JP2009174920A - Optical combustible gas concentration detection method and optical combustible gas concentration detector - Google Patents

Optical combustible gas concentration detection method and optical combustible gas concentration detector Download PDF

Info

Publication number
JP2009174920A
JP2009174920A JP2008011814A JP2008011814A JP2009174920A JP 2009174920 A JP2009174920 A JP 2009174920A JP 2008011814 A JP2008011814 A JP 2008011814A JP 2008011814 A JP2008011814 A JP 2008011814A JP 2009174920 A JP2009174920 A JP 2009174920A
Authority
JP
Japan
Prior art keywords
gas
optical path
signal
light
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011814A
Other languages
Japanese (ja)
Other versions
JP5142320B2 (en
Inventor
Teruyuki Nakamura
晃之 中村
Yuriko Nakamura
百合子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Japan Oil Gas and Metals National Corp
Original Assignee
Hitachi Cable Ltd
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Japan Oil Gas and Metals National Corp filed Critical Hitachi Cable Ltd
Priority to JP2008011814A priority Critical patent/JP5142320B2/en
Publication of JP2009174920A publication Critical patent/JP2009174920A/en
Application granted granted Critical
Publication of JP5142320B2 publication Critical patent/JP5142320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical combustible gas concentration detection method which enables the measurement of the concentrations of a plurality of kinds of gases at the same time and correction of the wavelength of the absorbing ray of each of the gases to accurately detect the concentration of the gas. <P>SOLUTION: A liquid branching means 13 for branching a laser beam is connected across a laser 2 and a light receiver 5, and a reference light path 14 not permitting a gas atmosphere to pass, a gas detecting light path 15 permitting the gas atmosphere to pass and a gas-in-air detecting light path 15R for measuring a component gas contained in air are connected to the light branching means 13. The wavelength of 1,650-1,690 nm of the laser beam is swept and the center wavelength of the laser beam is corrected from a gas signal component being the difference between the signal obtained from the gas detecting light path 15 and the signal obtained from the reference light path 14 and a reference gas signal component being the difference between the signals obtained from the gas-in-air detecting light path 15R and the reference light path 14 to measure the concentrations of propane gas, an isobutane gas, an n-butane gas and a methane gas contained in the gas atmosphere at the same time from transmitted light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はレーザ光を測定対象雰囲気中に通しその透過光からガス濃度を検出する光式ガス濃度検出方法及び光式ガス濃度検出装置に関し、特に複数のガスのガス濃度を同時に検出できる光式可燃性ガス濃度検出方法及び光式可燃性ガス濃度検出装置に関する。   TECHNICAL FIELD The present invention relates to an optical gas concentration detection method and an optical gas concentration detection device for detecting a gas concentration from a transmitted light through a laser light to be measured, and in particular, an optical combustible capable of simultaneously detecting the gas concentrations of a plurality of gases. TECHNICAL FIELD The present invention relates to a method for detecting a gas concentration and an optical flammable gas concentration detector.

ガス分子は、特定波長(吸収帯という)のレーザ光を吸収する性質を有し、この性質を利用してガスの有無を検出できる。レーザ光を用いたガス検出方法は、工業計測、公害監視などの分野で用いられ、レーザ光を光ファイバで伝送することにより、ガスを遠隔検出できる。   Gas molecules have a property of absorbing laser light having a specific wavelength (referred to as an absorption band), and the presence or absence of gas can be detected using this property. A gas detection method using laser light is used in fields such as industrial measurement and pollution monitoring, and gas can be detected remotely by transmitting laser light through an optical fiber.

例えば、特許文献1では、半導体レーザの駆動電流を所定の電流値を中心として高周波数の正弦波で変調し、波長および強度を変調したレーザ光を発振させる。このレーザ光を光ファイバに入射させてガスセルに導き、ガスセル内の未知濃度のガスを透過させ、その透過光を光ファイバで受光器に導き、その受光信号を位相敏感検波して1倍検波信号と2倍検波信号を計測し、ガス信号の出力比である1倍検波信号と2倍検波信号の比を求め、このガス信号の出力比から対象ガスの濃度を求めている。   For example, in Patent Document 1, a semiconductor laser drive current is modulated with a high-frequency sine wave centered on a predetermined current value, and laser light whose wavelength and intensity are modulated is oscillated. This laser light is incident on an optical fiber and guided to a gas cell, gas of unknown concentration in the gas cell is transmitted, the transmitted light is guided to a light receiver by an optical fiber, and the received light signal is phase-sensitively detected to be a single detection signal. And the double detection signal are measured, the ratio of the first detection signal and the double detection signal, which is the output ratio of the gas signal, is obtained, and the concentration of the target gas is obtained from the output ratio of the gas signal.

特開平5−256769号公報JP-A-5-256769 特開昭63−9843号公報JP-A-63-9843

しかしながら、従来の光式ガス濃度検出方法およびその装置は、メタンガスなどの1つの対象ガスを測定することを目的として開発されてきた。このため、複数種類のガス(例えば、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスなど)の濃度をおのおの正確に検出することができないという問題がある。   However, conventional optical gas concentration detection methods and apparatuses have been developed for the purpose of measuring one target gas such as methane gas. For this reason, there exists a problem that the density | concentration of multiple types of gas (for example, propane gas, isobutane gas, normal butane gas, methane gas etc.) cannot be detected correctly, respectively.

また、従来の方法および装置では、搭載した部品の不具合により測定した各ガスの吸収線がずれている場合、ずれを補正する手段がなく、ガス濃度を正確に検出できない。光式ガス濃度検出装置に搭載された部品の不具合の一例としては、レーザの温度を制御するためのペルチェ素子の劣化や、ペルチェ素子に電力を供給するペルチェ素子用電源の劣化などがある。   In addition, in the conventional method and apparatus, when the absorption lines of the respective gases measured due to defects in the mounted parts are deviated, there is no means for correcting the deviation and the gas concentration cannot be detected accurately. As an example of a defect of a component mounted on the optical gas concentration detection device, there is deterioration of a Peltier element for controlling the temperature of the laser, deterioration of a power source for a Peltier element that supplies power to the Peltier element, and the like.

すなわち、レーザの発振波長が目標値(設定した発振波長)からずれて違う波長になり、測定したガスの吸収線がずれてしまう。   That is, the laser oscillation wavelength deviates from the target value (set oscillation wavelength) to a different wavelength, and the measured gas absorption line deviates.

そこで、本発明の目的は、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に計測可能とし、かつ各ガスの吸収線の波長を補正して正確にガス濃度を検出する光式可燃性ガス濃度検出方法及び光式可燃性ガス濃度検出装置を提供することにある。   Accordingly, an object of the present invention is to provide an optical combustible gas capable of simultaneously measuring the concentrations of propane gas, isobutane gas, normal butane gas, and methane gas, and accurately detecting the gas concentration by correcting the wavelength of the absorption line of each gas. An object of the present invention is to provide a concentration detection method and an optical combustible gas concentration detection device.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、レーザ光の波長を変調すると共に所定の掃引範囲を掃引し、これを測定対象のガス雰囲気に通して得られる透過光の強度を検出し、得られた信号からガス濃度を検出するガス濃度検出方法において、
レーザと受光器間に上記レーザ光を分岐する光分岐手段を接続し、その光分岐手段に、ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過するガス検出光路と、空気中に含まれる成分ガスを測定するための空気中ガス検出光路とを接続し、
レーザ光の波長を1650nm付近から1690nm付近まで掃引し、上記ガス検出光路から得られる信号と上記基準光路から得られる信号を差分したガス信号成分と、上記空気中ガス検出光路と上記基準光路から得られる信号を差分した基準ガス信号成分とから、上記レーザ光の中心波長を補正して上記透過光から上記ガス雰囲気中に含まれるプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定する光式可燃性ガス濃度検出方法である。
The present invention has been devised to achieve the above object. The invention of claim 1 modulates the wavelength of laser light and sweeps a predetermined sweep range, and passes this through a gas atmosphere to be measured. In the gas concentration detection method of detecting the intensity of the transmitted light obtained and detecting the gas concentration from the obtained signal,
An optical branching means for branching the laser beam is connected between the laser and the light receiver, and a reference optical path that does not pass through the gas atmosphere, a gas detection optical path that passes through the gas atmosphere, and components contained in the air. Connect with the gas detection optical path in the air to measure the gas,
The wavelength of the laser light is swept from around 1650 nm to around 1690 nm, and the gas signal component obtained by subtracting the signal obtained from the gas detection optical path and the signal obtained from the reference optical path, and the air gas detection optical path and the reference optical path are obtained. Light that simultaneously measures the concentration of propane gas, isobutane gas, normal butane gas, and methane gas contained in the gas atmosphere from the transmitted light by correcting the center wavelength of the laser light from a reference gas signal component obtained by subtracting the signal obtained It is a type combustible gas concentration detection method.

