し、これら1倍検波信号K(1f)と2倍検波信号K(2f)の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める信号処理部31とを備えたものである。   As shown in FIG. 1, the optical fiber type gas concentration detection apparatus 1 according to the present invention linearly sweeps the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of laser light with a sine wave. One light source unit 2a, 2b, 2c that has a sweep range set to a range that includes the center wavelength of the absorption band of the target gas (light source unit 2b) and the sweep range is shorter than the center wavelength of the absorption band of the target gas Three or more light source units 2a, 2b, 2c including two (light source units 2a, 2c) set on the wavelength side and the long wavelength side, and an optical system 3 that transmits these laser beams into the measured atmosphere The transmitted light is received, and the received light signal is phase-sensitively detected for each sweep range to measure the 1 × detection signal K (1f) and the 2 × detection signal K (2f), and these 1 × detection signal K (1f) and double detection signal K (2f) Seek gas signal waveform synthesizing these gases signal waveforms, it obtains the peak value from the synthesis gas signal waveform, in which a signal processing unit 31 for determining the concentration of the target gas from the peak value.

この実施形態では、被測定雰囲気は、所定容積中に所定温度、所定圧力で未知濃度の対象ガスを充填し、所定透過光路長を有するガスセル4により提供される。ガスセル4に光源部2a,2b,2cからの光を透過させて信号処理部に導くために、光学系3は、各光源部2a,2b,2cからのレーザ光を合波する光合波器5と、分岐されたレーザ光をそれぞれのガスセル4に導く光源部側光ファイバ7と、ガスセル4を透過したレーザ光を信号処理部に導く受光側光ファイバ8とを備える。   In this embodiment, the measurement atmosphere is provided by a gas cell 4 having a predetermined volume filled with a target gas having an unknown concentration at a predetermined temperature and pressure and having a predetermined transmission optical path length. In order to transmit the light from the light source units 2a, 2b, and 2c to the gas cell 4 and guide the light to the signal processing unit, the optical system 3 combines the laser beams from the light source units 2a, 2b, and 2c. And a light source side optical fiber 7 that guides the branched laser light to each gas cell 4 and a light receiving side optical fiber 8 that guides the laser light transmitted through the gas cell 4 to the signal processing unit.

この実施形態では、ガスセル4は複数箇所に設置される。よって、それぞれのガスセル4に光源部2a,2b,2cからの光を透過させて信号処理部に集めるために、光学系3は、光合波器5の後段に合波されたレーザ光を複数に分岐する分岐器6を設け、その分岐されたレーザ光をそれぞれのガスセル4に導くよう複数の光源部側光ファイバ7と、それぞれのガスセル4を透過したレーザ光を信号処理部に導くよう複数の受光側光ファイバ8とを備える。   In this embodiment, the gas cells 4 are installed at a plurality of locations. Therefore, in order to transmit the light from the light source units 2 a, 2 b, 2 c to each gas cell 4 and collect it in the signal processing unit, the optical system 3 uses a plurality of laser beams combined in the subsequent stage of the optical multiplexer 5. A branching device 6 for branching is provided, and a plurality of light source unit side optical fibers 7 for guiding the branched laser light to each gas cell 4 and a plurality of laser beams for guiding the laser light transmitted through each gas cell 4 to the signal processing unit. A light receiving side optical fiber 8.

また、光源部側光ファイバ7のうち一つはガスセル4を介さず基準光路用として受光側光ファイバ8の一つに直接接続されている。各受光側光ファイバ8の出力の光路に、z1,z2,…zn−1,znの識別記号を付す。光路z1は基準光路、光路z2〜znはセンサ光路である。   Further, one of the light source unit side optical fibers 7 is directly connected to one of the light receiving side optical fibers 8 for the reference optical path without passing through the gas cell 4. Identification symbols z1, z2,... Zn-1, zn are attached to the optical paths of the outputs of the respective light receiving side optical fibers 8. The optical path z1 is a reference optical path, and the optical paths z2 to zn are sensor optical paths.

