JP2007240248A - Optical multiple gas concentration detection method and device - Google Patents

Optical multiple gas concentration detection method and device Download PDF

Info

Publication number
JP2007240248A
JP2007240248A JP2006060974A JP2006060974A JP2007240248A JP 2007240248 A JP2007240248 A JP 2007240248A JP 2006060974 A JP2006060974 A JP 2006060974A JP 2006060974 A JP2006060974 A JP 2006060974A JP 2007240248 A JP2007240248 A JP 2007240248A
Authority
JP
Japan
Prior art keywords
gas
light
light source
signal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060974A
Other languages
Japanese (ja)
Inventor
Yukio Ikeda
幸雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006060974A priority Critical patent/JP2007240248A/en
Publication of JP2007240248A publication Critical patent/JP2007240248A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical multiple gas concentration detection method and device that are inexpensive and allow easy measurement. <P>SOLUTION: Modulation frequencies and sweeping ranges of a plurality of light sources 2 for modulating and sweeping a laser beam are made different, respective outputs of the light sources 5 are multiplexed, multiplexed laser beam is guided to a gas detection section 18 by an optical fiber 17, the transmitted light is guided to a photodetector 7 by an optical fiber 26, the received signals are sequentially phase-sensitively detected with modulation frequency every light source 5 to determine a gas signal waveform every light source 5, and concentrations of a plurality of kinds of objective gases having an absorption line in each sweeping range are determined based on these gas signal waveforms. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、装置が安価で簡易に計測ができる光式多ガス濃度検出方法及び装置に関する。   The present invention relates to an optical multi-gas concentration detection method and apparatus that can be measured easily and inexpensively.

ガスを検知するためのセンサとして、半導体式など電気式センサがあるが、センサ近傍に電源設備が必要であり、定期的に校正が必要であり、計測するガス種ごとにセンサが必要であるため、保守性や経済性に問題がある。   As a sensor for detecting gas, there is an electric sensor such as a semiconductor type, but power supply equipment is required in the vicinity of the sensor, calibration is required periodically, and a sensor is required for each gas type to be measured. There are problems with maintainability and economy.

これに対し、光を用いるガスセンサがある。ガス分子は、特定波長(吸収帯という)のレーザ光を吸収する性質を持っており、この性質を利用してガスの有無を検出できる。このガス検出方法は、工業計測、公害監視などの分野で用いられる。このレーザ光を光ファイバで伝送することにより、ガスの遠隔検出ができる。   On the other hand, there is a gas sensor using light. Gas molecules have the property of absorbing laser light having a specific wavelength (referred to as absorption band), and the presence or absence of gas can be detected using this property. This gas detection method is used in fields such as industrial measurement and pollution monitoring. By transmitting this laser light through an optical fiber, it is possible to detect gas remotely.

光式ガス濃度検出方法及び装置が特許文献1に記載されている。この技術では、半導体レーザの駆動電流を所定の電流値を中心として高周波数の正弦波で変調することにより、波長及び強度が変調されたレーザ光を発振させる。このレーザ光を光ファイバに入射させてガス検出部に導き、ガス検出部内の未知濃度のガスを透過させて、その透過光を光ファイバで受光器に導き、その受光信号を位相敏感検波して1倍検波信号と2倍検波信号を求め、この1倍検波信号と2倍検波信号の比からなるガス信号を求め、このガス信号から対象ガスの濃度を求めている。   Patent Document 1 discloses an optical gas concentration detection method and apparatus. In this technique, a laser beam having a modulated wavelength and intensity is oscillated by modulating a driving current of a semiconductor laser with a high-frequency sine wave around a predetermined current value. This laser light is incident on the optical fiber and guided to the gas detector, the gas of unknown concentration in the gas detector is transmitted, the transmitted light is guided to the receiver by the optical fiber, and the received light signal is phase-sensitively detected. A 1-fold detection signal and a 2-fold detection signal are obtained, a gas signal having a ratio of the 1-fold detection signal and the 2-fold detection signal is obtained, and the concentration of the target gas is obtained from the gas signal.

また、図7に示すように、上記の光式ガス濃度検出方法及び装置を用いて種類の異なる複数のガスに光吸収を起こさせるために、波長の異なる光を出す複数個の光源を用いる方式もある。この方式では、光源部101a〜101dからの波長の異なる光を1つの光ファイバ102に結合させて導き、その光をレンズ103で平行光にして空間伝搬させ、ガスセル104に透過させる。ガスセル104を透過した光はグレーティング105により波長に対応した角度で反射して各受光器106a〜106dに到達する。各受光信号を特許文献1の方法で演算することにより、同一ガスセル中に充填された種類が異なる複数のガス(以下、多ガスという)の濃度が同時に計測できる。   In addition, as shown in FIG. 7, a method using a plurality of light sources that emit light having different wavelengths in order to cause light absorption in a plurality of different types of gases using the above-described optical gas concentration detection method and apparatus. There is also. In this method, light having different wavelengths from the light source units 101 a to 101 d is guided by being coupled to one optical fiber 102, and the light is converted into parallel light by the lens 103 and transmitted through the gas cell 104. The light transmitted through the gas cell 104 is reflected by the grating 105 at an angle corresponding to the wavelength and reaches each of the light receivers 106a to 106d. By calculating each received light signal by the method of Patent Document 1, it is possible to simultaneously measure the concentrations of a plurality of different gases (hereinafter referred to as multiple gases) filled in the same gas cell.