請求項2の発明は、上記成分ガスとしてメタンガスを用い、メタンガスの吸収スペクトルの中心波長からのずれを用いて上記レーザ光の中心波長を補正する請求項1記載の光式可燃性ガス濃度検出方法である。   The invention according to claim 2 uses methane gas as the component gas, and corrects the center wavelength of the laser beam by using a deviation from the center wavelength of the absorption spectrum of the methane gas. It is.

請求項3の発明は、レーザ光の波長を変調し、これを測定対象のガス雰囲気に通して得られる透過光の強度を検出し、得られた信号からガス濃度を検出するガス濃度検出装置において、
レーザ光の波長を1650nm付近から1690nm付近まで掃引する光源部と、ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過するガス検出光路と、空気中に含まれる成分ガスを測定するための空気中ガス検出光路と、これら各光路に上記レーザ光を分岐するための光分岐手段と、
上記ガス検出光路から得られる信号と上記基準光路から得られる信号を差分したガス信号成分と、上記空気中ガス検出光路と上記基準光路から得られる信号を差分した基準ガス信号成分とから、上記レーザ光の中心波長を補正して上記透過光から上記ガス雰囲気中に含まれるプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定する信号処理部と
を備える光式可燃性ガス濃度検出装置である。
According to a third aspect of the present invention, there is provided a gas concentration detection device for modulating the wavelength of laser light, detecting the intensity of transmitted light obtained by passing the laser light through a gas atmosphere to be measured, and detecting the gas concentration from the obtained signal. ,
A light source unit that sweeps the wavelength of laser light from around 1650 nm to around 1690 nm, a reference optical path that does not pass through the gas atmosphere, a gas detection optical path that passes through the gas atmosphere, and in the air for measuring component gases contained in the air A gas detection optical path, and a light branching means for branching the laser light into each of these optical paths;
The laser from the gas signal component obtained by subtracting the signal obtained from the gas detection optical path and the signal obtained from the reference optical path, and the reference gas signal component obtained by subtracting the signal obtained from the air gas detection optical path and the reference optical path. An optical combustible gas concentration detection device comprising a signal processing unit that corrects the central wavelength of light and simultaneously measures the concentration of propane gas, isobutane gas, normal butane gas, and methane gas contained in the gas atmosphere from the transmitted light. is there.

請求項4の発明は、上記光源部と、上記空気中ガス検出光路と、上記光分岐手段とを装置本体の筐体内に収納した請求項3記載の光式可燃性ガス濃度検出装置である。   According to a fourth aspect of the present invention, there is provided the optical combustible gas concentration detection device according to the third aspect, wherein the light source unit, the air gas detection optical path, and the light branching unit are housed in a housing of the device main body.

本発明によれば、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に正確に測定でき、レーザ光の中心波長を補正することで各ガスの吸収線の波長を補正して正確にガス濃度を検出できる。   According to the present invention, the concentration of propane gas, isobutane gas, normal butane gas, and methane gas can be measured accurately at the same time, and the wavelength of each gas absorption line is corrected by correcting the center wavelength of the laser beam. Can be detected.

はじめに、光ファイバを伝送路としてガス濃度を検出する方法の原理を簡単に説明する。   First, the principle of a method for detecting a gas concentration using an optical fiber as a transmission path will be briefly described.

分光測定において、測定感度を向上させる方法として周波数変調法がある。まず、周波数変調した光を、対象とするガスを含む雰囲気中に透過させると、その透過光の検出信号は直流分の他、変調周波数と同じ周波数の基本波成分およびその高調波成分が得られる。   In spectroscopic measurement, there is a frequency modulation method as a method for improving measurement sensitivity. First, when the frequency-modulated light is transmitted through the atmosphere containing the target gas, the detection signal of the transmitted light can be obtained as the fundamental component and the harmonic component of the same frequency as the modulation frequency in addition to the DC component. .

このうち、基本波成分と2倍波成分とをそれぞれ位相敏感検波すると、基本波成分は吸収線の1次微分に対応し、2倍波成分は吸収線の2次微分に対応する。このことから、光源としてのレーザの駆動電流を変調したレーザ光を特定のガスを含む雰囲気に透過させ、その透過光の検出信号中の特定成分を位相敏感検波すると、その検出信号からガス濃度に関する情報が得られる。   Among these, when the phase-sensitive detection is performed on the fundamental wave component and the second harmonic component, the fundamental wave component corresponds to the first derivative of the absorption line, and the second harmonic component corresponds to the second derivative of the absorption line. For this reason, when laser light modulated with a drive current of a laser as a light source is transmitted through an atmosphere containing a specific gas and a specific component in a detection signal of the transmitted light is phase-sensitively detected, the gas concentration is detected from the detection signal. Information is obtained.

ここで、位相敏感検波とは、特定の周波数および位相を有する成分だけを抽出して、その振幅を測定することをいう。   Here, the phase sensitive detection refers to extracting only a component having a specific frequency and phase and measuring its amplitude.

つまり、この方法では、駆動電流および温度に応じた波長および強度のレーザ光を発振させるべく、所定の電流を中心としてレーザの駆動電流を変調すると共に、レーザ光の中心波長を掃引し、レーザ光を測定対象とするガス雰囲気に通して得られる透過光の強度を検出し、この信号中の特定成分を位相敏感検波して得られる信号からガス濃度を検出する。   That is, in this method, in order to oscillate a laser beam having a wavelength and intensity corresponding to the drive current and temperature, the laser drive current is modulated around a predetermined current, and the center wavelength of the laser beam is swept to obtain a laser beam. The intensity of transmitted light obtained by passing through a gas atmosphere to be measured is detected, and the gas concentration is detected from a signal obtained by phase-sensitive detection of a specific component in this signal.

本発明はこのような技術を前提としている。   The present invention is based on such a technique.

以下、本発明の好適実施の形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図1は、本発明の好適な実施形態である光式可燃性ガス濃度検出方法を実施するために使用される光式可燃性ガス濃度検出装置の全体構成図である。   FIG. 1 is an overall configuration diagram of an optical combustible gas concentration detection device used for carrying out an optical combustible gas concentration detection method according to a preferred embodiment of the present invention.