図1に拡大して示されるように、光源部2a,2b,2cに用いる光源部2は、三角波が繰り返し生じるように電圧を掃引する三角波掃引器21と、その三角波の電圧に比例して電流が増減する直流のバイアス電流を発生させるバイアス電流源22と、交流を遮断してバイアス電流を通過させるインダクタ23と、所定の周波数fを有する変調用交流電流及び電圧を発生させる発信器24と、発信器24の電圧出力から2倍の周波数fを有する電圧を発生させる倍周器25と、直流を遮断して変調用交流電流を通過させるコンデンサ26と、インダクタ23からのバイアス電流とコンデンサ26からの変調用交流電流が重畳して印加されるレーザダイオードであるDFB−LD27と、DFB−LD27を加熱・冷却するペルチェ素子28と、そのペルチェ素子28の温度を制御するペルチェ素子用電源29とを備える。発信器24からの出力Aと倍周器25からの出力は後述する信号処理部に提供される。   As shown in FIG. 1, the light source unit 2 used in the light source units 2a, 2b, and 2c has a triangular wave sweeper 21 that sweeps a voltage so that a triangular wave is repeatedly generated, and a current proportional to the voltage of the triangular wave. A bias current source 22 that generates a DC bias current that increases or decreases, an inductor 23 that interrupts AC and passes the bias current, a transmitter 24 that generates a modulation AC current and voltage having a predetermined frequency f, From a frequency divider 25 that generates a voltage having a double frequency f from the voltage output of the transmitter 24, a capacitor 26 that cuts off a direct current and passes an alternating current for modulation, a bias current from the inductor 23, and a capacitor 26 A DFB-LD 27 that is a laser diode to which a modulation AC current is superimposed and applied, and a Peltier element 28 for heating and cooling the DFB-LD 27 And a Peltier element power supply 29 for controlling the temperature of the Peltier device 28. The output A from the transmitter 24 and the output from the frequency multiplier 25 are provided to a signal processing unit described later.

光源部2は、変調中心波長を掃引する掃引範囲をそれぞれ異ならせることにより、光ファイバ式ガス濃度検出装置1の光源部2a,2b,2cとなる。各光源部2a,2b,2cの変調周波数fは同じとする。光ファイバ式ガス濃度検出装置1には、各光源部2a,2b,2cに対して光源部を1つずつ順に選択するクロックを供給する選択クロック発生器9が設けられている。選択クロック発生器9からのクロックは、信号処理部にも供給され、このクロックにより後述する計測の順番が与えられる。   The light source unit 2 becomes the light source units 2a, 2b, and 2c of the optical fiber type gas concentration detection device 1 by varying the sweep range for sweeping the modulation center wavelength. The light source units 2a, 2b, and 2c have the same modulation frequency f. The optical fiber type gas concentration detection device 1 is provided with a selection clock generator 9 that supplies a clock for sequentially selecting the light source units one by one for each of the light source units 2a, 2b, 2c. The clock from the selected clock generator 9 is also supplied to the signal processing unit, and the order of measurement described later is given by this clock.

信号処理部31は、各受光側光ファイバ8に接続される複数の受光器32と、その受光信号を光源部2からの出力A,Bを利用して周波数f,2fについて位相敏感検波することにより、1倍検波信号K(1f)と2倍検波信号K(2f)を得る複数の位相検波回路33と、これら1倍検波信号K(1f)と2倍検波信号K(2f)を記憶する信号記憶部34と、信号記憶部34から読み出した信号を演算する演算部35とを備える。この実施形態では、演算部35は、1倍検波信号K(1f)と2倍検波信号K(2f)の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める。この演算の詳細は、以下の動作説明において説明する。   The signal processing unit 31 performs phase-sensitive detection on the frequencies f and 2f using a plurality of light receivers 32 connected to the respective light receiving side optical fibers 8 and the outputs A and B from the light source unit 2. Thus, a plurality of phase detection circuits 33 for obtaining the 1 × detection signal K (1f) and the 2 × detection signal K (2f), and the 1 × detection signal K (1f) and the 2 × detection signal K (2f) are stored. A signal storage unit 34 and a calculation unit 35 that calculates a signal read from the signal storage unit 34 are provided. In this embodiment, the calculating part 35 calculates | requires the gas signal waveform for every sweep range which consists of ratio of 1 time detection signal K (1f) and 2 time detection signal K (2f), synthesize | combines these gas signal waveforms, and synthesize | combines them. The peak value is obtained from the obtained gas signal waveform, and the concentration of the target gas is obtained from the peak value. Details of this calculation will be described in the following operation description.

図1の光ファイバ式ガス濃度検出装置1において、選択クロック発生器9が各光源部2a,2b,2cに図4に示すようにクロックを送ると、各光源部2a,2b,2cは、順次、クロックの立ち上がりから立ち下がりまでの時間に、以下のレーザ光送信動作を行う。   In the optical fiber type gas concentration detection apparatus 1 of FIG. 1, when the selected clock generator 9 sends a clock to each of the light source units 2a, 2b, 2c as shown in FIG. 4, each of the light source units 2a, 2b, 2c sequentially The following laser beam transmission operation is performed during the time from the rising edge to the falling edge of the clock.