特開平5−256769号公報JP-A-5-256769

図4の光式多ガス濃度検出方法及び装置では、多ガスを検出するために、高価なグレーティング105が必要であり、また、ガスセル104を透過した光を受光器106a〜106dまで空間伝搬させているため、レンズ103、グレーティング105、各受光器106a〜106dの位置調整が困難で時間がかかる。   In the optical multi-gas concentration detection method and apparatus of FIG. 4, an expensive grating 105 is necessary to detect multi-gas, and the light transmitted through the gas cell 104 is spatially propagated to the light receivers 106a to 106d. Therefore, it is difficult to adjust the positions of the lens 103, the grating 105, and the light receivers 106a to 106d, which takes time.

そこで、本発明の目的は、上記課題を解決し、装置が安価で簡易に計測ができる光式多ガス濃度検出方法及び装置を提供することにある。   Therefore, an object of the present invention is to provide an optical multi-gas concentration detection method and apparatus that solves the above-described problems and that can be easily measured with an inexpensive apparatus.

上記目的を達成するために本発明の方法は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で掃引する複数の光源部を、各々変調周波数及び掃引範囲を異ならせ、これらの光源部の出力を合波し、その合波されたレーザ光を光ファイバでガス検出部に導いてガス検出部内の被測定雰囲気中に透過させ、そのガス検出部の透過光を光ファイバで受光器に導いて受光し、その受光信号を、順次、上記光源部ごとの変調周波数で位相敏感検波して上記光源部ごとのガス信号波形を求め、これらガス信号波形からそれぞれの掃引範囲に吸収線を有する複数種類の対象ガスの濃度を求めるものである。   In order to achieve the above object, the method of the present invention includes a plurality of light source units that modulate the wavelength and intensity of a laser beam with a sine wave and sweep the modulation center wavelength within a predetermined sweep range, respectively, with a modulation frequency and a sweep frequency. Different ranges are combined, and the outputs of these light sources are combined, and the combined laser light is guided to the gas detector by an optical fiber and transmitted into the measured atmosphere in the gas detector. The transmitted light is guided by an optical fiber to a light receiver, and the received light signal is sequentially phase-sensitively detected at a modulation frequency for each light source unit to obtain a gas signal waveform for each light source unit. The concentration of a plurality of types of target gases having absorption lines in each sweep range is obtained.

また、本発明の装置は、レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で掃引する複数の光源部であって、各々変調周波数及び掃引範囲を異ならせた光源部と、これらの光源部の出力を合波する合波器と、その合波されたレーザ光をガス検出部に導く光源側光ファイバと、複数種類の対象ガスを充填したガス検出部と、ガス検出部内の被測定雰囲気中を透過した光を受光器まで導く受光器側光ファイバと、上記受光器で受光した受光信号を、順次、上記光源部ごとの変調周波数で位相敏感検波して上記光源部ごとのガス信号波形を求め、これらガス信号波形からそれぞれの掃引範囲に吸収線を有する複数種類の対象ガスの濃度を求める信号処理部とを備えたものである。   The apparatus of the present invention is a plurality of light source units that modulate the wavelength and intensity of laser light with a sine wave and sweep the modulation center wavelength within a predetermined sweep range, each having a different modulation frequency and sweep range. Light source units, a multiplexer for combining the outputs of these light source units, a light source side optical fiber for guiding the combined laser light to the gas detection unit, and gas detection filled with a plurality of types of target gases A phase-sensitive detection of the optical fiber on the receiver side that guides the light transmitted through the atmosphere to be measured in the gas detector to the receiver, and the received light signal received by the receiver at the modulation frequency for each light source unit in turn. Then, a gas signal waveform for each light source unit is obtained, and a signal processing unit for obtaining concentrations of a plurality of types of target gases having absorption lines in their respective sweep ranges from these gas signal waveforms.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)装置が安価である。   (1) The device is inexpensive.

(2)簡易に計測ができる。   (2) Easy measurement.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光式多ガス濃度検出装置1は、光源系2、センサ系3、信号処理部4から構成される。   As shown in FIG. 1, the optical multi-gas concentration detection apparatus 1 according to the present invention includes a light source system 2, a sensor system 3, and a signal processing unit 4.

光源系2には、複数の光源部5、本実施形態では3つの光源部5a,5b,5cが設けられる。各光源部5に共通の構成として、拡大して示すように、光源部5は、瞬時的には単一波長であるレーザ光を発振させるレーザ(例えば、DFB−LD)6と、そのレーザ6を搭載しており、そのレーザ6に制御された温度を与えるためのペルチェ素子7と、そのペルチェ素子7を駆動して温度を制御するペルチェ素子用電源8と、変調周波数fの正弦波信号を出力する発振器9と、レーザ6に印加するバイアス電流を生成するバイアス電流源10と、そのバイアス電流をクロックTの立ち上がりで開始される三角波または鋸歯状波により掃引する掃引器11と、バイアス電流源10からのバイアス電流をレーザ6に印加すると共に正弦波信号を遮断するインダクタンス12と、発振器9からの正弦波信号をレーザ6に印加すると共にバイアス電流を遮断するコンデンサ13とを備える。   The light source system 2 is provided with a plurality of light source parts 5, in the present embodiment, three light source parts 5a, 5b, 5c. As shown in an enlarged view as a configuration common to each light source unit 5, the light source unit 5 includes a laser (for example, DFB-LD) 6 that instantaneously oscillates laser light having a single wavelength, and the laser 6. And a Peltier element 7 for applying a controlled temperature to the laser 6, a Peltier element power source 8 for controlling the temperature by driving the Peltier element 7, and a sine wave signal having a modulation frequency f. An oscillator 9 for output, a bias current source 10 for generating a bias current to be applied to the laser 6, a sweeper 11 for sweeping the bias current by a triangular wave or a sawtooth wave started at the rising edge of the clock T, and a bias current source The bias current from 10 is applied to the laser 6 and the sinusoidal signal is cut off, and the sine wave signal from the oscillator 9 is applied to the laser 6 and biased. And a capacitor 13 for blocking the flow.

