JP2005140738A - Method and device for multi-point gas concentration detection - Google Patents

Method and device for multi-point gas concentration detection Download PDF

Info

Publication number
JP2005140738A
JP2005140738A JP2003379865A JP2003379865A JP2005140738A JP 2005140738 A JP2005140738 A JP 2005140738A JP 2003379865 A JP2003379865 A JP 2003379865A JP 2003379865 A JP2003379865 A JP 2003379865A JP 2005140738 A JP2005140738 A JP 2005140738A
Authority
JP
Japan
Prior art keywords
light
gas
optical
gas concentration
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003379865A
Other languages
Japanese (ja)
Inventor
Teruyuki Nakamura
晃之 中村
Yukio Ikeda
幸雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003379865A priority Critical patent/JP2005140738A/en
Publication of JP2005140738A publication Critical patent/JP2005140738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for multi-point gas concentration detection in which a light is introduced to multi point gas detecting part without shortening the life of an optical switch. <P>SOLUTION: In the optical gas concentration detection method which irradiates a light from a light source to a plurality of gas detecting parts 8 where gas atmosphere to be measured exists and receives a transmitted light to detect each gas concentrations from the received signals, the light form the light source is sequentially introduced to one of a plurality of branching light paths 4 by a first stage optical switch 5, lights from each branching light paths 4 are sequentially introduced to one of a plurality of individual branching paths 6 by a next stage or later optical switch 7, and then lights from individual branching paths 6 are introduced to each of the gas detecting parts 8. Therefore, the number of switching the optical switches 5 and 7 can be reduced comparing with the number of the gas detecting parts 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスによる光吸収を利用したガス濃度検知に係り、光スイッチ寿命を縮めることなく多点のガス検知部に光を導くことができる多点式ガス濃度検知方法及びその装置に関する。   The present invention relates to gas concentration detection using light absorption by gas, and relates to a multipoint gas concentration detection method and apparatus capable of guiding light to a multipoint gas detection unit without shortening the life of an optical switch.

ガスを検知するセンサとして、半導体式などの電気的なセンサが使用されているがセンサ近傍に電源設備が必要であることや定期的に校正が必要なことなどから、長距離監視や多点での検知を行う場合、保守性や経済性の面で問題がある。   Semiconductor-type electrical sensors are used as sensors to detect gas, but power supply equipment is required near the sensor and periodic calibration is required. However, there are problems in terms of maintainability and economy.

これに対し、光を応用したセンサがある。ある特定波長の光、例えば、レーザ光をガス分子が吸収する現象があるので、この現象を利用してガスの有無や濃度を検知できる。この種のセンサが工業計測、公害監視などに広く利用されている。このときレーザ光を光ファイバで伝送することにより、遠隔監視も可能となる。そこで、本出願人は、特許文献1のように、光ファイバを伝送路とした遠隔ガス監視装置を開発した。この装置では、半導体レーザの駆動電流を所定の電流値を中心として高周波で変調し、波長及び強度の変調されたレーザ光を発振させる。さらに、電流及び温度を制御して発振の中心波長がガスの吸収線の中心になるよう半導体レーザの後方に出射するレーザ光をモニタに用い、前方に出射するレーザ光を安定させる。そうして安定して前方に出射するレーザ光を光ファイバを介して未知濃度のガスが充填されたガスセルに導入しガス雰囲気中を透過させ、その透過光を対向する別の光ファイバに導入させ、この光ファイバで透過光を受光部まで導き、受光した信号の2倍波検波信号又は基本波信号より、ガス濃度を高いSN比で検知する。   On the other hand, there is a sensor using light. Since there is a phenomenon in which gas molecules absorb light of a specific wavelength, for example, laser light, the presence or concentration of gas can be detected using this phenomenon. This type of sensor is widely used for industrial measurement and pollution monitoring. At this time, remote monitoring is also possible by transmitting laser light through an optical fiber. Therefore, the present applicant has developed a remote gas monitoring apparatus using an optical fiber as a transmission path as disclosed in Patent Document 1. In this apparatus, the drive current of the semiconductor laser is modulated at a high frequency around a predetermined current value, and laser light having a modulated wavelength and intensity is oscillated. Further, by controlling the current and temperature, the laser beam emitted to the rear of the semiconductor laser is used for the monitor so that the center wavelength of oscillation becomes the center of the gas absorption line, and the laser beam emitted forward is stabilized. Then, laser light that is stably emitted forward is introduced into a gas cell filled with a gas of unknown concentration through an optical fiber, transmitted through the gas atmosphere, and the transmitted light is introduced into another optical fiber that faces it. The transmitted light is guided to the light receiving unit by this optical fiber, and the gas concentration is detected with a higher S / N ratio than the double wave detection signal or the fundamental wave signal of the received signal.