ここで、ある光源部では、選択クロック発生器9でクロックが立ち上がっている時間だけ三角波電流が流れ、そのときその他の光源部にはクロックが来ていない。このため他の光源部では、三角波電流が流れておらず、光源部としては駆動されていないので、上記ある光源部からのレーザ光送信に他の光源部からの影響はない。   Here, in a certain light source unit, a triangular wave current flows for a time during which the clock is raised by the selected clock generator 9, and at that time, no clock is coming to the other light source units. For this reason, since the triangular wave current does not flow in the other light source units and the light source unit is not driven, the laser light transmission from the certain light source unit is not affected by the other light source units.

レーザ光送信動作では、ペルチェ素子用電源29によってペルチェ素子28の温度を制御することにより、DFB−LD27の温度を一定に固定する。バイアス電流源22は、三角波掃引器21が出力する三角波の電圧に比例してバイアス電流を発生させる。これにより、バイアス電流は小さい値から大きい値へ一方向に掃引される。このとき、同時に、発信器24が出力する交流電流、すなわち正弦波状の変調電流をバイアス電流に重畳させてDFB−LD27に印加する。図4には印加電流を三角波+正弦波として示す。各光源部2a,2b,2cでは、変調幅d、変調中心波長λで変調を行い、その変調中心波長λを掃引範囲内で直線的に掃引する。   In the laser beam transmission operation, the temperature of the DFB-LD 27 is fixed at a constant level by controlling the temperature of the Peltier element 28 by the Peltier element power source 29. The bias current source 22 generates a bias current in proportion to the triangular wave voltage output from the triangular wave sweeper 21. Thereby, the bias current is swept in one direction from a small value to a large value. At the same time, an alternating current output from the transmitter 24, that is, a sinusoidal modulation current is superimposed on the bias current and applied to the DFB-LD 27. FIG. 4 shows the applied current as a triangular wave + sine wave. Each light source unit 2a, 2b, 2c modulates with the modulation width d and the modulation center wavelength λ, and sweeps the modulation center wavelength λ linearly within the sweep range.

光学系3では、各光源部2a,2b,2cからのレーザ光を合波器5で合波し、分岐器6で各光源部側光ファイバ7へ分岐させる。レーザ光は、ガスセル4を介さず、あるいは各ガスセル4を透過し、基準光路z1及びセンサ光路z2〜znの受光側光ファイバ8に導かれて各受光器32に入射する。各受光器32は、受光信号を出力する。レーザ光は、ガスセル4を透過する際に、図2に示した対象ガスの吸収スペクトルに沿って吸収されるので、ガスセル4を透過したレーザ光の光強度変化を表す受光信号は、図示のように吸収スペクトルの曲線に基づいて変形を受けた波となる。   In the optical system 3, the laser beams from the light source units 2 a, 2 b, and 2 c are multiplexed by the multiplexer 5 and branched to the light source unit side optical fibers 7 by the branching unit 6. The laser light passes through each gas cell 4 without passing through the gas cell 4, is guided to the light receiving side optical fiber 8 in the reference optical path z 1 and the sensor optical paths z 2 to zn, and enters each light receiver 32. Each light receiver 32 outputs a light reception signal. Since the laser light is absorbed along the absorption spectrum of the target gas shown in FIG. 2 when passing through the gas cell 4, the received light signal indicating the light intensity change of the laser light that has passed through the gas cell 4 is as shown in the figure. The wave is deformed based on the curve of the absorption spectrum.

信号処理部31では、クロックの立ち上がりから立ち下がりまでの時間ごとに、以下のガス濃度演算動作を行う。   The signal processing unit 31 performs the following gas concentration calculation operation every time from the rising edge to the falling edge of the clock.

ガス濃度演算動作では、各位相検波回路33が基準光路z1及びセンサ光路z2〜znの受光信号からそれぞれ1倍検波信号K(1f)と2倍検波信号K(2f)を得る。得られた全ての信号は、一時的に信号記憶部34に記憶される。演算部35は、信号記憶部34から読み出した信号を演算する。すなわち、基準光路z1の受光信号について、1倍検波信号z1K(1f)に対する2倍検波信号z1K(2f)の比z1K(2f)/z1K(1f)を計算して図3に示される基準のガス信号を得ると共に、センサ光路z2〜znの受光信号について、1倍検波信号ziK(1f)(iは2〜n)に対する2倍検波信号ziK(2f)の比ziK(2f)/ziK(1f)を計算して対象ガスのガス信号を得る。次いで、基準のガス信号z1K(2f)/z1K(1f)に対する対象ガスのガス信号ziK(2f)/ziK(1f)の差分を計算して波高値判定用信号を得る。   In the gas concentration calculation operation, each phase detection circuit 33 obtains the 1 × detection signal K (1f) and the 2 × detection signal K (2f) from the received light signals of the reference optical path z1 and the sensor optical paths z2 to nz, respectively. All the obtained signals are temporarily stored in the signal storage unit 34. The computing unit 35 computes the signal read from the signal storage unit 34. That is, for the light reception signal in the reference optical path z1, the ratio z1K (2f) / z1K (1f) of the double detection signal z1K (2f) to the double detection signal z1K (1f) is calculated, and the reference gas shown in FIG. A signal is obtained, and a ratio ziK (2f) / ziK (1f) of the double detection signal ziK (2f) with respect to the single detection signal ziK (1f) (i is 2 to n) with respect to the received light signals in the sensor optical paths z2 to zn. To obtain a gas signal of the target gas. Next, a difference between the gas signal ziK (2f) / ziK (1f) of the target gas with respect to the reference gas signal z1K (2f) / z1K (1f) is calculated to obtain a peak value determination signal.