本発明では、光源部5a,5b,5cは、各々変調周波数及び掃引範囲の中心波長を異ならせる。したがって、発振器9から光源部5の外部へ出力する正弦波信号Axは、正弦波信号Aa,Ab,Acのように区別して示す。   In the present invention, the light source units 5a, 5b, and 5c vary the modulation frequency and the center wavelength of the sweep range, respectively. Therefore, the sine wave signal Ax output from the oscillator 9 to the outside of the light source unit 5 is distinguished and shown as sine wave signals Aa, Ab, and Ac.

光源系2には、これらの光源部5a,5b,5cの出力を入力に接続した合波器14が設けられ、その合波器14の出力はセンサ系3の分岐器15に接続されている。   The light source system 2 is provided with a multiplexer 14 in which the outputs of these light source units 5 a, 5 b, 5 c are connected to the inputs, and the output of the multiplexer 14 is connected to the branching device 15 of the sensor system 3. .

センサ系3は、合波器14からの光源光を2分岐する分岐器15と、その分岐の一方に接続されガスを透過させずにレーザ光を導く基準光路用光ファイバ16と、分岐の他方に接続され検出場所まで布設された光源側光ファイバ17と、その光源側光ファイバ17からのレーザ光を測定対象である未知濃度の3種類のガスが充填された容器に透過させるガス検出部18と、ガス検出部18内の被測定雰囲気中を透過したレーザ光を受光器20まで導く受光器側光ファイバ26とを備える。対象ガスGa,Gb,Gcは、例えば、メタン(吸収中心波長1.654μm)、硫化水素(1.570μm)、一酸化炭素(1.567μm)である。   The sensor system 3 includes a branching device 15 that splits the light source light from the multiplexer 14 into two branches, a reference optical path optical fiber 16 that is connected to one of the branches and guides the laser light without transmitting gas, and the other of the branches. The light source side optical fiber 17 connected to the detection location and the gas detection unit 18 that transmits the laser light from the light source side optical fiber 17 to a container filled with three kinds of gases of unknown concentration to be measured. And a light-receiving-side optical fiber 26 that guides the laser light transmitted through the atmosphere to be measured in the gas detection unit 18 to the light-receiving device 20. The target gases Ga, Gb, and Gc are, for example, methane (absorption center wavelength: 1.654 μm), hydrogen sulfide (1.570 μm), and carbon monoxide (1.567 μm).

信号処理部4は、基準光路用光ファイバ16からのレーザ光z1を受光する受光器19と、受光器側光ファイバ26からのレーザ光z2を受光する受光器20と、それぞれの受光器19,20に接続された位相検波回路を有する位相検波装置21と、光源部5a,5b,5cからの正弦波信号Aa,Ab,Acのいずれかを選択して内部正弦波信号Aとして位相検波装置21に供給する切替器22と、内部正弦波信号Aを倍周した2倍信号Bを位相検波装置21に供給する倍周器23と、位相検波装置21の出力信号を一時的に記憶する信号記憶部24と、各光源部5a,5b,5cと切替器22にクロックTを出力すると共に信号記憶部24の記憶信号から切替器22の切り替えでガス種が決まる対象ガスのガス濃度を演算する演算処理部25とを備える。   The signal processing unit 4 includes a light receiver 19 that receives the laser light z1 from the reference optical path optical fiber 16, a light receiver 20 that receives the laser light z2 from the light receiver-side optical fiber 26, and the respective light receivers 19, And a phase detector 21 having a phase detector connected to 20, and any one of the sine wave signals Aa, Ab, Ac from the light source units 5a, 5b, 5c to select the internal sine wave signal A as the phase detector 21. Switch 22 for supplying to signal, frequency multiplier 23 for supplying double signal B obtained by multiplying internal sine wave signal A to phase detector 21, and signal storage for temporarily storing the output signal of phase detector 21 The unit 24, the light sources 5a, 5b, 5c and the switch 22 output a clock T, and the calculation of the gas concentration of the target gas whose gas type is determined by switching the switch 22 from the stored signal of the signal storage unit 24 Processing part And a 5.