図1に示すように、光式可燃性ガス濃度検出装置(光式可燃性ガス濃度検出システム)1(以下では、装置1)は、主として地下街・高層ビルなどの都市ガスの漏洩や、LNGタンク周辺のガス漏れを多点(複数箇所)検出するものであり、レーザを駆動してレーザ光を発振させるための光源部としてのレーザ部3と、発振したレーザ光を導くための光学系4と、光学系4を通過したレーザ光を検出する複数個(図ではn+1個)の受光器5と、その検出信号を処理する信号処理部6とを備える。   As shown in FIG. 1, an optical flammable gas concentration detection device (optical flammable gas concentration detection system) 1 (hereinafter referred to as device 1) is mainly used for leakage of city gas such as underground malls and high-rise buildings, and LNG tanks. The peripheral gas leak is detected at multiple points (plural points), a laser unit 3 as a light source unit for driving the laser to oscillate the laser beam, and an optical system 4 for guiding the oscillated laser beam, A plurality of (n + 1 in the figure) light receivers 5 that detect the laser light that has passed through the optical system 4 and a signal processing unit 6 that processes the detection signals are provided.

レーザ部3は、単一波長のレーザ光を発振させる分布帰還型半導体レーザ(DFB−LD、以下単にLD)2と、LD2を搭載してその温度を半導体デバイスからなるペルチェ素子用電源7により制御するためのペルチェ素子8と、所定周波数(可変)の正弦波信号を出力する発振器(発信器)9と、この周波数fの正弦波信号により周波数2fの2倍波信号を生成する倍周器10と、LD2にバイアス電流を付加するためのバイアス電流源11と、バイアス電流源11の掃引の仕方を決定する掃引器12と、LD2から出力したレーザ光を光学系4に分岐して伝送するためのビームスプリッタなどの光分岐手段13とで主に構成される。   The laser unit 3 includes a distributed feedback semiconductor laser (DFB-LD, hereinafter simply referred to as LD) 2 that oscillates laser light having a single wavelength, and the temperature of the LD 2 is controlled by a Peltier element power source 7 made of a semiconductor device. A Peltier element 8 for generating a signal, an oscillator (transmitter) 9 for outputting a sine wave signal having a predetermined frequency (variable), and a frequency multiplier 10 for generating a double wave signal having a frequency 2f from the sine wave signal having the frequency f. A bias current source 11 for applying a bias current to the LD 2, a sweeper 12 for determining how to sweep the bias current source 11, and a laser beam output from the LD 2 for branching to the optical system 4 for transmission. And a light splitter 13 such as a beam splitter.

本実施形態においては、発振器9は、少なくとも異なる4つの周波数f1,f2,f3,f4(例:10.1,10.2,10.3,10.4kHz)の正弦波信号を出力することができる。また、倍周器10は、発振器9からの各周波数f1〜f4の正弦波信号により、周波数2f1〜2f4の2倍波信号を生成することができる。   In the present embodiment, the oscillator 9 can output sine wave signals of at least four different frequencies f1, f2, f3, and f4 (eg, 10.1, 10.2, 10.3, and 10.4 kHz). it can. Further, the frequency multiplier 10 can generate a double wave signal of the frequencies 2f1 to 2f4 from the sine wave signals of the respective frequencies f1 to f4 from the oscillator 9.

バイアス電流源11の出力側には、発振器9の出力による影響を防ぐためにインダクタンスLが接続され、発振器9の出力側には、直流分をカットするためのコンデンサCが接続される。掃引器12には、三角波掃引器あるいは正弦波掃引器を用いる。   An inductance L is connected to the output side of the bias current source 11 in order to prevent the influence of the output of the oscillator 9, and a capacitor C for cutting a direct current component is connected to the output side of the oscillator 9. As the sweeper 12, a triangular wave sweeper or a sine wave sweeper is used.

光学系4は、光分岐手段13と0番目の受光器5間に接続されて空気中にもともと含まれる所定の成分ガスを測定するための空気中ガス検出光路用光ファイバ(空気中ガス検出光路)15Rと、その空気中ガス検出光路用光ファイバ15Rの途中に設けられる空気中ガス検出部16Rと、光分岐手段13と1番目の受光器5間にループ状に接続され、ガス雰囲気を通過しない1本の基準光路用光ファイバ(基準光路)14と、光分岐手段13と2〜n番目の各受光器5間にそれぞれループ状に接続され、ガス雰囲気を通過する複数本(図1ではn−1個)のガス検出光路用光ファイバ(ガス検出光路、あるいはセンサ光路)15と、これら各ガス検出光路用光ファイバ15の途中にそれぞれ設けられるガス検出部(センサ部)16とからなる。   The optical system 4 is connected between the optical branching means 13 and the 0th light receiver 5 and is an optical fiber for an air gas detection optical path (air gas detection optical path for air) for measuring a predetermined component gas originally contained in the air. ) Connected in a loop between 15R and the air gas detector 16R provided in the middle of the optical fiber 15R for the air gas detection optical path, and the optical branching means 13 and the first light receiver 5, and passes through the gas atmosphere. A reference optical path optical fiber (reference optical path) 14 that is not connected, and a plurality of optical fibers that pass through the gas atmosphere (in FIG. (n−1) gas detection optical path optical fibers (gas detection optical paths or sensor optical paths) 15 and gas detection units (sensor units) 16 provided in the middle of the gas detection optical path optical fibers 15.

また、図1では、空気中ガス検出光路用光ファイバ15Rにz0、基準光路用光ファイバ14にz1、各ガス検出光路用光ファイバ15に上から順にz2〜znまでの番号を付け、各光ファイバがどの受光器5に接続されるかを記した。   Further, in FIG. 1, the gas detection optical path optical fiber 15R in the air is z0, the reference optical path optical fiber 14 is z1, and each gas detection optical path optical fiber 15 is numbered from z2 to zn in order from the top. The receiver 5 to which the fiber is connected is described.

各ガス検出部16は、測定対象である未知濃度の複数種類のガスが充填される容器、あるいはこれらガスが含まれるガス雰囲気が内部に取り込まれるように開口部を備えた容器であり、検出対象とする位置に、容易に設置することができるようになっている。空気中ガス検出部16Rは、各ガス検出部と同じ構成の容器であり、後述する装置本体内1bが設置された場所の空気が内部に取り込まれる。   Each gas detection unit 16 is a container filled with a plurality of types of gases having unknown concentrations, which are measurement targets, or a container having an opening so that a gas atmosphere containing these gases is taken into the interior. It can be easily installed at the position. The in-air gas detection unit 16R is a container having the same configuration as each gas detection unit, and air in a place where an apparatus main body 1b described later is installed is taken into the inside.

本実施形態では、複数種類のガスは、可燃性ガスとしてのプロパンガス、イソブタンガス(I−ブタン)、ノルマルブタンガス(N−ブタン)、メタンガスの4種類のガスである。   In the present embodiment, the plurality of types of gases are four types of gases, namely propane gas, isobutane gas (I-butane), normal butane gas (N-butane), and methane gas as combustible gases.

信号処理部6は、空気中ガス検出光路用光ファイバ15R、基準光路用光ファイバ14、各ガス検出光路用光ファイバ15のいずれかを通過したレーザ光を受光する複数個の受光器5と、発振器9からの正弦波信号(図1中*A)の周波数f1〜f4、および倍周器10からの正弦波信号(図1中*B)の周波数2f1〜2f2に同期して受光器5の出力の位相敏感検波を行う位相検波装置17と、その位相検波装置17からの出力信号を同時に一時記憶する信号記憶装置18と、その信号記憶装置18からの1f,2fの出力比を記録・演算処理するパソコンなどのコンピュータ19とからなる。   The signal processing unit 6 includes a plurality of light receivers 5 that receive laser light that has passed through any one of the air detection optical path optical fiber 15R, the reference optical path optical fiber 14, and each gas detection optical path optical fiber 15. In synchronization with the frequencies f1 to f4 of the sine wave signal (* A in FIG. 1) from the oscillator 9 and the frequencies 2f1 to 2f2 of the sine wave signal (* B in FIG. 1) from the multiplier 10, Recording / calculating the phase detector 17 that performs phase sensitive detection of the output, the signal storage device 18 that temporarily stores the output signal from the phase detector 17 simultaneously, and the output ratio of 1f and 2f from the signal storage device 18 It consists of a computer 19 such as a personal computer for processing.