ここで、本実施の形態では、光源部2bの掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定し、光源部2aの掃引範囲を対象ガスの吸収帯の中心波長より短波長側に設定し、光源部2cの掃引範囲を対象ガスの吸収帯の中心波長より長波長側に設定した。よって、対象ガスの吸収帯である広い範囲の中に、各光源部2a,2b,2cの掃引範囲が離散的に配置される。この結果、図3に実線で示すように、離散的なガス信号が得られる。これらのガス信号を合成してひとつのガス信号とみなすことができる。さらに、図3に破線で示すように、測定で得られたガス信号間に推定のガス信号を内挿することができる。   Here, in the present embodiment, the sweep range of the light source unit 2b is set to a range including the center wavelength of the absorption band of the target gas, and the sweep range of the light source unit 2a is shorter than the center wavelength of the absorption band of the target gas. And the sweep range of the light source unit 2c was set longer than the center wavelength of the absorption band of the target gas. Therefore, the sweep ranges of the light source units 2a, 2b, and 2c are discretely arranged in a wide range that is the absorption band of the target gas. As a result, a discrete gas signal is obtained as shown by a solid line in FIG. These gas signals can be combined and regarded as one gas signal. Furthermore, as shown by a broken line in FIG. 3, an estimated gas signal can be interpolated between gas signals obtained by measurement.

図3の波高値判定用信号は、対象ガスのガス信号から基準のガス信号を差し引くことで、光源部2、合波器5、分岐器6、信号処理部31が持つ波長依存性を除去したものであり、この波高値判定用信号が正確な意味での対象ガスのガス信号である。   The peak value determination signal in FIG. 3 subtracts the reference gas signal from the gas signal of the target gas, thereby removing the wavelength dependency of the light source unit 2, the multiplexer 5, the branching unit 6, and the signal processing unit 31. This peak value determination signal is a gas signal of the target gas in an accurate sense.

演算部35は、この波高値判定用信号の最小値から最大値までの高さである波高値を求める。具体的には、短波長側のガス信号波形と長波長側のガス信号波形とを結んだ直線を波高値の基準線とし、中心波長範囲のガス信号波形のうち上記基準線から最も高い値を波高値とする。   The calculator 35 obtains a peak value that is the height from the minimum value to the maximum value of the peak value determination signal. Specifically, the straight line connecting the gas signal waveform on the short wavelength side and the gas signal waveform on the long wavelength side is used as the reference line of the peak value, and the highest value from the reference line in the gas signal waveform in the central wavelength range is set. The peak value.

その後、演算部35は、この波高値を、あらかじめ既知濃度の基準ガスを用いて求めていた波高値とガス濃度との関係式又は関係表に適用してガス濃度を求める。   Thereafter, the computing unit 35 obtains the gas concentration by applying the peak value to a relational expression or relation table between the peak value and the gas concentration obtained in advance using a reference gas having a known concentration.

以上説明したように、本発明では、レーザ光の変調と掃引をする光源部を3個用いて、レーザ光を被測定雰囲気中に透過させて受光し、受光信号から求めた掃引範囲ごとのガス信号波形を合成し、その合成したガス信号波形から波高値を求めるようにしたので、対象ガスの吸収帯の範囲が1個の光源部で可能な波長範囲より広い場合でも正しく波高値を求めることができる。なお、前記実施形態では、光源部2を3個用いたが、4個以上でも効果があることは言うまでもない。   As described above, the present invention uses three light source units for modulating and sweeping laser light, transmits the laser light through the atmosphere to be measured, and receives the gas for each sweep range obtained from the received light signal. Since the signal waveform is synthesized and the peak value is obtained from the synthesized gas signal waveform, the peak value can be correctly obtained even when the absorption band range of the target gas is wider than the wavelength range possible with one light source unit. Can do. In the above embodiment, three light source units 2 are used, but it goes without saying that four or more light source units 2 are also effective.

次に、他の実施形態を説明する。   Next, another embodiment will be described.