位相検波装置21中の各位相検波回路は、正弦波信号Aと2倍信号Bを利用して周波数f,2fについて位相敏感検波することにより、1倍検波信号K(1f)と2倍検波信号K(2f)を得るものである。演算処理部25は、1倍検波信号K(1f)と2倍検波信号K(2f)の比からなるガス信号波形を求め、このガス信号波形から波高値を求め、これらガス信号波形からそれぞれの掃引範囲に吸収線を有する複数種類の対象ガスの濃度を求めることになる。   Each phase detection circuit in the phase detection device 21 uses the sine wave signal A and the double signal B to perform phase-sensitive detection on the frequencies f and 2f, so that the single detection signal K (1f) and the double detection signal are detected. K (2f) is obtained. The arithmetic processing unit 25 obtains a gas signal waveform composed of a ratio of the 1 × detection signal K (1f) and the 2 × detection signal K (2f), obtains a peak value from the gas signal waveform, and obtains a peak value from the gas signal waveform. The concentrations of a plurality of types of target gases having absorption lines in the sweep range are obtained.

以下、光式多ガス濃度検出装置1の動作を説明する。   Hereinafter, the operation of the optical multi-gas concentration detection apparatus 1 will be described.

各光源部5a,5b,5cでは、ペルチェ素子用電源8によってペルチェ素子7の温度を制御することにより、レーザ6の温度を一定に固定する。また、クロックTの立ち上がり(図3参照)から立ち下がりまでの時間に掃引器11が、例えば、三角波を出力する。バイアス電流源10は、三角波の電圧に比例してバイアス電流を発生させる。これにより、バイアス電流は小さい値から大きい値へ一方向に掃引される。このとき、同時に、発信器9が出力する交流電流、すなわち正弦波状の変調電流をバイアス電流に重畳させてレーザ6に印加する。   In each light source part 5a, 5b, 5c, the temperature of the Peltier element 7 is controlled by the power supply 8 for Peltier elements, so that the temperature of the laser 6 is fixed. Further, the sweeper 11 outputs, for example, a triangular wave during the time from the rising edge (see FIG. 3) to the falling edge of the clock T. The bias current source 10 generates a bias current in proportion to the triangular wave voltage. Thereby, the bias current is swept in one direction from a small value to a large value. At the same time, an alternating current output from the transmitter 9, that is, a sinusoidal modulation current is superimposed on the bias current and applied to the laser 6.

図3に示されるように、各光源部5a,5b,5cにおけるレーザ6への印加電流は、三角波+正弦波である。本発明では、変調周波数及び掃引範囲の中心波長を異ならせるので、各三角波に重畳している正弦波の周波数が異なる。各正弦波の振幅は同じとしてある。また、掃引範囲の幅と掃引速度は、各光源部5a,5b,5cとも同じとするので、各三角波の時間幅と高さは等しい。ただし、光源部5a,5b,5cにおける掃引範囲の中心波長は、それぞれの対象ガスの吸収スペクトルの中心波長とする。   As shown in FIG. 3, the current applied to the laser 6 in each of the light source units 5a, 5b, 5c is a triangular wave + sine wave. In the present invention, since the modulation frequency and the center wavelength of the sweep range are made different, the frequency of the sine wave superimposed on each triangular wave is different. The amplitude of each sine wave is the same. Further, since the width of the sweep range and the sweep speed are the same for each light source unit 5a, 5b, 5c, the time width and height of each triangular wave are equal. However, the center wavelength of the sweep range in the light source units 5a, 5b, and 5c is the center wavelength of the absorption spectrum of each target gas.

各光源部5a,5b,5cからのレーザ光を合波器14で合波し、分岐器15で基準光路用光ファイバ16と光源側光ファイバ17とに分岐させる。光源側光ファイバ17のレーザ光は、ガス検出部18内を透過し受光器側光ファイバ26に導かれてレーザ光z2として受光器20に受光される。基準光路用光ファイバ16のレーザ光は、そのままレーザ光z1として受光器19に受光され、それぞれの受光信号が位相検波装置21の位相検波回路に入力される。   Laser beams from the respective light source units 5 a, 5 b, and 5 c are multiplexed by a multiplexer 14, and are branched by a splitter 15 into a reference optical path optical fiber 16 and a light source side optical fiber 17. The laser light from the light source side optical fiber 17 is transmitted through the gas detector 18 and guided to the light receiver side optical fiber 26 and received by the light receiver 20 as laser light z2. The laser light of the reference optical path optical fiber 16 is received as it is by the light receiver 19 as the laser light z1, and each received light signal is input to the phase detection circuit of the phase detector 21.

図2に示されるように、対象ガスGa,Gb,Gcの吸収スペクトルは中心波長がそれぞれ異なる。各光源部5a,5b,5cのレーザ光は、正弦波1fa,1fb,1fcによる変調を受けながら対象ガスGa,Gb,Gcの吸収スペクトルの中心波長を含む掃引範囲で掃引される。ガス検出部18内を透過するレーザ光は、対象ガスGa,Gb,Gcの吸収スペクトルに沿って吸収されるので、吸収スペクトルの曲線に基づいて変形を受けた信号2fa,2fb,2fcで強度変化するレーザ光z2となる。   As shown in FIG. 2, the absorption wavelengths of the target gases Ga, Gb, and Gc have different center wavelengths. The laser light of each light source part 5a, 5b, 5c is swept within a sweep range including the center wavelength of the absorption spectrum of the target gas Ga, Gb, Gc while being modulated by the sine waves 1fa, 1fb, 1fc. Since the laser light transmitted through the gas detector 18 is absorbed along the absorption spectrum of the target gas Ga, Gb, Gc, the intensity changes with the signals 2fa, 2fb, 2fc that have been deformed based on the curve of the absorption spectrum. Laser light z2 to be generated.