特開平5−256769号公報JP-A-5-256769

前記の光学式のセンサにおいて、複数箇所、即ち多点でガスを検知する場合、ガスセルからなるガス検知部をひとつひとつ測定していくため、光スイッチを用いて光源光を順次異なるガス検知部に導くことになる。ところが、光スイッチには、動作が保証される耐久切り替え回数があり、この耐久切り替え回数で寿命が決まるため、これによって装置全体の寿命が規定されてしまうという問題がある。   In the optical sensor described above, when gas is detected at a plurality of points, that is, at multiple points, the gas detectors composed of gas cells are measured one by one, and therefore light source light is sequentially guided to different gas detectors using an optical switch. It will be. However, the optical switch has a durable switching number for which the operation is guaranteed, and the lifetime is determined by the durable switching number, which causes a problem that the lifetime of the entire apparatus is defined.

そこで、本発明の目的は、上記課題を解決し、光スイッチ寿命を縮めることなく多点のガス検知部に光を導くことができる多点式ガス濃度検知方法及びその装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and provide a multipoint gas concentration detection method and apparatus capable of guiding light to a multipoint gas detection unit without shortening the optical switch life. .

上記目的を達成するために本発明の方法は、光源光を測定対象とするガス雰囲気が存在する複数のガス検知部に順次通して透過光を受光し、受光信号からそれぞれのガス濃度を検知する光式ガス濃度検知方法において、前記光源光を初段の光スイッチにより複数の分岐光路のいずれかに順次導き、各分岐光路から出る光をそれぞれ次段以降の光スイッチにより複数の個別分岐光路のいずれかに順次導き、各個別分岐光路から個々のガス検知部に光を導くようにしたものである。   In order to achieve the above object, according to the method of the present invention, the light source light is sequentially passed through a plurality of gas detection units having a gas atmosphere to be measured, and the transmitted light is received, and each gas concentration is detected from the received light signal. In the optical gas concentration detection method, the light source light is sequentially guided to one of a plurality of branch optical paths by an optical switch in the first stage, and the light emitted from each branch optical path is The light is sequentially guided to guide the light from each individual branch optical path to each gas detector.

また、本発明の装置は、測定対象とするガス雰囲気が容器に充填された複数のガス検知部と、このガス検知部に透過させる光を発生する光源部と、前記ガス検知部を通した透過光を受光して受光信号からガス濃度を検知する信号処理部とを有する光式ガス濃度検知装置において、前記光源光を複数の分岐光路のいずれかに順次導く初段の光スイッチと、各分岐光路から出る光を複数の個別分岐光路のいずれかに順次導く次段以降の光スイッチとを設け、各個別分岐光路に個々のガス検知部を接続したものである。   In addition, the apparatus of the present invention includes a plurality of gas detection units filled with a gas atmosphere to be measured, a light source unit that generates light transmitted through the gas detection unit, and transmission through the gas detection unit. In an optical gas concentration detection device having a signal processing unit that receives light and detects a gas concentration from a light reception signal, an optical switch in the first stage for sequentially guiding the light source light to any one of a plurality of branch optical paths, and each branch optical path And a subsequent optical switch that sequentially guides light emitted from each of the plurality of individual branch optical paths to each individual branch optical path, and an individual gas detector is connected to each individual branch optical path.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)光スイッチの切り替え回数がガス検知部の個数に比して少なくなるので、寿命を長くすることができる。   (1) Since the number of switching times of the optical switch is smaller than the number of gas detectors, the life can be extended.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係るガス濃度検知装置は、大きくは、光源部1、光学系2、信号処理部3から構成されている。   As shown in FIG. 1, the gas concentration detection apparatus according to the present invention mainly includes a light source unit 1, an optical system 2, and a signal processing unit 3.