図1の装置構成は前記実施形態と同じ(ただし、倍周器25と位相検波回路33の2fは不要)とし、信号処理部31の演算部35では、1倍検波信号の傾き(横軸を波長とし縦軸を信号の大きさとしたときの傾き、すなわち波長対信号の比)からガス濃度を求める。   The apparatus configuration of FIG. 1 is the same as that of the above-described embodiment (however, 2f of the frequency multiplier 25 and the phase detection circuit 33 is not necessary), and the calculation unit 35 of the signal processing unit 31 has an inclination of the single detection signal (the horizontal axis The gas concentration is determined from the slope of the wavelength and the vertical axis representing the signal magnitude, ie, the ratio of wavelength to signal.

各光源部2a,2b,2cにおけるレーザ光送信動作は、前記実施形態と同じであるので、信号処理部が行うガス濃度演算動作のみ説明する。   Since the laser beam transmission operation in each of the light source units 2a, 2b, and 2c is the same as that in the above embodiment, only the gas concentration calculation operation performed by the signal processing unit will be described.

図4(a)に示すような受光信号が得られたとする。受光信号は、対象ガスによってその吸収帯の光が吸収されるので、掃引範囲内に値が小さいピークを有する。そのピークの波長が吸収帯の中心波長である。信号処理部は、各位相検波回路において、基準光路z1及びセンサ光路z2〜znの受光信号から1倍検波信号K(1f)を検波して信号記憶部に記憶する。1倍検波信号K(1f)は図4(b)のようになる。   Assume that a light reception signal as shown in FIG. Since the light of the absorption band is absorbed by the target gas, the light reception signal has a small peak in the sweep range. The peak wavelength is the center wavelength of the absorption band. In each phase detection circuit, the signal processing unit detects the 1 × detection signal K (1f) from the received light signals of the reference optical path z1 and the sensor optical paths z2 to zn, and stores them in the signal storage unit. The 1 × detection signal K (1f) is as shown in FIG.

演算部35は、1倍検波信号を読み出し、基準光路z1の受光信号から求めた1倍検波信号z1K(1f)について傾きを求め、これを基準ガスのガス信号とする。なお、図4(b)には傾きが示してある。演算部35は、センサ光路z2〜znの受光信号から求めた1倍検波信号ziK(1f)についても、同様に傾きを求め対象ガスのガス信号とする。   The computing unit 35 reads the 1 × detection signal, obtains the inclination of the 1 × detection signal z1K (1f) obtained from the light reception signal of the reference optical path z1, and uses this as the gas signal of the reference gas. In FIG. 4B, the inclination is shown. The calculation unit 35 similarly obtains the inclination of the 1 × detection signal ziK (1f) obtained from the received light signals of the sensor optical paths z2 to nz and sets it as the gas signal of the target gas.

図4(c)の2倍検波信号は本実施形態では計算しないが、前記実施形態の参考のため図示した。   The double detection signal of FIG. 4C is not calculated in this embodiment, but is shown for reference of the embodiment.

図5に示すように、各1倍検波信号の傾きから求めた対象ガスのガス信号と基準ガスのガス信号は、それぞれ1つの掃引範囲に1つ得られる。   As shown in FIG. 5, one gas signal of the target gas and one gas signal of the reference gas obtained from the slope of each 1-fold detection signal are obtained in one sweep range.

演算部35は、対象ガスのガス信号と基準ガスのガス信号の差分を計算して波高値判定用信号を得る。これは、装置各部の波長依存性を除去するために行うので、波高値判定用信号は波長依存性が除去された正確なガス信号となる。   The computing unit 35 calculates a difference between the gas signal of the target gas and the gas signal of the reference gas to obtain a peak value determination signal. Since this is performed to remove the wavelength dependence of each part of the apparatus, the peak value determination signal is an accurate gas signal from which the wavelength dependence has been removed.

演算部35は、この波高値判定用信号の最小値から最大値までの高さである波高値を求める。具体的には、短波長側のガス信号波形と長波長側のガス信号波形とを結んだ直線を波高値の基準線とし、中心波長範囲のガス信号波形のうち上記基準線から最も高い値を波高値とする。   The calculator 35 obtains a peak value that is the height from the minimum value to the maximum value of the peak value determination signal. Specifically, the straight line connecting the gas signal waveform on the short wavelength side and the gas signal waveform on the long wavelength side is used as the reference line of the peak value, and the highest value from the reference line in the gas signal waveform in the central wavelength range is set. The peak value.