一方、各光源部5a,5b,5cからの正弦波信号Aa,Ab,Acのいずれかが切替器22により選択されて内部正弦波信号Aとして位相検波装置21に供給されると共に、倍周器23により2倍信号Bが生成されて位相検波装置21に供給される。位相検波装置21により、1倍検波信号K(1f)と2倍検波信号K(2f)が検波され、一時的に信号記憶部24に記憶される。演算処理部25は、信号記憶部24から読み出した信号を演算する。   On the other hand, any one of the sine wave signals Aa, Ab, Ac from the light source units 5a, 5b, 5c is selected by the switch 22 and supplied to the phase detector 21 as the internal sine wave signal A, and a frequency multiplier. The doubled signal B is generated by 23 and supplied to the phase detector 21. The phase detection device 21 detects the 1 × detection signal K (1f) and the 2 × detection signal K (2f) and temporarily stores them in the signal storage unit 24. The arithmetic processing unit 25 calculates the signal read from the signal storage unit 24.

演算処理部25は、レーザ光z1の受光信号について、1倍検波信号z1K(1f)に対する2倍検波信号z1K(2f)の比z1K(2f)/z1K(1f)を計算して図4に示される基準信号41(対象ガスGaの場合)を得ると共に、レーザ光z2の受光信号について、1倍検波信号z2K(1f)に対する2倍検波信号z2K(2f)の比z2K(2f)/z2K(1f)を計算して対象ガスのガス信号42を得る。次いで、基準信号z1K(2f)/z1K(1f)に対する対象ガスのガス信号z2K(2f)/z2K(1f)の差分を計算して図5に示した波高値判定用信号51を得る。同様に、対象ガスGbの基準信号43とガス信号44を計算し、波高値判定用信号52を得る。また、対象ガスGcの基準信号45とガス信号46を計算し、波高値判定用信号53を得る。   The arithmetic processing unit 25 calculates the ratio z1K (2f) / z1K (1f) of the double detection signal z1K (2f) to the double detection signal z1K (1f) for the light reception signal of the laser beam z1, and shows it in FIG. And a ratio z2K (2f) / z2K (1f) of the double detection signal z2K (2f) to the single detection signal z2K (1f) with respect to the received light signal of the laser beam z2. ) To obtain a gas signal 42 of the target gas. Next, the difference of the gas signal z2K (2f) / z2K (1f) of the target gas with respect to the reference signal z1K (2f) / z1K (1f) is calculated to obtain the peak value determination signal 51 shown in FIG. Similarly, the reference signal 43 and the gas signal 44 of the target gas Gb are calculated, and a peak value determination signal 52 is obtained. Further, the reference signal 45 and the gas signal 46 of the target gas Gc are calculated, and a peak value determination signal 53 is obtained.

図5の各波高値判定用信号51,52,53は、対象ガスのガス信号42,44,46から基準信号41,43,45を差し引くことで、光源部5、合波器14、分岐器15、信号処理部4が持つ波長依存性を除去したものであり、この波高値判定用信号が正確な意味での対象ガスGa,Gb,Gcのガス信号である。   5 are subtracted from the reference signals 41, 43, and 45 from the gas signals 42, 44, and 46 of the target gas, so that the light source unit 5, the multiplexer 14, and the branching unit are used. 15. The wavelength dependency of the signal processing unit 4 is removed, and this peak value determination signal is a gas signal of the target gas Ga, Gb, Gc in an accurate sense.

演算処理部25は、この波高値判定用信号の最小値から最大値までの高さである波高値を求める。   The arithmetic processing unit 25 obtains a peak value that is the height from the minimum value to the maximum value of the peak value determination signal.

その後、演算処理部25は、この波高値を、あらかじめ既知濃度の基準ガスを用いて求めていた波高値とガス濃度との関係式又は関係表に適用してガス濃度を求める。   After that, the arithmetic processing unit 25 applies the peak value to a relational expression or relation table between the peak value and the gas concentration that has been previously determined by using a reference gas having a known concentration to determine the gas concentration.

以上説明したように、本発明では、変調周波数及び掃引範囲が異なる複数のレーザ光を合波し、その合波されたレーザ光を光ファイバでガス検出部に導き、その透過光を光ファイバで受光器に導き、その受光信号を、順次、異なる周波数で位相敏感検波してガス信号波形を求めるようにした。すなわち、複数の光源部の出力を合波させてガス検出部18に透過させて受光するので、光路は共有でありながら、検波する周波数を切り替えて位相敏感検波を行うことにより、中心波長の異なる掃引範囲におけるガス信号を得ることができる。   As described above, in the present invention, a plurality of laser beams having different modulation frequencies and sweep ranges are combined, the combined laser beams are guided to the gas detection unit by an optical fiber, and the transmitted light is transmitted by an optical fiber. The light signal was guided to a light receiver, and the received light signal was sequentially phase-sensitively detected at different frequencies to obtain a gas signal waveform. That is, since the outputs of a plurality of light source units are combined and transmitted through the gas detection unit 18 to receive light, the center wavelength differs by performing phase-sensitive detection by switching the detection frequency while sharing the optical path. A gas signal in the sweep range can be obtained.

本発明では、光源系2、センサ系3の全てにおいて光ファイバでレーザ光を導くので、従来のような高価な光学素子が必要なく、また、複雑な調整が必要なく、しかも安定して複数種類のガス濃度を検出することができる。   In the present invention, since the laser light is guided by the optical fiber in all of the light source system 2 and the sensor system 3, there is no need for an expensive optical element as in the prior art, no complicated adjustment is required, and a plurality of types are stably used. Gas concentration can be detected.

なお、前記実施形態では、光源部5を3個用いたが、光源部5を2個あるいは4個以上とし、各々変調周波数及び掃引範囲を異ならせることで2種類あるいは4種類以上のガスを検出することができる。   In the embodiment, three light source units 5 are used. However, two or four or more light source units 5 are used, and two or more types of gases are detected by changing the modulation frequency and the sweep range. can do.

また、信号処理部4において、正弦波信号Aと2倍信号Bを利用して周波数f,2fについて位相敏感検波することにより、1倍検波信号と2倍検波信号を検出して、その1倍検波信号と2倍検波信号の比をガス信号としたが、これに限らず、ガス濃度を表す信号を位相敏感検波によって求めることができる。   Further, the signal processing unit 4 detects the 1 × detection signal and the 2 × detection signal by performing phase sensitive detection on the frequencies f and 2f using the sine wave signal A and the 2 × signal B, and 1 × The ratio of the detection signal and the double detection signal is the gas signal. However, the present invention is not limited to this, and a signal representing the gas concentration can be obtained by phase sensitive detection.

次に、多点計測に適した実施形態を説明する。   Next, an embodiment suitable for multipoint measurement will be described.

図6に示されるように、本発明に係る光式多ガス濃度検出装置61は、光源系2、センサ系62、信号処理部63から構成される。光源系2は、図1の光式多ガス濃度検出装置1で用いたものと全く同じである。   As shown in FIG. 6, the optical multi-gas concentration detection device 61 according to the present invention includes a light source system 2, a sensor system 62, and a signal processing unit 63. The light source system 2 is exactly the same as that used in the optical multi-gas concentration detector 1 of FIG.

センサ系62は、合波器14からの光源光をn分岐する分岐器64と、その分岐のひとつに接続されガスを透過させずにレーザ光を導く基準光路用光ファイバ16と、残りの分岐に接続され多箇所の検出場所までそれぞれ布設されたn−1本の光源側光ファイバ17と、その光源側光ファイバ17からのレーザ光を測定対象である未知濃度の種々のガスが充填された容器に透過させるn−1個のガス検出部18と、各ガス検出部18内の被測定雰囲気中を透過したレーザ光を受光器20まで導くn−1本の受光器側光ファイバ26とを備える。   The sensor system 62 includes a branching device 64 that branches the light source light from the multiplexer 14 into n branches, a reference optical path optical fiber 16 that is connected to one of the branches and guides the laser light without transmitting gas, and the remaining branches. N-1 light source side optical fibers 17 connected to a plurality of detection locations and filled with various gases of unknown concentration that are laser beam from the light source side optical fibers 17 N-1 gas detectors 18 that pass through the container, and n-1 receiver-side optical fibers 26 that guide the laser light that has passed through the atmosphere to be measured in each gas detector 18 to the light receiver 20. Prepare.

信号処理部63は、基準光路用光ファイバ16からのレーザ光z1を受光する受光器19と、受光器側光ファイバ26からのレーザ光z2〜znを受光するn−1個の受光器20と、それぞれの受光器19,20に接続されたn個の位相検波回路を有する位相検波装置21と、光源部5a,5b,5cからの正弦波信号Aa,Ab,Acのいずれかを選択して内部正弦波信号Aとして位相検波装置21に供給する切替器22と、内部正弦波信号Aを倍周した2倍信号Bを位相検波装置21に供給する倍周器23と、位相検波装置21の出力信号を一時的に記憶する信号記憶部24と、各光源部5a,5b,5cと切替器22にクロックTを出力すると共に信号記憶部24の記憶信号から切替器22の切り替えでガス種が決まる対象ガスのガス濃度を演算する演算処理部25とを備える。   The signal processing unit 63 includes a light receiver 19 that receives the laser light z <b> 1 from the reference optical path optical fiber 16, and n−1 light receivers 20 that receive the laser lights z <b> 2 to zn from the light receiver-side optical fiber 26. The phase detector 21 having n phase detection circuits connected to the respective light receivers 19 and 20 and any one of the sine wave signals Aa, Ab and Ac from the light source units 5a, 5b and 5c are selected. A switch 22 that supplies the phase detector 21 as the internal sine wave signal A, a multiplier 23 that supplies the phase detector 21 with the double signal B that has been multiplied by the internal sine wave signal A, and a phase detector 21 The signal storage unit 24 that temporarily stores the output signal, the clock T is output to each of the light source units 5a, 5b, and 5c and the switch 22, and the gas type is changed by switching the switch 22 from the stored signal of the signal storage unit 24. Target gas to be determined And a processing unit 25 for calculating the degree.

図6の光式多ガス濃度検出装置61は、多点において複数種類の対象ガスの濃度を検出することができる。   The optical multi-gas concentration detection device 61 in FIG. 6 can detect the concentrations of a plurality of types of target gases at multiple points.

本発明の一実施形態を示す光式多ガス濃度検出装置の構成図である。It is a block diagram of the optical multi-gas concentration detection apparatus which shows one Embodiment of this invention. 本発明において変調されたレーザ光が吸収スペクトルにより変形されることを示した概念図である。It is the conceptual diagram which showed that the laser beam modulated in this invention is deform | transformed by an absorption spectrum. 本発明における光源部の動作概念図である。It is an operation | movement conceptual diagram of the light source part in this invention. 本発明により得られるガス信号の波形図である。It is a wave form diagram of the gas signal obtained by the present invention. 本発明により得られる波高値判定用信号の波形図である。It is a wave form diagram of the signal for peak value judgment obtained by the present invention. 本発明の他の実施形態を示す光式多ガス濃度検出装置の構成図である。It is a block diagram of the optical multi-gas concentration detection apparatus which shows other embodiment of this invention. 従来の光式多ガス濃度検出装置の構成図である。It is a block diagram of the conventional optical type multi gas concentration detection apparatus.

符号の説明Explanation of symbols

1 光式多ガス濃度検出装置
4 信号処理部
5,5a,5b,5c 光源部
14 合波器
17 光源側光ファイバ
18 ガス検出部
22 切替器
26 受光器側光ファイバ
DESCRIPTION OF SYMBOLS 1 Optical type multiple gas concentration detection apparatus 4 Signal processing part 5,5a, 5b, 5c Light source part 14 Mux 17 Light source side optical fiber 18 Gas detection part 22 Switch 26 Light receiver side optical fiber

Claims (2)

レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で掃引する複数の光源部を、各々変調周波数及び掃引範囲を異ならせ、これらの光源部の出力を合波し、その合波されたレーザ光を光ファイバでガス検出部に導いてガス検出部内の被測定雰囲気中に透過させ、そのガス検出部の透過光を光ファイバで受光器に導いて受光し、その受光信号を、順次、上記光源部ごとの変調周波数で位相敏感検波して上記光源部ごとのガス信号波形を求め、これらガス信号波形からそれぞれの掃引範囲に吸収線を有する複数種類の対象ガスの濃度を求めることを特徴とする光式多ガス濃度検出方法。   A plurality of light source units that modulate the wavelength and intensity of laser light with a sine wave and sweep the modulation center wavelength within a predetermined sweep range are made different in modulation frequency and sweep range, and the outputs of these light source units are combined. The combined laser beam is guided to the gas detector by the optical fiber and transmitted to the atmosphere to be measured in the gas detector, and the transmitted light of the gas detector is guided to the receiver by the optical fiber and received. The received light signal is sequentially phase-sensitively detected at the modulation frequency for each light source unit to obtain a gas signal waveform for each light source unit, and a plurality of types of objects having absorption lines in their respective sweep ranges from these gas signal waveforms An optical multi-gas concentration detection method characterized by determining a gas concentration. レーザ光の波長及び強度を正弦波で変調しつつその変調中心波長を所定の掃引範囲内で掃引する複数の光源部であって、各々変調周波数及び掃引範囲を異ならせた光源部と、これらの光源部の出力を合波する合波器と、その合波されたレーザ光をガス検出部に導く光源側光ファイバと、複数種類の対象ガスを充填したガス検出部と、ガス検出部内の被測定雰囲気中を透過した光を受光器まで導く受光器側光ファイバと、上記受光器で受光した受光信号を、順次、上記光源部ごとの変調周波数で位相敏感検波して上記光源部ごとのガス信号波形を求め、これらガス信号波形からそれぞれの掃引範囲に吸収線を有する複数種類の対象ガスの濃度を求める信号処理部とを備えたことを特徴とする光式多ガス濃度検出装置。   A plurality of light source units that modulate the wavelength and intensity of laser light with a sine wave and sweep the modulation center wavelength within a predetermined sweep range, each having a different modulation frequency and sweep range, and A multiplexer that multiplexes the outputs of the light source unit, a light source side optical fiber that guides the combined laser beam to the gas detection unit, a gas detection unit that is filled with a plurality of types of target gases, and a target in the gas detection unit The optical fiber on the light receiver side that guides the light transmitted through the measurement atmosphere to the light receiver and the light reception signal received by the light receiver are sequentially detected by the phase sensitive detection at the modulation frequency for each light source unit, and the gas for each light source unit is detected. An optical multi-gas concentration detection apparatus comprising: a signal processing unit that obtains signal waveforms and obtains concentrations of a plurality of types of target gases having absorption lines in respective sweep ranges from these gas signal waveforms.
JP2006060974A 2006-03-07 2006-03-07 Optical multiple gas concentration detection method and device Pending JP2007240248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060974A JP2007240248A (en) 2006-03-07 2006-03-07 Optical multiple gas concentration detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060974A JP2007240248A (en) 2006-03-07 2006-03-07 Optical multiple gas concentration detection method and device

Publications (1)

Publication Number Publication Date
JP2007240248A true JP2007240248A (en) 2007-09-20

Family

ID=38585935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060974A Pending JP2007240248A (en) 2006-03-07 2006-03-07 Optical multiple gas concentration detection method and device

Country Status (1)