光源部1は、単一波長のレーザ光を発振させる分布帰還型半導体レーザ(DFB−LD)11と、そのDFB−LD11を搭載して温度を制御するペルチェ素子12と、そのペルチェ素子12に電源を供給する電源供給部13と、周波数fの正弦波信号Xを出力する発振器14と、この周波数fの信号により周波数2fの2倍波信号XXを作成する倍周器15と、DBF−LD11にバイアス電流を付加するバイアス電流源16と、そのバイアス電流源16の掃引の仕方を決定する三角波掃引器17と、発振器14からの正弦波信号をDFB−LD11に供給するためのコンデンサCと、バイアス電流源16からのバイアス電流をDFB−LD11に供給するためのインダクタLとからなる。   The light source unit 1 includes a distributed feedback semiconductor laser (DFB-LD) 11 that oscillates laser light having a single wavelength, a Peltier element 12 that includes the DFB-LD 11 and controls temperature, and supplies power to the Peltier element 12. A power supply unit 13 that supplies a frequency signal f, an oscillator 14 that outputs a sine wave signal X having a frequency f, a frequency multiplier 15 that creates a second harmonic signal XX having a frequency 2f from the signal having the frequency f, and a DBF-LD 11. A bias current source 16 for adding a bias current, a triangular wave sweeper 17 for determining how to sweep the bias current source 16, a capacitor C for supplying a sine wave signal from the oscillator 14 to the DFB-LD 11, and a bias It comprises an inductor L for supplying a bias current from the current source 16 to the DFB-LD 11.

光学系2は、光源部1からの光源光を複数の分岐光路4a,4b,4cのいずれかに順次導く初段の光スイッチ5と、各分岐光路4a,4b,4cから出る光を複数の個別分岐光路6(6a1,6a2,6a3,6a4,6b1,6b2,6b3,6b4,6c1,6c2,6c3,6c4)のいずれかに順次導く第2段の光スイッチ7(7a,7b,7c)とを設け、各個別分岐光路に個々のガス検知部8(8−1〜8−9)を接続したものである。各光スイッチ5,7は2系統の光路を連動して切り替えることができるものである。第2段光スイッチ7では各ガス検知部の入射用光路である個別分岐光路6とこれに対応する出射用光路(符号なし)とが連動して分岐光路4a,4b,4cと戻り分岐光路(符号なし)に対して選択的に切り替わり、初段光スイッチ5では第2段光スイッチ7a,7b,7cへの分岐光路4a,4b,4cとこれに対応する戻り分岐光路とが連動して光源部1からの光源光路と信号処理部3への受光光路に対して選択的に切り替わるようになっている。また、第2段光スイッチ7a,7b,7cでは、個別分岐光路6a1,6b1,6c1がガス検知部を経由しないで戻りの系統に戻され基準光路として使用される。   The optical system 2 includes a first-stage optical switch 5 that sequentially guides light source light from the light source unit 1 to any one of a plurality of branch light paths 4a, 4b, and 4c, and a plurality of individual light beams emitted from the branch light paths 4a, 4b, and 4c. A second-stage optical switch 7 (7a, 7b, 7c) that sequentially guides one of the branched optical paths 6 (6a1, 6a2, 6a3, 6a4, 6b1, 6b2, 6b3, 6b4, 6c1, 6c2, 6c3, 6c4) Provided, and individual gas detectors 8 (8-1 to 8-9) are connected to the individual branch optical paths. Each of the optical switches 5 and 7 can switch between two optical paths in conjunction with each other. In the second-stage optical switch 7, the individual branch optical path 6 that is the incident optical path of each gas detection unit and the corresponding output optical path (not indicated) are linked to each other, and the branch optical paths 4 a, 4 b, 4 c and the return branch optical path ( In the first stage optical switch 5, the branch optical paths 4 a, 4 b, 4 c to the second stage optical switches 7 a, 7 b, 7 c and the corresponding return branch optical paths are interlocked to each other in the light source section. The light source optical path from 1 and the light receiving optical path to the signal processing unit 3 are selectively switched. In the second-stage optical switches 7a, 7b, and 7c, the individual branch optical paths 6a1, 6b1, and 6c1 are returned to the return system without using the gas detection unit, and are used as reference optical paths.