位相検波装置17は、空気中ガス検出光路用光ファイバ15R、基準光路用光ファイバ14、各ガス検出光路用光ファイバ15から出力される各透過光の受光信号をそれぞれ位相敏感検波し、1倍検波信号S1と2倍検波信号S2を得る複数個の位相敏感検波回路20を備える。各位相敏感検波回路20としては、ロックインアンプを用いるとよい。コンピュータ19とペルチェ素子用電源7間は、制御信号線21で接続される。   The phase detector 17 phase-sensitively detects the received light signal of each transmitted light output from the optical fiber 15R for the gas detection optical path in the air, the optical fiber 14 for the reference optical path, and the optical fiber 15 for each gas detection optical path. A plurality of phase sensitive detection circuits 20 for obtaining the detection signal S1 and the double detection signal S2 are provided. As each phase sensitive detection circuit 20, a lock-in amplifier may be used. The computer 19 and the Peltier element power supply 7 are connected by a control signal line 21.

また、装置1では、少なくともレーザ部3、好ましくは、レーザ部3と信号処理部6からなる装置本体1bを筐体22内に収納し、空気中ガス検出部16Rに空気が満たされるようにしている。   Further, in the apparatus 1, at least the laser unit 3, preferably the apparatus main body 1b including the laser unit 3 and the signal processing unit 6 is housed in the housing 22, and the air gas detection unit 16R is filled with air. Yes.

次に、装置1を用いた光式可燃性ガス濃度検出方法を説明する。   Next, an optical combustible gas concentration detection method using the apparatus 1 will be described.

まず、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの赤外吸収スペクトルを図6で説明する。   First, infrared absorption spectra of propane gas, isobutane gas, normal butane gas, and methane gas will be described with reference to FIG.

図6に示すように、各ガスの赤外吸収スペクトルを見ると、それぞれの半値全巾は、プロパンガス0.37nm、イソブタンガス0.907nm、ノルマルブタンガス0.714nm、メタンガス0.08nmである。波長変調(電流変調)の振幅値(変調振幅巾、変調電流振幅巾、あるいは変調波長巾ともいう)は、上述の半値全巾に基づき、検出信号が略最大となる所定の値を選定した。   As shown in FIG. 6, when the infrared absorption spectrum of each gas is viewed, the full width at half maximum is propane gas 0.37 nm, isobutane gas 0.907 nm, normal butane gas 0.714 nm, and methane gas 0.08 nm. As the amplitude value (also referred to as modulation amplitude width, modulation current amplitude width, or modulation wavelength width) of wavelength modulation (current modulation), a predetermined value at which the detection signal is substantially maximum is selected based on the above-described full width at half maximum.

ここでいう所定の変調振幅巾とは、検出した2倍検波信号が大きく(好ましくは最大と)なるように変調振幅巾に設定したものであり、対象ガスの赤外吸収スペクトルの半値全巾に所定の係数(略2〜3)を乗じて求められる。   The predetermined modulation amplitude width here is set to the modulation amplitude width so that the detected double detection signal is large (preferably maximum), and the full width at half maximum of the infrared absorption spectrum of the target gas. It is obtained by multiplying by a predetermined coefficient (approximately 2 to 3).

より詳細に言えば、本実施形態に係る方法では、まず、レーザ部3において、LD2の波長を1650nm付近から1690nm付近まで、好ましくは1685nm付近から1690nm付近まで掃引するように設定しておく。LD2の波長の掃引は、バイアス電流源11と掃引器12により三角波状または正弦波状のバイアス電流をLD2に付加して掃引する方法と、ペルチェ素子用電源7とペルチェ素子8によりLD2の温度を三角波状または正弦波状に変化させることにより掃引する方法とがある。LD2の温度の変化に対するレーザ光の発振波長の変化が大きいことから、本実施形態ではペルチェ素子用電源7とペルチェ素子8によりLD2の温度を変化、制御してレーザ光の波長の掃引を行う。   More specifically, in the method according to the present embodiment, first, the laser unit 3 is set to sweep the wavelength of the LD 2 from about 1650 nm to about 1690 nm, preferably from about 1685 nm to about 1690 nm. The wavelength of LD2 is swept by adding a triangular or sinusoidal bias current to LD2 by means of bias current source 11 and sweeper 12, and by sweeping the temperature of LD2 by means of Peltier element power supply 7 and Peltier element 8. There is a method of sweeping by changing to a wave shape or a sine wave shape. Since the change in the oscillation wavelength of the laser light with respect to the change in the temperature of the LD 2 is large, in this embodiment, the temperature of the LD 2 is changed and controlled by the Peltier element power supply 7 and the Peltier element 8 to sweep the wavelength of the laser light.

また、レーザ部3の発振器9において、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスにそれぞれ対応させて、LD2の駆動電流による変調振幅巾を所定の値に設定しておく。   Further, in the oscillator 9 of the laser unit 3, the modulation amplitude width by the drive current of the LD 2 is set to a predetermined value in correspondence with propane gas, isobutane gas, normal butane gas, and methane gas.

これらの設定状態で、ペルチェ素子用電源7によりペルチェ素子8の温度を制御して、LD2の温度を三角波状又は正弦波状に変化させ、レーザ光の波長を1650nm付近から1690nm付近まで掃引する。レーザの温度は、例えば25℃±5℃に制御する。   In these setting states, the temperature of the Peltier element 8 is controlled by the power source 7 for the Peltier element, the temperature of the LD 2 is changed to a triangular wave shape or a sine wave shape, and the wavelength of the laser light is swept from around 1650 nm to around 1690 nm. The temperature of the laser is controlled to 25 ° C. ± 5 ° C., for example.

本実施の形態では、変調振幅巾をプロパンガスに対応した1.06nm付近に統一して設定し、変調周波数もf=10kHzの正弦波信号に統一した。   In the present embodiment, the modulation amplitude width is uniformly set around 1.06 nm corresponding to propane gas, and the modulation frequency is also unified to a sine wave signal of f = 10 kHz.

これと同時に、統一した変調周波数fの交流電流、すなわち正弦波状の変調電流を発振する発振器9により、設定した変調振幅巾による変調電流をLD2のバイアス電流にそれぞれ重畳し、これを駆動電流としてLD2に流し、LD2を発振させる。LD2からのレーザ光は、光分岐手段13で分岐され、空気中ガス検出光路用光ファイバ15R、基準光路用光ファイバ14、各ガス検出光路用光ファイバ15にそれぞれ入射される。   At the same time, an oscillator 9 that oscillates an alternating current having a uniform modulation frequency f, that is, a sinusoidal modulation current, superimposes a modulation current having a set modulation amplitude width on the bias current of the LD 2, and uses this as a drive current for the LD 2. To oscillate LD2. The laser light from the LD 2 is branched by the light branching means 13 and is incident on the in-air gas detection optical path optical fiber 15R, the reference optical path optical fiber 14, and each gas detection optical path optical fiber 15, respectively.