Country Link
JP (1) JP2007240248A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150827A (en) * 2007-12-21 2009-07-09 Dkk Toa Corp Infrared absorbing type gas analyzer
JP2009174920A (en) * 2008-01-22 2009-08-06 Hitachi Cable Ltd Optical combustible gas concentration detection method and optical combustible gas concentration detector
JP2009264814A (en) * 2008-04-23 2009-11-12 Fuji Electric Systems Co Ltd Laser type gas analyzer for multi-component
JP2009264922A (en) * 2008-04-25 2009-11-12 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2010019780A (en) * 2008-07-14 2010-01-28 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2010032422A (en) * 2008-07-30 2010-02-12 Fuji Electric Systems Co Ltd Laser type gas analyzer and concentration measuring method of oxygen gas
JP2011043461A (en) * 2009-08-24 2011-03-03 Shimadzu Corp Gas analyzer
JP2011054131A (en) * 2009-09-04 2011-03-17 Osaka Gas Co Ltd Temperature detection mechanism, gas detector and fire detector
CN103439289A (en) * 2013-09-02 2013-12-11 刘永宁 Multichannel and multi-point-location gas detection system based on second harmonic detection technique
JP2017067556A (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Substance detection device, substance detection system and substance detection method
JP2017083272A (en) * 2015-10-27 2017-05-18 パナソニックIpマネジメント株式会社 Substance detection device and substance detection method
WO2017090516A1 (en) * 2015-11-24 2017-06-01 日本電気株式会社 Gas detection system
JP2018530744A (en) * 2015-09-02 2018-10-18 カリフォルニア インスティチュート オブ テクノロジー Method and apparatus for spectroscopic detection of low concentrations of hydrogen sulfide gas
US10585037B2 (en) 2015-08-24 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Substance detecting device, substance detecting system, and substance detecting method in which temperature control of light emission is performed
CN111220570A (en) * 2020-01-19 2020-06-02 电子科技大学 Infrared multi-gas detection system and gas detection method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150827A (en) * 2007-12-21 2009-07-09 Dkk Toa Corp Infrared absorbing type gas analyzer
JP2009174920A (en) * 2008-01-22 2009-08-06 Hitachi Cable Ltd Optical combustible gas concentration detection method and optical combustible gas concentration detector
JP2009264814A (en) * 2008-04-23 2009-11-12 Fuji Electric Systems Co Ltd Laser type gas analyzer for multi-component
JP2009264922A (en) * 2008-04-25 2009-11-12 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2010019780A (en) * 2008-07-14 2010-01-28 Fuji Electric Systems Co Ltd Laser type gas analyzer
JP2010032422A (en) * 2008-07-30 2010-02-12 Fuji Electric Systems Co Ltd Laser type gas analyzer and concentration measuring method of oxygen gas
JP2011043461A (en) * 2009-08-24 2011-03-03 Shimadzu Corp Gas analyzer
JP2011054131A (en) * 2009-09-04 2011-03-17 Osaka Gas Co Ltd Temperature detection mechanism, gas detector and fire detector
CN103439289A (en) * 2013-09-02 2013-12-11 刘永宁 Multichannel and multi-point-location gas detection system based on second harmonic detection technique
US10585037B2 (en) 2015-08-24 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Substance detecting device, substance detecting system, and substance detecting method in which temperature control of light emission is performed
JP2018530744A (en) * 2015-09-02 2018-10-18 カリフォルニア インスティチュート オブ テクノロジー Method and apparatus for spectroscopic detection of low concentrations of hydrogen sulfide gas
JP2017067556A (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Substance detection device, substance detection system and substance detection method
JP2017083272A (en) * 2015-10-27 2017-05-18 パナソニックIpマネジメント株式会社 Substance detection device and substance detection method
WO2017090516A1 (en) * 2015-11-24 2017-06-01 日本電気株式会社 Gas detection system
CN111220570A (en) * 2020-01-19 2020-06-02 电子科技大学 Infrared multi-gas detection system and gas detection method

Similar Documents

Publication Publication Date Title
JP2007240248A (en) Optical multiple gas concentration detection method and device
JP6552983B2 (en) Brillouin scattering measurement method and Brillouin scattering measurement apparatus
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
JPH0763855A (en) Apparatus for optical measurement
US20160245719A1 (en) Optical pulse compression reflectometer
WO2017014097A1 (en) Gas detection device and gas detection method
JP2007040995A (en) Gas detection method and gas detector
CA2912771C (en) Gas analyzer system with one or more retroreflectors
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
WO2017090516A1 (en) Gas detection system
JP4065452B2 (en) Multi-point optical gas concentration detection system
JP2006510012A (en) Laser radar apparatus having a plurality of output wavelengths
JPWO2014203654A1 (en) Distance measuring device, shape measuring device, processing system, distance measuring method, shape measuring method and processing method
JP2007218783A (en) Optical fiber type gas concentration detection method and device
JPWO2017029791A1 (en) Concentration measuring device
JP5363231B2 (en) Vibration measuring apparatus and vibration measuring method
JP5594514B2 (en) Laser gas analyzer
JP4217109B2 (en) Multipoint gas concentration detection method and system
JP4217108B2 (en) Multipoint optical gas concentration detection method and system
JP5370248B2 (en) Gas analyzer
JP2007218844A (en) Method and apparatus for optically detecting multi-gas concentration
JPH04326041A (en) Gas concentration measuring method and device
JP2001066250A (en) Gas detection apparatus
JP4993213B2 (en) Laser gas analyzer
JP4066921B2 (en) Multipoint optical path switching type gas concentration detection method and apparatus