この形態では、光スイッチが2段構成となっている。初段光スイッチ5は1系統が1光路対3光路(これを1×3構成という)となっており、2系統分で2×6構成となっている。各第2段光スイッチ7は1系統が1×4構成、2系統分で2×8構成となっている。   In this embodiment, the optical switch has a two-stage configuration. The first stage optical switch 5 has one optical path pair to three optical paths (this is referred to as a 1 × 3 configuration), and has a 2 × 6 configuration for two systems. Each second-stage optical switch 7 has a 1 × 4 configuration for one system and a 2 × 8 configuration for two systems.

ガス検知部8は、図2に示されるように、測定対象である未知濃度の種々のガス(メタン等)が充填される容器(ガスセル)21を有し、任意の場所に容易に設置できるようになっている。この容器21の両端には互いに対向する光コネクタ22,23が設けられ、光コネクタ22には個別分岐光路6からなる入射用光路24が容器内に光を導入可能に接続されると共に、光コネクタ23には出射用光路23が容器内から光を導出可能に接続されている。   As shown in FIG. 2, the gas detection unit 8 includes a container (gas cell) 21 filled with various gases (methane or the like) having an unknown concentration to be measured, and can be easily installed at an arbitrary place. It has become. Opposite optical connectors 22, 23 are provided at both ends of the container 21, and an optical path for incidence 24 including an individual branch optical path 6 is connected to the optical connector 22 so that light can be introduced into the container. An output optical path 23 is connected to 23 so that light can be led out from the container.

図1に戻り、信号処理部3は、受光器31と、光源部1の発振器14からの正弦波信号Xの周波数fに同期して受光器31の出力の位相敏感検波を行う位相検波器32と、倍周器15からの正弦波信号XXの周波数2fに同期して受光器31の出力の位相敏感検波を行う位相検波器33と、各光スイッチ5,7a,7b,7cにおける光路切替を制御してガス検知部8を個別に特定すると共に両位相検波器32、33の出力比を記録、演算してガス濃度を求めるコンピュータ34とからなる。   Returning to FIG. 1, the signal processing unit 3 includes a light detector 31 and a phase detector 32 that performs phase-sensitive detection of the output of the light receiver 31 in synchronization with the frequency f of the sine wave signal X from the oscillator 14 of the light source unit 1. And a phase detector 33 that performs phase-sensitive detection of the output of the light receiver 31 in synchronization with the frequency 2f of the sine wave signal XX from the frequency multiplier 15, and optical path switching in each of the optical switches 5, 7a, 7b, and 7c. It comprises a computer 34 that controls and individually identifies the gas detector 8 and records and calculates the output ratio of both phase detectors 32 and 33 to determine the gas concentration.

以下、本発明に係るガス濃度検知方法を説明する。   The gas concentration detection method according to the present invention will be described below.

電源供給部13より電源を制御することにより、ペルチェ素子12の温度を制御してDFB−LD11の温度を一定にし、バイアス電流源16と三角波掃引器17とにより、バイアス電流を三角波状にして電流の増減の方向が一方向となるように掃引する。このとき、同時に、発振器14より正弦波状の交流電流(変調電流)を重畳させる。従って、光源部1からは、波長及び強度の変調されたレーザ光が出射される。   By controlling the power supply from the power supply unit 13, the temperature of the Peltier element 12 is controlled to keep the temperature of the DFB-LD 11 constant, and the bias current source 16 and the triangular wave sweeper 17 are used to change the bias current into a triangular waveform. Sweep so that the direction of increase / decrease is one direction. At the same time, a sinusoidal alternating current (modulated current) is superposed from the oscillator 14. Accordingly, the light source unit 1 emits laser light having a modulated wavelength and intensity.