空気中ガス検出光路用光ファイバ15Rに入射されたレーザ光は、空気中ガス検出部16Rの空気中を透過し、その透過光が0番目の受光器5で受光される。基準光路用光ファイバ14に入射されたレーザ光は、そのまま信号処理部6において、1番目(z1)の受光器5で受光される。一方、各ガス検出光路用光ファイバ15に入射されたレーザ光は、各ガス検出部15内のガス雰囲気をそれぞれ透過し、その透過光が2〜n番目(z2〜zn)の各受光器5で受光される。   The laser light incident on the in-air gas detection optical path optical fiber 15R is transmitted through the air of the in-air gas detector 16R, and the transmitted light is received by the zeroth light receiver 5. The laser light incident on the reference optical path optical fiber 14 is directly received by the first (z1) light receiver 5 in the signal processing unit 6. On the other hand, the laser light incident on each optical fiber 15 for gas detection optical path is transmitted through the gas atmosphere in each gas detection unit 15, and the transmitted light is 2nd to nth (z2 to zn) light receiving devices 5 respectively. Is received.

各受光器5で受光された信号のうち、発振器9からの正弦波信号の周波数fに同期した信号(10kHz)と、倍周器10の正弦波信号の周波数2fに同期した信号(20kHz)とを、位相検波装置17によって検出し、空気中ガス検出光路用光ファイバ15R、基準光路用光ファイバ14、各ガス検出光路用光ファイバ15のそれぞれについて、1倍検波信号S1と2倍検波信号S2を得る。これら位相検波装置17で抽出されたすべての信号は、信号記憶装置18で一時記憶される。   Of the signals received by the light receivers 5, a signal (10 kHz) synchronized with the frequency f of the sine wave signal from the oscillator 9 and a signal (20 kHz) synchronized with the frequency 2 f of the sine wave signal of the frequency multiplier 10. Are detected by the phase detector 17 and the 1 × detection signal S <b> 1 and the 2 × detection signal S <b> 2 are respectively detected for the in-air gas detection optical path optical fiber 15 </ b> R, the reference optical path optical fiber 14, and each gas detection optical path optical fiber 15. Get. All the signals extracted by these phase detectors 17 are temporarily stored in the signal storage device 18.

コンピュータ19は、信号記憶装置18で一時記憶されたすべての信号を同時に収集し、まず、図2に示すように、基準光路用光ファイバ14を通過して得られたガス信号の出力比Vb(2f)/Vb(1f)(基準)(図2では、2b)を計算する一方で、各ガス検出光路用光ファイバ15を通過して得られたガス信号の出力比Vg(2f)/Vg(1f)(ガス)(図2では、2g)を計算する。   The computer 19 collects all the signals temporarily stored in the signal storage device 18 at the same time. First, as shown in FIG. 2, the output ratio Vb (of the gas signal obtained through the reference optical path optical fiber 14 is obtained. 2f) / Vb (1f) (reference) (2b in FIG. 2) while calculating the output ratio Vg (2f) / Vg () of the gas signal obtained by passing through each gas detection optical path optical fiber 15 1f) (gas) (2 g in FIG. 2) is calculated.

さらにコンピュータ19は、図3に示すように、基準光路用光ファイバ14と各ガス検出光路用光ファイバ15のそれぞれ複数箇所(多点)について、ガス信号の出力比Vb(2f)/Vb(1f)(基準)と出力比Vg(2f)/Vg(1f)(ガス)との差分(引き算)を計算し、ガス信号成分(波高値判定用信号)31として、{Vg(2f)/Vg(1f)(ガス)}−{Vb(2f)/Vb(1f)(基準)}を得る。   Further, as shown in FIG. 3, the computer 19 outputs the gas signal output ratio Vb (2f) / Vb (1f) at a plurality of locations (multiple points) of the reference optical path optical fiber 14 and each gas detection optical path optical fiber 15. ) (Reference) and the difference (subtraction) between the output ratio Vg (2f) / Vg (1f) (gas) and calculate {Vg (2f) / Vg ( 1f) (gas)}-{Vb (2f) / Vb (1f) (reference)}.

このガス信号成分31は、対象ガスのガス信号の出力比から基準のガス信号の出力比を差し引くことで得られるため、レーザ部3、光分岐手段14、信号処理部6が有する波長依存性を除去したものであり、ガス濃度の正確な指標となるガス信号である。   Since the gas signal component 31 is obtained by subtracting the output ratio of the reference gas signal from the output ratio of the gas signal of the target gas, the wavelength dependency of the laser unit 3, the optical branching unit 14, and the signal processing unit 6 is obtained. This is a gas signal that has been removed and is an accurate indicator of gas concentration.

コンピュータ19は、ガス信号成分31について、その最小値から最大値までの高さである波高値hnb,hp,hm,hibをそれぞれ求め、これら波高値hnb,hp,hm,hibを、予め既知濃度の基準ガスを用いて求めておいた各基準波高値と各基準ガス濃度の関係を示す関係式、あるいは関係表に当てはめ、各対象ガスのガス濃度を同時に求める。   The computer 19 obtains the crest values hnb, hp, hm, hib which are the heights from the minimum value to the maximum value of the gas signal component 31, respectively, and obtains the crest values hnb, hp, hm, hib in advance with known concentrations. The gas concentration of each target gas is obtained simultaneously by applying a relational expression or relational table showing the relationship between each reference wave height value and each reference gas concentration obtained using the reference gas.

この場合、プロパンガスは1686.4nm付近、イソブタンガスは1689nm付近、ノルマルブタンガスは1686.1nm付近、メタンガスは1687.3nm付近の波高値から各対象ガスのガス濃度を同時に測定できる。   In this case, the gas concentration of each target gas can be measured simultaneously from the peak values of propane gas around 1686.4 nm, isobutane gas around 1689 nm, normal butane gas around 1686.1 nm, and methane gas around 1687.3 nm.

さらに、本実施形態では成分ガスとしてメタンガス(空気中には約2ppmのメタンガスが存在)を用い、コンピュータ19は、メタンガスの吸収スペクトルの中心波長からのずれを用いてレーザ光の中心波長を補正する。   Further, in this embodiment, methane gas (about 2 ppm of methane gas is present in the air) is used as the component gas, and the computer 19 corrects the center wavelength of the laser beam by using a deviation from the center wavelength of the absorption spectrum of the methane gas. .

より詳細には、コンピュータ19は、図2および図3で説明した検出信号の処理と同時に、基準光路用光ファイバ14を通過して得られたガス信号の出力比Vb(2f)/Vb(1f)(基準)(図4では、2b)を計算する一方で、空気中ガス検出光路用光ファイバ15Rを通過して得られた空気中ガス信号の出力比Vr(2f)/Vr(1f)(空気中ガス)(図4では、2r)も同様に計算する。   More specifically, the computer 19 outputs the gas signal output ratio Vb (2f) / Vb (1f) obtained through the reference optical path optical fiber 14 simultaneously with the processing of the detection signal described in FIGS. ) (Reference) (2b in FIG. 4) while calculating the output ratio Vr (2f) / Vr (1f) of the in-air gas signal obtained through the in-air gas detection optical path optical fiber 15R. The gas in air) (2r in FIG. 4) is calculated in the same manner.

続いてコンピュータ19は、図5に示すように、基準光路用光ファイバ14と空気中ガス検出光路用光ファイバ15Rのそれぞれ複数箇所について、ガス信号の出力比Vb(2f)/Vb(1f)(基準)と出力比Vr(2f)/Vr(1f)(空気中ガス)との差分を計算し、基準ガス信号成分(補正用信号)51(図5中の点線)として、{Vr(2f)/Vr(1f)(空気中ガス)}−{Vb(2f)/Vb(1f)(基準)}を得る。   Subsequently, as shown in FIG. 5, the computer 19 outputs the gas signal output ratio Vb (2f) / Vb (1f) (for a plurality of locations of the reference optical path optical fiber 14 and the air-in-gas detection optical path optical fiber 15R). The difference between the reference) and the output ratio Vr (2f) / Vr (1f) (in-air gas) is calculated, and as a reference gas signal component (correction signal) 51 (dotted line in FIG. 5), {Vr (2f) / Vr (1f) (gas in air)}-{Vb (2f) / Vb (1f) (reference)}.