本発明の一実施形態を示す光ファイバ式ガス濃度検出装置における全体構成、光源部詳細、信号処理部の構成図である。1 is an overall configuration, details of a light source section, and a configuration diagram of a signal processing section in an optical fiber type gas concentration detection device showing an embodiment of the present invention. 本発明における光源部の動作概念図である。It is an operation | movement conceptual diagram of the light source part in this invention. 本発明により得られるガス信号及び波高値判定用信号の波形図である。It is a wave form diagram of the gas signal obtained by this invention, and the signal for peak value determination. (a)は受光信号、(b)は1倍検波信号、(c)は2倍検波信号の波形図である。(A) is a light reception signal, (b) is a 1 × detection signal, and (c) is a waveform diagram of a 2 × detection signal. 本発明により得られるガス信号及び波高値判定用信号の波形図である。It is a wave form diagram of the gas signal obtained by this invention, and the signal for peak value determination.

符号の説明Explanation of symbols

1 光ファイバ式ガス濃度検出装置
2,2a,2b,2c 光源部
3 光学系
4 ガスセル
5 合波器
6 分岐器
31 信号処理部
DESCRIPTION OF SYMBOLS 1 Optical fiber type gas concentration detection apparatus 2, 2a, 2b, 2c Light source part 3 Optical system 4 Gas cell 5 Multiplexer 6 Branch device 31 Signal processing part

Claims (7)

レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する3個以上の光源部を設けて、うち1個の光源部の掃引範囲は対象ガスの吸収帯の中心波長を含む範囲に設定し、2個の光源部の掃引範囲は対象ガスの吸収帯の中心波長より短波長側と長波長側に設定し、これらのレーザ光を被測定雰囲気中に透過させて受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号と2倍検波信号を計測し、これら1倍検波信号と2倍検波信号の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求めることを特徴とする光ファイバ式ガス濃度検出方法。   Three or more light source units that linearly sweep the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of the laser beam with a sine wave, of which the sweep range of one light source unit is the target Set to a range that includes the center wavelength of the absorption band of the gas, and set the sweep range of the two light sources to the short wavelength side and the long wavelength side from the center wavelength of the absorption band of the target gas, and measure these laser beams Light is transmitted through the atmosphere to receive light, and the received light signal is phase-sensitively detected for each sweep range to measure the 1 × and 2 × detection signals. From the ratio of these 1 × and 2 × detection signals, An optical fiber type gas concentration characterized by obtaining a gas signal waveform for each sweep range, synthesizing these gas signal waveforms, obtaining a crest value from the synthesized gas signal waveform, and obtaining a concentration of a target gas from the crest value Detection method. レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する3個以上の光源部を設けて、うち1個の光源部の掃引範囲は対象ガスの吸収帯の中心波長を含む範囲に設定し、2個の光源部の掃引範囲は対象ガスの吸収帯の中心波長より短波長側と長波長側に設定し、これらのレーザ光を被測定雰囲気中に透過させて受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号を計測し、この1倍検波信号の傾きの大きさからなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求めることを特徴とする光ファイバ式ガス濃度検出方法。   Three or more light source units that linearly sweep the modulation center wavelength within a predetermined sweep range while modulating the wavelength and intensity of the laser beam with a sine wave, of which the sweep range of one light source unit is the target Set to a range that includes the center wavelength of the absorption band of the gas, and set the sweep range of the two light sources to the short wavelength side and the long wavelength side from the center wavelength of the absorption band of the target gas, and measure these laser beams Light is transmitted through the atmosphere to receive light, and the received light signal is phase-sensitively detected for each sweep range to measure a 1 × detection signal, and a gas signal for each sweep range consisting of the magnitude of the slope of this 1 × detection signal. An optical fiber type gas concentration detection method characterized by obtaining a waveform, synthesizing these gas signal waveforms, obtaining a peak value from the synthesized gas signal waveform, and obtaining a concentration of a target gas from the peak value. 短波長側のガス信号波形と長波長側のガス信号波形とを結んだ直線を波高値の基準線とし、中心波長範囲のガス信号波形のうち上記基準線から最も高い値を波高値とすることを特徴とする請求項1又は2記載の光ファイバ式ガス濃度検出方法。   The straight line connecting the gas signal waveform on the short wavelength side and the gas signal waveform on the long wavelength side is the reference line of the peak value, and the highest value from the above reference line is the peak value among the gas signal waveforms in the central wavelength range. The optical fiber type gas concentration detection method according to claim 1 or 2. レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する光源部であって、掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定した1個と掃引範囲を対象ガスの吸収帯の中心波長より短波長側と長波長側に設定した2個とを含む3個以上の光源部と、これらのレーザ光を被測定雰囲気中に透過させる光学系と、その透過光を受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号と2倍検波信号を計測し、これら1倍検波信号と2倍検波信号の比からなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める信号処理部とを備えたことを特徴とする光ファイバ式ガス濃度検出装置。   A light source unit that modulates the wavelength and intensity of a laser beam with a sine wave and linearly sweeps the modulation center wavelength within a predetermined sweep range, wherein the sweep range is within a range including the center wavelength of the absorption band of the target gas. Three or more light source sections including one set and two sweep ranges set shorter and longer than the center wavelength of the absorption band of the target gas, and these laser lights in the atmosphere to be measured The optical system to transmit and the transmitted light are received, and the received light signal is phase-sensitively detected for each sweep range to measure the 1 × detection signal and the 2 × detection signal, and these 1 × detection signal and 2 × detection signal are measured. A signal processing unit that obtains a gas signal waveform for each sweep range including a signal ratio, synthesizes these gas signal waveforms, obtains a peak value from the synthesized gas signal waveform, and obtains a concentration of the target gas from the peak value; Optical fiber type gas Concentration detection device. レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で直線的に掃引する光源部であって、掃引範囲を対象ガスの吸収帯の中心波長を含む範囲に設定した1個と掃引範囲を対象ガスの吸収帯の中心波長より短波長側と長波長側に設定した2個とを含む3個以上の光源部と、これらのレーザ光を被測定雰囲気中に透過させる光学系と、その透過光を受光し、その受光信号をそれぞれの掃引範囲ごとに位相敏感検波して1倍検波信号を計測し、この1倍検波信号の傾きの大きさからなる掃引範囲ごとのガス信号波形を求め、これらガス信号波形を合成し、合成したガス信号波形から波高値を求め、この波高値から対象ガスの濃度を求める信号処理部とを備えたことを特徴とする光ファイバ式ガス濃度検出装置。   A light source unit that modulates the wavelength and intensity of a laser beam with a sine wave and linearly sweeps the modulation center wavelength within a predetermined sweep range, wherein the sweep range is within a range including the center wavelength of the absorption band of the target gas. Three or more light source sections including one set and two sweep ranges set shorter and longer than the center wavelength of the absorption band of the target gas, and these laser lights in the atmosphere to be measured The optical system to transmit and the transmitted light are received, the received light signal is phase-sensitively detected for each sweep range, and a 1-fold detection signal is measured, and a sweep range consisting of the slope of the 1-fold detection signal And a signal processing unit that obtains a gas signal waveform for each, synthesizes these gas signal waveforms, obtains a crest value from the synthesized gas signal waveform, and obtains the concentration of the target gas from the crest value. Fiber type gas concentration detector. 上記光学系は、各光源部からのレーザ光を合波する光合波器と、合波されたレーザ光を被測定雰囲気に導く光源部側光ファイバと、被測定雰囲気中を透過したレーザ光を信号処理部に導く受光側光ファイバとを備えたことを特徴とする請求項4又は5記載の光ファイバ式ガス濃度検出装置。   The optical system includes an optical multiplexer that combines the laser beams from the respective light source units, a light source side optical fiber that guides the combined laser beams to the measurement atmosphere, and a laser beam that has passed through the measurement atmosphere. 6. The optical fiber type gas concentration detection device according to claim 4, further comprising a light receiving side optical fiber led to the signal processing unit. 各光源部に対して光源部を1つずつ順に選択するクロックを供給する選択クロック発生器を設けた請求項6記載の光ファイバ式ガス濃度検出装置。   The optical fiber type gas concentration detection device according to claim 6, further comprising a selection clock generator for supplying a clock for sequentially selecting the light source units one by one for each light source unit.
JP2006040968A 2006-02-17 2006-02-17 Optical fiber type gas concentration detection method and device Pending JP2007218783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040968A JP2007218783A (en) 2006-02-17 2006-02-17 Optical fiber type gas concentration detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040968A JP2007218783A (en) 2006-02-17 2006-02-17 Optical fiber type gas concentration detection method and device

Publications (1)

Publication Number Publication Date
JP2007218783A true JP2007218783A (en) 2007-08-30

Family

ID=38496242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040968A Pending JP2007218783A (en) 2006-02-17 2006-02-17 Optical fiber type gas concentration detection method and device

Country Status (1)