このときコンピュータ34は、基準光路を含む各個別分岐光路6に順次光源光が導かれるよう各光スイッチ5,7を制御する。例えば、最初に初段光スイッチ5が分岐光路4aに繋がるA1チャンネルを選択し、第2段光スイッチ7aが個別分岐光路6a1に繋がるB01チャンネルを選択しているとすると、その次には第2段光スイッチ7aが個別分岐光路6a2に繋がるB02チャンネルを選択するよう切り替える。その後、第2段光スイッチ7aがB03,B04チャンネルを選択するよう順次切り替え、その次は、初段光スイッチ5が分岐光路4bに繋がるA2チャンネルを選択し、第2段光スイッチ7bが個別分岐光路6b1に繋がるB02チャンネルを選択するよう切り替える。第2段光スイッチ7bの全てのチャンネルへの切り替えが終わると、初段光スイッチ5がA3チャンネルを選択するよう切り替える。このようにして、各光スイッチ5,7を順次切り替えていくと、基準光路を含む各個別分岐光路6に順次光源部1からの光源光が導かれる。各光スイッチ5,7において連動する系統についても同様の切り替えが起きるので、基準光路を含む各個別分岐光路6からの光は常に信号処理部3に戻ることになる。つまり、信号処理部3には基準光路或いはガス検知部8を透過した光が戻ることになる。   At this time, the computer 34 controls the optical switches 5 and 7 so that the light source light is sequentially guided to the individual branch optical paths 6 including the reference optical path. For example, if the first-stage optical switch 5 first selects the A1 channel connected to the branch optical path 4a and the second-stage optical switch 7a selects the B01 channel connected to the individual branch optical path 6a1, then the second-stage optical switch 5a selects the second stage optical switch 5a. The optical switch 7a is switched so as to select the B02 channel connected to the individual branch optical path 6a2. Thereafter, the second-stage optical switch 7a sequentially switches so as to select the B03 and B04 channels. Next, the first-stage optical switch 5 selects the A2 channel connected to the branch optical path 4b, and the second-stage optical switch 7b is the individual branch optical path. Switch to select the B02 channel connected to 6b1. When the switching of the second stage optical switch 7b to all the channels is completed, the first stage optical switch 5 is switched so as to select the A3 channel. When the optical switches 5 and 7 are sequentially switched in this way, the light source light from the light source unit 1 is sequentially guided to the individual branch optical paths 6 including the reference optical path. Since similar switching occurs in the systems linked in the optical switches 5 and 7, the light from each individual branch optical path 6 including the reference optical path always returns to the signal processing unit 3. That is, the light transmitted through the reference optical path or the gas detection unit 8 is returned to the signal processing unit 3.

コンピュータ34は、上記の順次切り替え動作を繰り返し行う。これにより、各ガス検知部8のガス雰囲気を透過した透過光が受光器31に順次受光される。この受光信号に基づいた各ガス検知部のガス濃度がコンピュータ34により計算される。   The computer 34 repeats the above sequential switching operation. Thereby, the transmitted light that has passed through the gas atmosphere of each gas detector 8 is sequentially received by the light receiver 31. The computer 34 calculates the gas concentration of each gas detection unit based on the received light signal.

ガス濃度の計算は次のように行われる。   The gas concentration is calculated as follows.

受光器31の受光信号のうち、発振器14からの正弦波信号Xの周波数fに同期した信号を位相検波器32で検波し、倍周器15からの正弦波信号XXの周波数2fに同期した信号を位相検波器33で検波する。両位相検波器32、33で抽出された信号の出力比F(f,2f)をコンピュータ34に伝送する。コンピュータ34では、各々の基準光路である個別分岐光路6a1,6b1,6c1に光源光を通過させて得られた出力比F0(f,2f;基準信号という)を基準値として記憶しておき、この基準値と順次ガス検知部8に光源光を通過させて得られた出力比(FG(f,2f);ガス信号という)との差分値ΔF(F0,FG)を計算する。 A signal synchronized with the frequency f of the sine wave signal X from the oscillator 14 among the light reception signals of the light receiver 31 is detected by the phase detector 32 and a signal synchronized with the frequency 2f of the sine wave signal XX from the frequency multiplier 15. Is detected by the phase detector 33. The output ratio F (f, 2f) of the signals extracted by both phase detectors 32 and 33 is transmitted to the computer 34. In the computer 34, the output ratio F 0 (f, 2f; referred to as a reference signal) obtained by passing the light source light through the individual branch optical paths 6a1, 6b1, 6c1, which are the respective reference optical paths, is stored as a reference value. A difference value ΔF (F 0 , F G ) between this reference value and the output ratio (F G (f, 2f); referred to as gas signal) obtained by sequentially passing the light source light through the gas detector 8 is calculated.