このガス信号成分51が、予めコンピュータ19に記憶させておいたメタンガスの吸収スペクトルの中心波長1687.3nmから波長がズレΔλだけずれている場合、パソコン19は、制御信号線21を介し、レーザ光の中心波長を補正するための補正信号をペルチェ素子用電源7に送り、波長制御を行う。一般にLD2は、発振波長が約0.1nm/℃変化するものの、ペルチェ素子8により1/1000nm以下の精度で温度制御できる。   When the gas signal component 51 is shifted by a shift Δλ from the center wavelength 1687.3 nm of the absorption spectrum of methane gas stored in the computer 19 in advance, the personal computer 19 transmits a laser beam via the control signal line 21. A correction signal for correcting the center wavelength of the light is sent to the Peltier element power source 7 to control the wavelength. In general, although the oscillation wavelength of the LD 2 changes by about 0.1 nm / ° C., the temperature can be controlled by the Peltier element 8 with an accuracy of 1/1000 nm or less.

図5の例では、ズレΔλがメタンガスの吸収スペクトルの中心波長1687.3nmから波長が短い方にずれているため、パソコン19は、ズレΔλが0となるようにペルチェ素子用電源7の出力を減少させ、LD2の温度を上昇させる。   In the example of FIG. 5, since the shift Δλ is shifted from the center wavelength 1687.3 nm of the absorption spectrum of methane gas to a shorter wavelength, the personal computer 19 outputs the output of the Peltier element power supply 7 so that the shift Δλ becomes zero. Decrease and raise the temperature of LD2.

また、ズレΔλがメタンガスの吸収スペクトルの中心波長1687.3nmから波長が長い方にずれている場合には、パソコン19は、ズレΔλが0となるようにペルチェ素子用電源7の出力を上昇させ、LD2の温度を下降させる。   When the shift Δλ is shifted from the center wavelength 1687.3 nm of the absorption spectrum of methane gas toward the longer wavelength, the personal computer 19 increases the output of the Peltier element power supply 7 so that the shift Δλ becomes zero. The temperature of LD2 is lowered.

これにより、パソコン19は、ペルチェ素子用電源7の補正制御を行うことで、レーザ光の中心波長を補正して正確なプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を検出する。   Thereby, the personal computer 19 performs correction control of the Peltier element power supply 7 to correct the center wavelength of the laser beam and detect the correct concentrations of propane gas, isobutane gas, normal butane gas, and methane gas.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

本実施形態に係る光式可燃性ガス濃度検出方法は、まず、レーザ光の波長を1650nm付近から1690nm付近まで掃引する。   In the optical combustible gas concentration detection method according to the present embodiment, first, the wavelength of the laser light is swept from around 1650 nm to around 1690 nm.

この際、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスのすべてに対応させて、駆動電流による変調振幅巾を所定の値に統一して設定し、統一した周波数fの信号を出力する発振器9により、設定した変調振幅巾による変調電流をLD2のバイアス電流にそれぞれ重畳し、LD2を発振させる。そして、このようにして発振したレーザ光を、空気中ガス検出光路用光ファイバ15R、基準光路用光ファイバ14、各ガス検出光路用光ファイバ15にそれぞれ入射している。   At this time, in accordance with all of propane gas, isobutane gas, normal butane gas, and methane gas, the modulation amplitude width by the drive current is set to a predetermined value and set by an oscillator 9 that outputs a signal of a unified frequency f, A modulation current having a set modulation amplitude width is superimposed on the bias current of LD2 to oscillate LD2. The laser light oscillated in this way is incident on the air detection optical path optical fiber 15R, the reference optical path optical fiber 14, and the gas detection optical path optical fibers 15, respectively.

さらに、基準光路用光ファイバ14からの光の強度と、各ガス検出光路用光ファイバ15からの透過光の強度とをそれぞれ検出し、得られた各ガス信号成分からガス濃度を求めている。   Further, the intensity of light from the optical fiber for reference optical path 14 and the intensity of transmitted light from each of the optical fibers for gas detection optical path 15 are detected, and the gas concentration is obtained from each obtained gas signal component.

これと同時に、基準光路用光ファイバ14からの光の強度と、空気中ガス検出光路用光ファイバ15Rからの透過光の強度とをそれぞれ検出し、得られたガス信号成分51のズレΔλが0となるようにレーザ光の中心波長を補正している。   At the same time, the intensity of the light from the reference optical path optical fiber 14 and the intensity of the transmitted light from the in-air gas detection optical path optical fiber 15R are detected, and the deviation Δλ of the obtained gas signal component 51 is 0. The center wavelength of the laser light is corrected so that

これにより、本実施形態に係る光式可燃性ガス濃度検出方法によれば、ガス雰囲気中に含まれるプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定(検出)でき、レーザ光の中心波長を補正することで各ガスの吸収線の波長を補正して正確にガス濃度を検出できる。   Thus, according to the optical flammable gas concentration detection method according to the present embodiment, the concentrations of propane gas, isobutane gas, normal butane gas, and methane gas contained in the gas atmosphere can be simultaneously measured (detected), and the center of the laser beam By correcting the wavelength, the gas concentration can be accurately detected by correcting the wavelength of the absorption line of each gas.

つまり、本実施形態に係る光式可燃性ガス濃度検出方法では、空気中ガス検出部16Rを有する空気中ガス検出光路用光ファイバ15Rを用い、その空気中を透過した透過光のガス信号に基づいてレーザ光の中心波長を補正している。   That is, in the optical flammable gas concentration detection method according to the present embodiment, an air gas detection optical path optical fiber 15R having an air gas detection unit 16R is used, and based on a gas signal of transmitted light that has passed through the air. Thus, the center wavelength of the laser beam is corrected.

したがって、本実施形態に係る光式可燃性ガス濃度検出方法によれば、プロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定しつつ、搭載した部品の不具合により測定した各ガスの吸収線が真の吸収線からずれている場合であっても、高精度にガス濃度を検出できる。   Therefore, according to the optical flammable gas concentration detection method according to the present embodiment, absorption lines for each gas measured due to a failure of the mounted components while simultaneously measuring the concentrations of propane gas, isobutane gas, normal butane gas, and methane gas. Even when the gas is deviated from the true absorption line, the gas concentration can be detected with high accuracy.

また、光式ガス濃度検出システム1によれば、従来のシステムに、発振器9や掃引器12などについて若干の変更、空気中ガス検出部16Rを有する空気中ガス検出光路用光ファイバ15R、制御信号線21を追加するだけで、本実施形態に係る光式ガス濃度検出方法を簡単に実施できる。   Further, according to the optical gas concentration detection system 1, the conventional system is slightly changed with respect to the oscillator 9, the sweeper 12, and the like, the in-air gas detection optical path optical fiber 15R having the in-air gas detection unit 16R, the control signal. The optical gas concentration detection method according to the present embodiment can be easily implemented simply by adding the line 21.

上記実施形態では、発振器9により周波数を1つに統一設定し、変調振幅巾も1つに統一した例で説明したが、異なる4つの周波数f1〜f4、異なる4つの変調振幅巾で波長変調を実施してもよい。   In the above embodiment, the example has been described in which the frequency is unified by the oscillator 9 and the modulation amplitude width is unified, but wavelength modulation is performed with four different frequencies f1 to f4 and four different modulation amplitude widths. You may implement.