Country Link
JP (1) JP2007218783A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048639A (en) * 2008-08-21 2010-03-04 Fuji Electric Systems Co Ltd Laser type gas analyzer and method for measuring gas concentration
JP2010169625A (en) * 2009-01-26 2010-08-05 Anritsu Corp Gas detector
CN103543126A (en) * 2013-10-30 2014-01-29 北京航天易联科技发展有限公司 Calculation method for signal correction compensation under signal interference for gas monitoring
JP2015114258A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP2015114259A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
CN108226094A (en) * 2018-01-23 2018-06-29 山东省科学院激光研究所 gas concentration monitoring system, method and device
KR20230096760A (en) * 2021-12-23 2023-06-30 삼성전자주식회사 Apparatus for detecting UV blocking material and mobile device including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253952A (en) * 1984-05-31 1985-12-14 Fujitsu Ltd Measurement system for gas concentration
JPH05256769A (en) * 1992-03-11 1993-10-05 Tokyo Electric Power Co Inc:The Method and apparatus for measuring gas concentration
JPH09297061A (en) * 1996-05-01 1997-11-18 Japan Radio Co Ltd Analyzer of carbon isotope
JPH10132737A (en) * 1996-10-31 1998-05-22 Hitachi Cable Ltd Device and method for measuring remote gas concentration
JP2004325099A (en) * 2003-04-22 2004-11-18 Yokogawa Electric Corp Laser light source and laser spectroscopic analyzer using the same
JP2005091150A (en) * 2003-09-17 2005-04-07 Hitachi Cable Ltd Multi-point optical path switching type gas concentration detection method and its detector
JP2005140738A (en) * 2003-11-10 2005-06-02 Hitachi Cable Ltd Method and device for multi-point gas concentration detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253952A (en) * 1984-05-31 1985-12-14 Fujitsu Ltd Measurement system for gas concentration
JPH05256769A (en) * 1992-03-11 1993-10-05 Tokyo Electric Power Co Inc:The Method and apparatus for measuring gas concentration
JPH09297061A (en) * 1996-05-01 1997-11-18 Japan Radio Co Ltd Analyzer of carbon isotope
JPH10132737A (en) * 1996-10-31 1998-05-22 Hitachi Cable Ltd Device and method for measuring remote gas concentration
JP2004325099A (en) * 2003-04-22 2004-11-18 Yokogawa Electric Corp Laser light source and laser spectroscopic analyzer using the same
JP2005091150A (en) * 2003-09-17 2005-04-07 Hitachi Cable Ltd Multi-point optical path switching type gas concentration detection method and its detector
JP2005140738A (en) * 2003-11-10 2005-06-02 Hitachi Cable Ltd Method and device for multi-point gas concentration detection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048639A (en) * 2008-08-21 2010-03-04 Fuji Electric Systems Co Ltd Laser type gas analyzer and method for measuring gas concentration
JP2010169625A (en) * 2009-01-26 2010-08-05 Anritsu Corp Gas detector
CN103543126A (en) * 2013-10-30 2014-01-29 北京航天易联科技发展有限公司 Calculation method for signal correction compensation under signal interference for gas monitoring
JP2015114258A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP2015114259A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
CN108226094A (en) * 2018-01-23 2018-06-29 山东省科学院激光研究所 gas concentration monitoring system, method and device
CN108226094B (en) * 2018-01-23 2023-08-15 山东省科学院激光研究所 Gas concentration monitoring system, method and device
KR20230096760A (en) * 2021-12-23 2023-06-30 삼성전자주식회사 Apparatus for detecting UV blocking material and mobile device including same
KR102654875B1 (en) * 2021-12-23 2024-04-05 삼성전자주식회사 Apparatus for detecting UV blocking material and mobile device including same

Similar Documents

Publication Publication Date Title
JP2007240248A (en) Optical multiple gas concentration detection method and device
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JP5045480B2 (en) Gas concentration measuring device and gas concentration measuring method
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
CA2511960A1 (en) Detection apparatus, optical path length measuring apparatus, device for measurement, method for evaluating optical member, and method for detecting change in temperature
JP4065452B2 (en) Multi-point optical gas concentration detection system
JP4976924B2 (en) Optical gas detection method and optical gas detection device
JP2009198300A (en) Optical fiber characteristic measuring device and method
JP3114959B2 (en) Gas concentration detection method and apparatus
AU2012227277B2 (en) Remote absorption spectroscopy by coded transmission
JP2010032454A (en) Gas analyzer and gas analysis method
JP5594514B2 (en) Laser gas analyzer
JP2009041941A (en) Gas concentration measuring device and method
JPH0830680B2 (en) Gas detector
KR101159215B1 (en) Optics device for measuring gas temperature and density
JP5423496B2 (en) Laser gas analyzer
JP2007218844A (en) Method and apparatus for optically detecting multi-gas concentration
JP4217108B2 (en) Multipoint optical gas concentration detection method and system
JP4905106B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
JPH04326041A (en) Gas concentration measuring method and device
JP4993213B2 (en) Laser gas analyzer
JP2009264814A (en) Laser type gas analyzer for multi-component
JP4918865B2 (en) Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method
CN113612859B (en) Mine environment monitoring system and monitoring method thereof
JP2008298637A (en) Optical method and device for detecting gas concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A131 Notification of reasons for refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A02