図3は、横軸に波長、縦軸にガス信号FG(f,2f)及び基準信号F0(f,2f)の大きさをとったものである。図示されるように、基準値101もガス信号102も波長に依存している。図4は、横軸に波長、縦軸に差分値ΔF(F0,FG)をとったものである。図示されるように、両者の差分値は、ある波長にピークを有する。このピークは図3において中腹部103に位置するものを拡大したものである。このピークの波高値から、予め求めておいた波高値と基準ガス濃度との関係より、ガス濃度が求められる。基準光路を通過した光による受光信号の出力比を差分処理に用いることで、光源部1、光スイッチ5,7、信号処理部3の波長依存性を除去することができ、正確なガス濃度を得ることができる。 In FIG. 3, the horizontal axis represents the wavelength, and the vertical axis represents the magnitude of the gas signal F G (f, 2f) and the reference signal F 0 (f, 2f). As shown, both the reference value 101 and the gas signal 102 are wavelength dependent. In FIG. 4, the horizontal axis represents the wavelength, and the vertical axis represents the difference value ΔF (F 0 , F G ). As shown in the figure, the difference value between them has a peak at a certain wavelength. This peak is an enlargement of the one located in the middle abdominal part 103 in FIG. From the peak value of this peak, the gas concentration is determined from the relationship between the peak value determined in advance and the reference gas concentration. By using the output ratio of the received light signal by the light passing through the reference optical path for the difference processing, the wavelength dependency of the light source unit 1, the optical switches 5 and 7, and the signal processing unit 3 can be removed, and an accurate gas concentration can be obtained. Can be obtained.

ここで、背景技術と本発明との比較を行う。   Here, the background art and the present invention are compared.

1つの光源部1から複数のガス検知部8に順次光を導くために1段だけ光スイッチを設けたとする。9個のガス検知部8がある場合、基準光路も考慮すると、この光スイッチには10チャンネルが必要である。即ち、光スイッチは1×10構成(2系統で2×10構成)となる。このとき10秒毎にガス検知部8又は基準光路を切り替えるものとすると、光スイッチのチャンネルは10秒に1回切り替えることになる。一方、光スイッチの耐久切り替え回数が1000万回だとする。この場合、寿命は、1000万×10秒÷(3600秒×24時間×365日)=約3.17年となる。   Assume that only one optical switch is provided to sequentially guide light from one light source unit 1 to a plurality of gas detection units 8. In the case where there are nine gas detectors 8, this optical switch requires 10 channels in consideration of the reference optical path. That is, the optical switch has a 1 × 10 configuration (2 × 2 configuration with 2 systems). If the gas detection unit 8 or the reference optical path is switched every 10 seconds at this time, the channel of the optical switch is switched once every 10 seconds. On the other hand, it is assumed that the number of endurance switching of the optical switch is 10 million. In this case, the lifetime is 10 million × 10 seconds ÷ (3600 seconds × 24 hours × 365 days) = about 3.17 years.

これに対し、上記実施の形態では、10秒毎にガス検知部8又は基準光路を切り替えるものとすると、初段光スイッチ5のチャンネルは40秒に1回切り替えることになる。また、第2段光スイッチ7のチャンネルは120秒に4回、平均すると30秒に1回切り替えることになる。初段光スイッチ5の寿命は、1000万×40秒÷(3600秒×24時間×365日)=約12.7年となる。第2段光スイッチ7の寿命も同様に長くなるので、装置全体の寿命も長くなる。   In contrast, in the above embodiment, if the gas detection unit 8 or the reference optical path is switched every 10 seconds, the channel of the first-stage optical switch 5 is switched once every 40 seconds. Further, the channel of the second stage optical switch 7 is switched four times in 120 seconds, and once in 30 seconds on average. The lifetime of the first-stage optical switch 5 is 10 million × 40 seconds ÷ (3600 seconds × 24 hours × 365 days) = about 12.7 years. Since the lifetime of the second stage optical switch 7 is similarly increased, the lifetime of the entire apparatus is also increased.

以上説明したように、本発明では、光源光を初段の光スイッチ5により複数の分岐光路4のいずれかに順次導き、各分岐光路4から出る光をそれぞれ次段以降の光スイッチ7により複数の個別分岐光路6のいずれかに順次導き、各個別分岐光路6から個々のガス検知部8に光を導くようにしたので、光スイッチ5,7の切り替え回数がガス検知部8の個数に比して少なくなるので、寿命を長くすることができる。   As described above, in the present invention, the light source light is sequentially guided to one of the plurality of branch optical paths 4 by the first-stage optical switch 5, and the light emitted from each branch optical path 4 is respectively transmitted to the plurality of optical switches 7 by the subsequent stages. Since the light is sequentially guided to one of the individual branch optical paths 6 and the light is guided from each individual branch optical path 6 to each gas detection unit 8, the number of switching times of the optical switches 5 and 7 is larger than the number of gas detection units 8. Therefore, the lifetime can be extended.

なお、上記実施の形態では、光スイッチを2段構成としたが、3段以上構成とすることで、さらに多くのガス検知部8を接続することができ、かつ寿命を長くすることができる。   In the above embodiment, the optical switch has a two-stage configuration. However, by configuring three or more stages, more gas detectors 8 can be connected and the life can be extended.

本発明の一実施形態を示すガス濃度検知装置の構成図である。It is a block diagram of the gas concentration detection apparatus which shows one Embodiment of this invention. 本発明に用いるガス検知部の構成図である。It is a block diagram of the gas detection part used for this invention. レーザ光の波長に対する受光信号の大きさの特性図である。It is a characteristic view of the magnitude | size of the received light signal with respect to the wavelength of a laser beam. レーザ光の波長に対する差分値の大きさの特性図である。It is a characteristic view of the magnitude | size of the difference value with respect to the wavelength of a laser beam.

符号の説明Explanation of symbols

1 光源部
2 光学系
3 信号処理部
4 分岐光路
5 初段光スイッチ
6 個別分岐光路
7 第2段光スイッチ
8 ガス検知部
DESCRIPTION OF SYMBOLS 1 Light source part 2 Optical system 3 Signal processing part 4 Branch optical path 5 First stage optical switch 6 Individual branch optical path 7 Second stage optical switch 8 Gas detection part

Claims (2)

光源光を測定対象とするガス雰囲気が存在する複数のガス検知部に順次通して透過光を受光し、受光信号からそれぞれのガス濃度を検知する光式ガス濃度検知方法において、前記光源光を初段の光スイッチにより複数の分岐光路のいずれかに順次導き、各分岐光路から出る光をそれぞれ次段以降の光スイッチにより複数の個別分岐光路のいずれかに順次導き、各個別分岐光路から個々のガス検知部に光を導くようにしたことを特徴とする多点式ガス濃度検知方法。   In an optical gas concentration detection method that sequentially passes through a plurality of gas detectors having a gas atmosphere whose measurement target is a light source light and receives transmitted light, and detects each gas concentration from the received light signal, the light source light is the first stage The optical switch sequentially guides to one of a plurality of branch optical paths, and the light emitted from each branch optical path is sequentially guided to one of a plurality of individual branch optical paths by the optical switches of the next and subsequent stages. A multi-point gas concentration detection method characterized in that light is guided to a detection unit. 測定対象とするガス雰囲気が容器に充填された複数のガス検知部と、このガス検知部に透過させる光源光を発生する光源部と、前記ガス検知部を通した透過光を受光して受光信号からガス濃度を検知する信号処理部とを有する光式ガス濃度検知装置において、前記光源光を複数の分岐光路のいずれかに順次導く初段の光スイッチと、各分岐光路から出る光を複数の個別分岐光路のいずれかに順次導く次段以降の光スイッチとを設け、各個別分岐光路に個々のガス検知部を接続したことを特徴とする多点式ガス濃度検知装置。
A plurality of gas detection units filled with a gas atmosphere to be measured, a light source unit that generates light source light that is transmitted through the gas detection unit, and a light reception signal that receives the transmitted light through the gas detection unit An optical gas concentration detection device having a signal processing unit for detecting a gas concentration from a first stage optical switch that sequentially guides the light source light to one of a plurality of branch optical paths, and a plurality of individual light beams from each branch optical path A multi-point gas concentration detection device comprising: an optical switch for the next stage and the subsequent stages sequentially guided to any one of the branch optical paths; and an individual gas detector connected to each individual branch optical path.
JP2003379865A 2003-11-10 2003-11-10 Method and device for multi-point gas concentration detection Pending JP2005140738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379865A JP2005140738A (en) 2003-11-10 2003-11-10 Method and device for multi-point gas concentration detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379865A JP2005140738A (en) 2003-11-10 2003-11-10 Method and device for multi-point gas concentration detection

Publications (1)

Publication Number Publication Date
JP2005140738A true JP2005140738A (en) 2005-06-02

Family

ID=34689775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379865A Pending JP2005140738A (en) 2003-11-10 2003-11-10 Method and device for multi-point gas concentration detection

Country Status (1)

Country Link
JP (1) JP2005140738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218783A (en) * 2006-02-17 2007-08-30 Hitachi Cable Ltd Optical fiber type gas concentration detection method and device
CN103323423A (en) * 2013-05-24 2013-09-25 深圳市赛宝伦计算机技术有限公司 Anti-interference method and system for gas concentration analysis based on laser
JP2014077754A (en) * 2012-10-12 2014-05-01 Shimadzu Corp Gas concentration measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218783A (en) * 2006-02-17 2007-08-30 Hitachi Cable Ltd Optical fiber type gas concentration detection method and device
JP2014077754A (en) * 2012-10-12 2014-05-01 Shimadzu Corp Gas concentration measuring apparatus
CN103323423A (en) * 2013-05-24 2013-09-25 深圳市赛宝伦计算机技术有限公司 Anti-interference method and system for gas concentration analysis based on laser

Similar Documents

Publication Publication Date Title
JP4065452B2 (en) Multi-point optical gas concentration detection system
JPH0315742A (en) Gas detector
JP2007240248A (en) Optical multiple gas concentration detection method and device
JP6128361B2 (en) Multi-component laser gas analyzer
CA2912771C (en) Gas analyzer system with one or more retroreflectors
DK1068498T3 (en) Arrangement and Method for Using Diffusion Wave Spectroscopy to Measure the Properties of Multiphase Systems and Changes Therein
JP2007309800A (en) Simultaneous measurement device of plurality of gas concentrations
JPH04151546A (en) Gas detecting apparatus
JP2009174920A (en) Optical combustible gas concentration detection method and optical combustible gas concentration detector
JP2009041941A (en) Gas concentration measuring device and method
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JP2005140738A (en) Method and device for multi-point gas concentration detection
JP4217108B2 (en) Multipoint optical gas concentration detection method and system
US20030234933A1 (en) Modulated reflectance measurement system with fiber laser technology
JP2012154915A (en) Laser type gas analyzer for multicomponent
JP4066921B2 (en) Multipoint optical path switching type gas concentration detection method and apparatus
JP5423496B2 (en) Laser gas analyzer
JP5370248B2 (en) Gas analyzer
JP4993213B2 (en) Laser gas analyzer
JPH09304274A (en) Optical gas-concentration detecting method and apparatus therefor
JPH0526804A (en) Multiple ga detecting device
JP3229391B2 (en) Multipoint gas concentration measurement method and apparatus using optical fiber
JP2004361129A (en) Multipoint gas concentration detection method
JP2003254858A (en) Optical pulse tester
JP2007218844A (en) Method and apparatus for optically detecting multi-gas concentration