変調振幅巾の一例としては、プロパンガスを1としたとき、イソブタンガスをその2.45倍付近とし、ノルマルブタンガスをその1.93倍付近とし、メタンガスをその0.22倍付近とするとよい。すなわち、変調振幅巾をプロパンガスに対応した所定の値として1.06nm付近にする場合、イソブタンガスを2.60nm、ノルマルブタンガスを2.05nm、メタンガスを0.23nmとする。   As an example of the modulation amplitude width, when the propane gas is 1, the isobutane gas should be around 2.45 times, the normal butane gas should be around 1.93 times, and the methane gas should be around 0.22 times. That is, when the modulation amplitude width is set to a value close to 1.06 nm corresponding to propane gas, isobutane gas is set to 2.60 nm, normal butane gas is set to 2.05 nm, and methane gas is set to 0.23 nm.

4つの変調信号の変調周波数の一例としては、プロパンガスの変調周波数f1を10.1kHz、イソブタンガスの変調周波数f2を10.2kHz、ノルマルブタンガスの変調周波数f3を10.3kHz、メタンガス変調周波数f4を10.4kHzにするとよい。   As an example of the modulation frequency of the four modulation signals, the propane gas modulation frequency f1 is 10.1 kHz, the isobutane gas modulation frequency f2 is 10.2 kHz, the normal butane gas modulation frequency f3 is 10.3 kHz, and the methane gas modulation frequency f4. It may be 10.4 kHz.

以上の場合、図2と同様にして求められる実際の各出力比は、コンピュータ19により、プロパンガスでは2f1/1f1、イソブタンガスでは2f2/1f2、ノルマルブタンガスでは2f3/1f3、メタンガスでは2f4/1f4のように区別して計算する。   In the above case, the actual output ratios obtained in the same manner as in FIG. Calculate with distinction as follows.

本発明の好適な実施形態を示す光式可燃性ガス濃度検出装置の全体構成図である。1 is an overall configuration diagram of an optical combustible gas concentration detection device showing a preferred embodiment of the present invention. 基準光路およびガス検出部透過後のガス信号の出力比(2f/1f)波形を示す図である。It is a figure which shows the output ratio (2f / 1f) waveform of the gas signal after a reference | standard optical path and gas detection part permeation | transmission. 基準光路およびガス検出部透過後のガス信号の出力比(2f/1f)差分波形を示す図である。It is a figure which shows the output signal (2f / 1f) difference waveform of the gas signal after a reference | standard optical path and gas detection part permeation | transmission. 空気中ガス検出光路および基準光路透過後のガス信号の出力比(2f/1f)波形を示す図である。It is a figure which shows the output ratio (2f / 1f) waveform of the gas signal after permeation | transmission in the air gas detection optical path and a reference | standard optical path. 空気中ガス検出光路および基準光路透過後のガス信号の出力比(2f/1f)差分波形を示す図である。It is a figure which shows the output signal (2f / 1f) differential waveform of the gas signal after permeation | transmission in the air gas detection optical path and a reference | standard optical path. 各可燃性ガスの赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of each combustible gas.

符号の説明Explanation of symbols

1 光式ガス濃度検出装置
2 レーザ(DFB−LD)
3 レーザ部(光源部)
4 光学系
6 信号処理部
9 発振器
12 掃引器
13 光分岐手段
14 基準光路用光ファイバ
15 ガス光路用光ファイバ
15R 空気中ガス検出光路用光ファイバ
16 ガス検出部
16R 空気中ガス検出部
21 制御信号線
1 Optical gas concentration detector 2 Laser (DFB-LD)
3 Laser unit (light source unit)
4 Optical system 6 Signal processing unit 9 Oscillator 12 Sweeper 13 Optical branching means 14 Reference optical path optical fiber 15 Gas optical path optical fiber 15R In-air gas detection optical fiber 16 Gas detection unit 16R In-air gas detection unit 21 Control signal line

Claims (4)

レーザ光の波長を変調すると共に所定の掃引範囲を掃引し、これを測定対象のガス雰囲気に通して得られる透過光の強度を検出し、得られた信号からガス濃度を検出するガス濃度検出方法において、
レーザと受光器間に上記レーザ光を分岐する光分岐手段を接続し、その光分岐手段に、ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過するガス検出光路と、空気中に含まれる成分ガスを測定するための空気中ガス検出光路とを接続し、
レーザ光の波長を1650nm付近から1690nm付近まで掃引し、上記ガス検出光路から得られる信号と上記基準光路から得られる信号を差分したガス信号成分と、上記空気中ガス検出光路と上記基準光路から得られる信号を差分した基準ガス信号成分とから、上記レーザ光の中心波長を補正して上記透過光から上記ガス雰囲気中に含まれるプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定することを特徴とする光式可燃性ガス濃度検出方法。
Gas concentration detection method that modulates the wavelength of the laser light and sweeps a predetermined sweep range, detects the intensity of transmitted light obtained by passing the sweep range through the gas atmosphere to be measured, and detects the gas concentration from the obtained signal In
An optical branching means for branching the laser beam is connected between the laser and the light receiver, and a reference optical path that does not pass through the gas atmosphere, a gas detection optical path that passes through the gas atmosphere, and components contained in the air. Connect with the gas detection optical path in the air to measure the gas,
The wavelength of the laser light is swept from around 1650 nm to around 1690 nm, and the gas signal component obtained by subtracting the signal obtained from the gas detection optical path and the signal obtained from the reference optical path, and the air gas detection optical path and the reference optical path are obtained. The concentration of propane gas, isobutane gas, normal butane gas, and methane gas contained in the gas atmosphere is simultaneously measured from the transmitted light by correcting the center wavelength of the laser beam from the reference gas signal component obtained by subtracting the signal to be generated. An optical combustible gas concentration detection method.
上記成分ガスとしてメタンガスを用い、メタンガスの吸収スペクトルの中心波長からのずれを用いて上記レーザ光の中心波長を補正する請求項1記載の光式可燃性ガス濃度検出方法。   The optical combustible gas concentration detection method according to claim 1, wherein methane gas is used as the component gas, and the center wavelength of the laser beam is corrected using a deviation from the center wavelength of the absorption spectrum of methane gas. レーザ光の波長を変調し、これを測定対象のガス雰囲気に通して得られる透過光の強度を検出し、得られた信号からガス濃度を検出するガス濃度検出装置において、
レーザ光の波長を1650nm付近から1690nm付近まで掃引する光源部と、ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過するガス検出光路と、空気中に含まれる成分ガスを測定するための空気中ガス検出光路と、これら各光路に上記レーザ光を分岐するための光分岐手段と、
上記ガス検出光路から得られる信号と上記基準光路から得られる信号を差分したガス信号成分と、上記空気中ガス検出光路と上記基準光路から得られる信号を差分した基準ガス信号成分とから、上記レーザ光の中心波長を補正して上記透過光から上記ガス雰囲気中に含まれるプロパンガス、イソブタンガス、ノルマルブタンガス、メタンガスの濃度を同時に測定する信号処理部と
を備えることを特徴とする光式可燃性ガス濃度検出装置。
In a gas concentration detection device that modulates the wavelength of laser light, detects the intensity of transmitted light obtained by passing the laser light through a gas atmosphere to be measured, and detects the gas concentration from the obtained signal.
A light source unit that sweeps the wavelength of laser light from around 1650 nm to around 1690 nm, a reference optical path that does not pass through the gas atmosphere, a gas detection optical path that passes through the gas atmosphere, and in the air for measuring component gases contained in the air A gas detection optical path, and a light branching means for branching the laser light into each of these optical paths;
The laser from the gas signal component obtained by subtracting the signal obtained from the gas detection optical path and the signal obtained from the reference optical path, and the reference gas signal component obtained by subtracting the signal obtained from the air gas detection optical path and the reference optical path. An optical flammability comprising a signal processing unit that simultaneously corrects the central wavelength of light and measures the concentration of propane gas, isobutane gas, normal butane gas, and methane gas contained in the gas atmosphere from the transmitted light. Gas concentration detector.
上記光源部と、上記空気中ガス検出光路と、上記光分岐手段とを装置本体の筐体内に収納した請求項3記載の光式可燃性ガス濃度検出装置。   4. The optical combustible gas concentration detection device according to claim 3, wherein the light source unit, the air gas detection optical path, and the light branching unit are housed in a housing of the apparatus main body.
JP2008011814A 2008-01-22 2008-01-22 Optical flammable gas concentration detection method and optical flammable gas concentration detector Expired - Fee Related JP5142320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011814A JP5142320B2 (en) 2008-01-22 2008-01-22 Optical flammable gas concentration detection method and optical flammable gas concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011814A JP5142320B2 (en) 2008-01-22 2008-01-22 Optical flammable gas concentration detection method and optical flammable gas concentration detector

Publications (2)

Publication Number Publication Date
JP2009174920A true JP2009174920A (en) 2009-08-06
JP5142320B2 JP5142320B2 (en) 2013-02-13

Family

ID=41030175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011814A Expired - Fee Related JP5142320B2 (en) 2008-01-22 2008-01-22 Optical flammable gas concentration detection method and optical flammable gas concentration detector

Country Status (1)

Country Link
JP (1) JP5142320B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169849A (en) * 2010-02-22 2011-09-01 Anritsu Corp Gas detection device
CN103323423A (en) * 2013-05-24 2013-09-25 深圳市赛宝伦计算机技术有限公司 Anti-interference method and system for gas concentration analysis based on laser
JP2014010092A (en) * 2012-07-02 2014-01-20 Shimadzu Corp Gas analyzer
JP2015059800A (en) * 2013-09-18 2015-03-30 コニカミノルタ株式会社 Raman spectroscopic measuring method and raman spectroscopic measuring apparatus
EP2918994A4 (en) * 2012-11-09 2016-08-24 Shandong Micro Photographic Electronic Co Ltd Vcsel-based low-power-consumption gas detection method and device
JP2017106742A (en) * 2015-12-07 2017-06-15 富士電機株式会社 Laser gas analyzer
JP2017194399A (en) * 2016-04-22 2017-10-26 日本電気株式会社 Gas detection system
CN114184559A (en) * 2021-10-22 2022-03-15 安徽大学 Early indoor fire scene pre-judging and detecting device based on laser open light path
JP7335752B2 (en) 2018-08-17 2023-08-30 株式会社堀場製作所 Gas analyzer and gas analysis method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639843A (en) * 1986-06-30 1988-01-16 Fujitsu Ltd Gas detection device
JPS6311840A (en) * 1986-03-10 1988-01-19 Showa Denko Kk Method and apparatus for measuring concentration of butane gas
JPH0269639A (en) * 1988-09-05 1990-03-08 Fujitsu Ltd Laser system gas sensor
JPH05142088A (en) * 1991-03-27 1993-06-08 Osaka Gas Co Ltd Gas leakage detector
JPH05256769A (en) * 1992-03-11 1993-10-05 Tokyo Electric Power Co Inc:The Method and apparatus for measuring gas concentration
JPH08101123A (en) * 1994-09-29 1996-04-16 Tokyo Electric Power Co Inc:The Method and device for sensing gas concentration
JPH09269292A (en) * 1996-03-29 1997-10-14 Kurita Water Ind Ltd Analyzing device for minor organic substance in atmosphere
JP2007240248A (en) * 2006-03-07 2007-09-20 Hitachi Cable Ltd Optical multiple gas concentration detection method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311840A (en) * 1986-03-10 1988-01-19 Showa Denko Kk Method and apparatus for measuring concentration of butane gas
JPS639843A (en) * 1986-06-30 1988-01-16 Fujitsu Ltd Gas detection device
JPH0269639A (en) * 1988-09-05 1990-03-08 Fujitsu Ltd Laser system gas sensor
JPH05142088A (en) * 1991-03-27 1993-06-08 Osaka Gas Co Ltd Gas leakage detector
JPH05256769A (en) * 1992-03-11 1993-10-05 Tokyo Electric Power Co Inc:The Method and apparatus for measuring gas concentration
JPH08101123A (en) * 1994-09-29 1996-04-16 Tokyo Electric Power Co Inc:The Method and device for sensing gas concentration
JPH09269292A (en) * 1996-03-29 1997-10-14 Kurita Water Ind Ltd Analyzing device for minor organic substance in atmosphere
JP2007240248A (en) * 2006-03-07 2007-09-20 Hitachi Cable Ltd Optical multiple gas concentration detection method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169849A (en) * 2010-02-22 2011-09-01 Anritsu Corp Gas detection device
JP2014010092A (en) * 2012-07-02 2014-01-20 Shimadzu Corp Gas analyzer
EP2918994A4 (en) * 2012-11-09 2016-08-24 Shandong Micro Photographic Electronic Co Ltd Vcsel-based low-power-consumption gas detection method and device
CN103323423A (en) * 2013-05-24 2013-09-25 深圳市赛宝伦计算机技术有限公司 Anti-interference method and system for gas concentration analysis based on laser
JP2015059800A (en) * 2013-09-18 2015-03-30 コニカミノルタ株式会社 Raman spectroscopic measuring method and raman spectroscopic measuring apparatus
JP2017106742A (en) * 2015-12-07 2017-06-15 富士電機株式会社 Laser gas analyzer
JP2017194399A (en) * 2016-04-22 2017-10-26 日本電気株式会社 Gas detection system
JP7335752B2 (en) 2018-08-17 2023-08-30 株式会社堀場製作所 Gas analyzer and gas analysis method
CN114184559A (en) * 2021-10-22 2022-03-15 安徽大学 Early indoor fire scene pre-judging and detecting device based on laser open light path
CN114184559B (en) * 2021-10-22 2023-08-25 安徽大学 Early indoor fire scene pre-judging and detecting device based on laser open light path

Also Published As

Publication number Publication date
JP5142320B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
JP4331741B2 (en) Gas detection method and gas detection apparatus
JP2007240248A (en) Optical multiple gas concentration detection method and device
US9869632B2 (en) Absorption spectrometer and method for measuring the concentration of a gaseous component of interest in a measurement gas
CN100595571C (en) Gas detection method and gas detection device
US8243369B2 (en) Wavelength monitored and stabilized source
JP4065452B2 (en) Multi-point optical gas concentration detection system
WO2017014097A1 (en) Gas detection device and gas detection method
CN112763454A (en) Multi-gas sensing system and detection method
JP3114959B2 (en) Gas concentration detection method and apparatus
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JP2008268064A (en) Multicomponent responsive laser type gas analyzer
JP4217109B2 (en) Multipoint gas concentration detection method and system
JP4217108B2 (en) Multipoint optical gas concentration detection method and system
JP5594514B2 (en) Laser gas analyzer
US8576404B2 (en) Optical interferometer
US9546989B2 (en) Method for measuring the concentration of a gas component in a measurement gas
JP2011203231A (en) Light wave interference measuring device
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JPH04326041A (en) Gas concentration measuring method and device
JPH1183665A (en) Steam detector
JP2792782B2 (en) Gas concentration measuring method and its measuring device
JPH03277945A (en) Gas detecting apparatus
JP2008298637A (en) Optical method and device for detecting gas concentration
US10976248B2 (en) Tunable light source cavity detection using a plurality of axial-plus-transverse modes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees