JP2009150827A - Infrared absorbing type gas analyzer - Google Patents

Infrared absorbing type gas analyzer Download PDF

Info

Publication number
JP2009150827A
JP2009150827A JP2007330417A JP2007330417A JP2009150827A JP 2009150827 A JP2009150827 A JP 2009150827A JP 2007330417 A JP2007330417 A JP 2007330417A JP 2007330417 A JP2007330417 A JP 2007330417A JP 2009150827 A JP2009150827 A JP 2009150827A
Authority
JP
Japan
Prior art keywords
concentration
light source
infrared
gas analyzer
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330417A
Other languages
Japanese (ja)
Inventor
Hiroko Konno
裕子 金野
Matsufumi Ishida
松文 石田
Takashi Nishi
隆 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIONICS INSTRUMENT CO Ltd
DKK TOA Corp
Original Assignee
BIONICS INSTRUMENT CO Ltd
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIONICS INSTRUMENT CO Ltd, DKK TOA Corp filed Critical BIONICS INSTRUMENT CO Ltd
Priority to JP2007330417A priority Critical patent/JP2009150827A/en
Publication of JP2009150827A publication Critical patent/JP2009150827A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared absorbing type gas analyzer capable of measuring a plurality of species of specific gas components by one apparatus by only replacing a measuring cell. <P>SOLUTION: The concentration measuring condition and concentration operation system of a plurality of species of the specific gas components are stored in the memory part 23 provided to a control part 20 and made possible to change over. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料ガス中の特定ガス成分の濃度を測定する赤外吸収式ガス分析装置に関する。   The present invention relates to an infrared absorption gas analyzer that measures the concentration of a specific gas component in a sample gas.

従来、試料ガス中に含まれる特定ガス成分を測定するための装置として、非分散型赤外吸収式ガス分析装置(NDIR)が使用されている(例えば、特許文献1参照)。この非分散型赤外吸収式ガス分析装置の測定セルの一例を図3に示す。図3において、10は試料ガス導入口12および試料ガス排出口14を有するセル本体、16はセル本体10内の一端側に配置された赤外光源、18はセル本体10内の他端側に配置された受光部を示す。本例の測定セルでは、試料ガス導入口12からセル本体10内に試料ガス20を導入するとともに、セル本体10内の試料ガス20に赤外光源16から赤外光を照射し、この赤外光を受光部18で検出する。この場合、受光部18に光学フィルタであるバンドパスフィルタ(図示せず)を設け、目的成分が吸収する波長以外の波長の光をカットする。   Conventionally, a non-dispersive infrared absorption gas analyzer (NDIR) has been used as an apparatus for measuring a specific gas component contained in a sample gas (see, for example, Patent Document 1). An example of a measurement cell of this non-dispersive infrared absorption gas analyzer is shown in FIG. In FIG. 3, 10 is a cell body having a sample gas inlet 12 and a sample gas outlet 14, 16 is an infrared light source disposed on one end side in the cell body 10, and 18 is on the other end side in the cell body 10. The arranged light receiving part is shown. In the measurement cell of this example, the sample gas 20 is introduced into the cell body 10 from the sample gas inlet 12, and the sample gas 20 in the cell body 10 is irradiated with infrared light from the infrared light source 16. Light is detected by the light receiving unit 18. In this case, a band pass filter (not shown) that is an optical filter is provided in the light receiving unit 18 to cut light having a wavelength other than the wavelength that is absorbed by the target component.

上述した非分散型赤外吸収式ガス分析装置は、ガス濃度計やガス漏洩検知器に利用されているが、目的ガス成分の濃度を測定するに当たり、目的ガス成分の赤外領域にある特定吸収波長帯域の吸光度を検出し、下記ランバート・ベルの法則によりガス濃度を決定している。具体的には、目的ガスの特定吸収波長での透過光(サンプル光)の強度を、その目的ガスの吸収がない波長における透過光(参照光)の強度に対する吸光度として演算し、これに温度等の条件を補正して濃度算出を行っている。   The non-dispersive infrared absorption gas analyzer described above is used in gas concentration meters and gas leak detectors. When measuring the concentration of the target gas component, the specific absorption in the infrared region of the target gas component is used. Absorbance in the wavelength band is detected, and the gas concentration is determined according to Lambert Bell's law below. Specifically, the intensity of the transmitted light (sample light) at the specific absorption wavelength of the target gas is calculated as the absorbance with respect to the intensity of the transmitted light (reference light) at the wavelength where the target gas does not absorb, and the temperature or the like is calculated. The density is calculated by correcting the above conditions.

<ランバート・ベルの法則>
A=log(I/I)=εcd
A:吸光度
:参照光強度
:サンプル光強度
ε:物質固有の吸光係数
c:ガス濃度
d:セル長
<Lambert Bell's Law>
A = log (I 0 / I 1 ) = εcd
A: Absorbance I 0 : Reference light intensity I 1 : Sample light intensity ε: Absorption coefficient specific to substance c: Gas concentration d: Cell length

特公平5−19651号公報Japanese Patent Publication No. 5-19651

前述した赤外吸収式ガス分析装置において、受光部で検出する赤外光の波長は、受光部の赤外線センサの前方に配置したバンドパスフィルタで決定している。したがって、赤外吸収式ガス分析装置では、目的ガス成分に対応したバンドパスフィルタの選択が必要であり、そのため目的ガス成分に対応した測定セルが必要である。   In the above-described infrared absorption gas analyzer, the wavelength of infrared light detected by the light receiving unit is determined by a bandpass filter disposed in front of the infrared sensor of the light receiving unit. Therefore, in the infrared absorption gas analyzer, it is necessary to select a bandpass filter corresponding to the target gas component, and therefore, a measurement cell corresponding to the target gas component is required.

一方、赤外吸収式ガス分析装置を用いたガス測定では、目的ガス成分の吸光度を算出し、ガス濃度に換算する過程で、実際の濃度特性が曲線になった場合の直線化のための補正の有無、周囲温度の条件が変化した場合の温度補償の有無、測定濃度範囲、光源電圧、光源周波数等の濃度測定条件および濃度演算方式が目的ガス成分ごとに異なる。そのため、従来の赤外吸収式ガス分析装置では、目的ガス成分の種類ごとに、上記濃度測定条件および濃度演算方式を組み込んだ専用装置と測定セルが必要であった。   On the other hand, in gas measurement using an infrared absorption gas analyzer, correction is performed for linearization when the actual concentration characteristic becomes a curve in the process of calculating the absorbance of the target gas component and converting it to gas concentration. Presence / absence, presence / absence of temperature compensation when ambient temperature conditions change, concentration measurement conditions such as measurement concentration range, light source voltage, light source frequency, and concentration calculation method differ for each target gas component. Therefore, a conventional infrared absorption gas analyzer requires a dedicated device and a measurement cell incorporating the concentration measurement conditions and the concentration calculation method for each type of target gas component.

本発明は、前述した事情に鑑みてなされたもので、測定セルを交換するだけで、1つの装置で複数種の特定ガス成分の測定を行うことが可能な赤外吸収式ガス分析装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides an infrared absorption gas analyzer capable of measuring a plurality of types of specific gas components with a single device by simply replacing a measurement cell. The purpose is to do.

本発明らは、前記目的を達成するため、測定セルの内部に赤外光源および受光部が配置され、前記測定セル内に導入した試料ガスに前記赤外光源から赤外光を照射し、この赤外光を前記受光部で検出するとともに、制御部により前記受光部で検出した赤外光強度に基づいて試料ガス中の特定ガス成分の濃度を算出する赤外吸収式ガス分析装置において、前記制御部にある記憶部は、複数種の前記特定ガス成分の濃度測定条件および濃度演算方式を記憶しているとともに、前記複数種の特定ガス成分の濃度測定条件および濃度演算方式は切り換え手段により切り換え可能とされていることを特徴とする赤外吸収式ガス分析装置を提供する。   In order to achieve the above-mentioned object, the present invention has an infrared light source and a light receiving portion arranged inside a measurement cell, and irradiates the sample gas introduced into the measurement cell with infrared light from the infrared light source. In the infrared absorption type gas analyzer that detects infrared light by the light receiving unit and calculates a concentration of a specific gas component in the sample gas based on the infrared light intensity detected by the light receiving unit by the control unit, The storage unit in the control unit stores the concentration measurement conditions and concentration calculation methods for the plurality of types of specific gas components, and the concentration measurement conditions and concentration calculation methods for the plurality of types of specific gas components are switched by a switching unit. An infrared absorption gas analyzer characterized by being capable of being provided.

本発明において、好ましくは、前記記憶部は、前記特定ガス成分の濃度測定条件として、少なくとも赤外光源の種類および駆動条件を記憶していることを特徴としている。   In this invention, Preferably, the said memory | storage part has memorize | stored at least the kind and drive condition of an infrared light source as the density | concentration measurement conditions of the said specific gas component.

本発明において、好ましくは、前記切り換え手段は、ディップスイッチであることを特徴としている。     In the present invention, preferably, the switching means is a dip switch.

本発明では、測定対象となる複数の目的ガス成分のそれぞれの濃度測定条件および濃度演算方式を予め制御部に記憶させておき、この濃度測定条件および濃度演算方式を切り換え可能としたので、測定を行う目的ガス成分に対応する測定セルを使用するとともに、目的ガス成分に対応する濃度測定条件および濃度演算方式を選択することにより、測定セルを交換するだけで、1つの装置で複数種の特定ガス成分の測定を行うことが可能となる。   In the present invention, the concentration measurement conditions and the concentration calculation method for each of the plurality of target gas components to be measured are stored in the control unit in advance, and the concentration measurement conditions and the concentration calculation method can be switched. By using the measurement cell corresponding to the target gas component to be performed and selecting the concentration measurement condition and concentration calculation method corresponding to the target gas component, it is only necessary to replace the measurement cell so that multiple types of specific gases can be obtained with one device. The component can be measured.

本発明において、制御部に記憶させる特定ガス成分の濃度測定条件としては、例えば、測定信号増幅率、測定濃度範囲、光源の種類、光源電圧、光源電流上限、光源周波数、セル長、特定ガス成分の吸光係数および透過率等を挙げることができるが、これらに限定されるものではない。また、制御部に記憶させる特定ガス成分の濃度演算方式としては、例えば、実際の濃度特性が曲線になった場合の直線化のための補正の有無、周囲温度の条件が変化した場合の温度補償の有無、周囲湿度の条件が変化した場合の湿度補償の有無等を挙げることができるが、これらに限定されるものではない。   In the present invention, specific gas component concentration measurement conditions stored in the control unit include, for example, measurement signal amplification factor, measurement concentration range, light source type, light source voltage, light source current upper limit, light source frequency, cell length, and specific gas component. However, the present invention is not limited to these. The specific gas component concentration calculation method to be stored in the control unit includes, for example, whether or not there is correction for linearization when the actual concentration characteristic becomes a curve, and temperature compensation when the ambient temperature condition changes The presence / absence of humidity and the presence / absence of humidity compensation when the ambient humidity conditions change can be exemplified, but are not limited thereto.

本発明において、前述した複数種の特定ガス成分の濃度測定条件および濃度演算方式を切り換え可能にする手段に限定はないが、例えば、ディップスイッチ、ドライバーなどの治具を挿入して回転させるロータリースイッチ、押しボタン式のテンキー等のスイッチ類によって切り換え可能とする手段が挙げられる。   In the present invention, there is no limitation on the means for enabling switching between the concentration measurement conditions and the concentration calculation method for the above-mentioned plural kinds of specific gas components. For example, a rotary switch that rotates by inserting a jig such as a dip switch or a driver. A means for enabling switching by a switch such as a push button type numeric keypad.

本発明の赤外吸収式ガス分析装置は、非分散型赤外吸収式ガス分析装置等に構成することができる。また、本発明の赤外吸収式ガス分析装置としては、例えば、環境中の一酸化炭素、二酸化炭素、メタン、エタン、プロパン等のアルカン類、ハイドロフルオロカーボン、テトラフルオロメタン、テトラフルオロエタン等のパーフルオロカーボン類、六フッ化硫黄、メタノール、エタノール、イソプロピルアルコール等のアルコール類、亜酸化窒素、亜酸化窒素等の窒素酸化物類、二酸化硫黄等の硫黄酸化物類、無機ガス類といった赤外吸光活性物質を測定するものを挙げることができる。   The infrared absorption gas analyzer of the present invention can be configured as a non-dispersive infrared absorption gas analyzer or the like. The infrared absorption gas analyzer of the present invention includes, for example, environmental carbon monoxide, carbon dioxide, methane, ethane, propane and other alkanes, hydrofluorocarbon, tetrafluoromethane, tetrafluoroethane and other par Infrared absorption activity of fluorocarbons, sulfur hexafluoride, alcohols such as methanol, ethanol and isopropyl alcohol, nitrogen oxides such as nitrous oxide and nitrous oxide, sulfur oxides such as sulfur dioxide and inorganic gases Mention may be made of measuring substances.

本発明の赤外吸収式ガス分析装置は、測定セルを交換するだけで、1つの装置で複数種の特定ガス成分の測定を行うことが可能である。   The infrared absorption gas analyzer of the present invention can measure a plurality of types of specific gas components with a single device by simply replacing the measurement cell.

以下、図面を参照して本発明をさらに詳しく説明する。図1は本発明の一実施形態に係る非分散型赤外吸収式ガス分析装置を示すフロー図である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a flowchart showing a non-dispersive infrared absorption gas analyzer according to an embodiment of the present invention.

本例の非分散型赤外吸収式ガス分析装置は、測定部10と、制御部20とを具備する。測定部10は、赤外光源12と、受光部14と、受光部14と連絡する増幅部16とを有する。制御部20は、中央演算処理装置(CPU)22と、記憶部(メモリ)23と、CPU22および測定部10の増幅部16と連絡するアナログ・デジタル変換回路(ADC)24と、CPU22と連絡するデジタル・アナログ変換回路(DAC)26と、CPU22と連絡するシリアル通信部28と、CPU22と連絡するディップスイッチ(切り換え手段)30と、CPU22および測定部10の赤外光源12と連絡する光源駆動電源32とを有する。   The non-dispersive infrared absorption gas analyzer of this example includes a measurement unit 10 and a control unit 20. The measurement unit 10 includes an infrared light source 12, a light receiving unit 14, and an amplification unit 16 that communicates with the light receiving unit 14. The control unit 20 communicates with the CPU 22, a central processing unit (CPU) 22, a storage unit (memory) 23, an analog / digital conversion circuit (ADC) 24 that communicates with the CPU 22 and the amplification unit 16 of the measurement unit 10. A digital / analog conversion circuit (DAC) 26, a serial communication unit 28 communicating with the CPU 22, a dip switch (switching means) 30 communicating with the CPU 22, and a light source driving power source communicating with the CPU 22 and the infrared light source 12 of the measurement unit 10 32.

本例の非分散型赤外吸収式ガス分析装置において、制御部20のメモリ23は、複数種の特定ガス成分のそれぞれの濃度測定条件および濃度演算方式を記憶している。そして、これら複数種の特定ガス成分の濃度測定条件および濃度演算方式は、ディップスイッチ30の切り換え操作によってその信号がCPU22に伝わり、CPU22によりメモリ23にある所望の特定ガス成分の記憶領域を選択し、そのデータを抽出することによって切り換えることができるようになっている。より具体的には、記憶部23は、下記表1に示すように、亜酸化窒素(NO)の濃度測定条件および濃度演算方式と、テトラフルオロメタン(CF)の濃度測定条件および濃度演算方式とを記憶している。 In the non-dispersive infrared absorption gas analyzer of this example, the memory 23 of the control unit 20 stores the concentration measurement conditions and the concentration calculation method for each of a plurality of types of specific gas components. The concentration measurement conditions and concentration calculation methods for the plurality of types of specific gas components are transmitted to the CPU 22 by the switching operation of the dip switch 30, and the CPU 22 selects a storage area for the desired specific gas components in the memory 23. The data can be switched by extracting the data. More specifically, as shown in Table 1 below, the storage unit 23 has a nitrous oxide (N 2 O) concentration measurement condition and concentration calculation method, and a tetrafluoromethane (CF 4 ) concentration measurement condition and concentration. The calculation method is stored.

Figure 2009150827
Figure 2009150827

本例の非分散型赤外吸収式ガス分析装置によれば、亜酸化窒素用測定セルを用い、ディップスイッチ30の操作によって亜酸化窒素用濃度測定条件および濃度演算方式を選択することにより、亜酸化窒素の測定を行うことができる。また、テトラフルオロメタン用測定セルを用い、ディップスイッチ30の操作によってテトラフルオロメタン用濃度測定条件および濃度演算方式を選択することにより、テトラフルオロメタンの測定を行うことができる。したがって、本例の非分散型赤外吸収式ガス分析装置は、測定セルを交換するだけで、1つの装置で複数種の特定ガス成分(亜酸化窒素およびテトラフルオロメタン)の測定を行うことが可能である。   According to the non-dispersive infrared absorption gas analyzer of this example, the nitrous oxide measurement cell is used, and the nitrous oxide concentration measurement condition and the concentration calculation method are selected by operating the dip switch 30. Nitric oxide can be measured. Further, tetrafluoromethane can be measured by using a tetrafluoromethane measurement cell and selecting the concentration measurement method and concentration calculation method for tetrafluoromethane by operating the dip switch 30. Therefore, the non-dispersive infrared absorption gas analyzer of this example can measure a plurality of types of specific gas components (nitrous oxide and tetrafluoromethane) with a single device by simply replacing the measurement cell. Is possible.

また、本例の非分散型赤外吸収式ガス分析装置では、図2に示す赤外線制御システムを用いることができる。本例の赤外線制御システムは、赤外光源(1つのみ図示)110(図1の光源12が該当)と、制御部112(図1のCPU22が該当)と、特定ガス成分の濃度測定条件としての複数の赤外光源110の種類および駆動条件を記憶した記憶部114(図1のメモリ23が該当)と、光源駆動電源32(図1参照)とから構成される。さらに、上記光源駆動電源32は、赤外光源110の駆動電圧を制御する電圧制御回路116と、赤外光源110の駆動電圧を検出する電圧検出回路118と、赤外光源110の駆動電流を検出する電流検出回路120とを具備する。   In the non-dispersive infrared absorption gas analyzer of this example, the infrared control system shown in FIG. 2 can be used. The infrared control system of this example includes an infrared light source (only one is shown) 110 (corresponding to the light source 12 in FIG. 1), a control unit 112 (corresponding to the CPU 22 in FIG. 1), and a concentration measurement condition for a specific gas component. The storage unit 114 (which corresponds to the memory 23 in FIG. 1) that stores the types and driving conditions of the plurality of infrared light sources 110, and the light source driving power source 32 (see FIG. 1). Further, the light source driving power source 32 detects a voltage control circuit 116 that controls the driving voltage of the infrared light source 110, a voltage detection circuit 118 that detects the driving voltage of the infrared light source 110, and a driving current of the infrared light source 110. And a current detection circuit 120.

制御部112は、記憶部114、電圧制御回路116、電圧検出回路118および電流検出回路120と接続されているとともに、下記機能(1)および(2)を有する。
(1)電圧検出回路118により検出した赤外光源110の駆動電圧122に基づき、記憶部114に記憶した電圧駆動条件に合わせて電圧制御回路116により赤外光源110の駆動電圧を制御する機能。
(2)電流検出回路120で検出した赤外光源110の駆動電流124と記憶部114に記憶した電流駆動条件とを比較することにより駆動電流124の正常または異常を判定するとともに、駆動電流124が異常と判定したときにこの異常に対する処理を行う機能。
The control unit 112 is connected to the storage unit 114, the voltage control circuit 116, the voltage detection circuit 118, and the current detection circuit 120, and has the following functions (1) and (2).
(1) A function of controlling the drive voltage of the infrared light source 110 by the voltage control circuit 116 in accordance with the voltage drive condition stored in the storage unit 114 based on the drive voltage 122 of the infrared light source 110 detected by the voltage detection circuit 118.
(2) The drive current 124 of the infrared light source 110 detected by the current detection circuit 120 is compared with the current drive conditions stored in the storage unit 114 to determine whether the drive current 124 is normal or abnormal. A function that performs processing for this abnormality when it is determined to be abnormal.

上記異常に対する処理としては、下記(a)〜(e)から選ばれる1つ以上を行うことができる。
(a)電圧制御回路116により赤外光源110の駆動電圧を低下させる。
(b)電圧制御回路116により赤外光源110の駆動電圧を切断する。
(c)赤外吸収式ガス分析装置による測定を中止する。
(d)赤外吸収式ガス分析装置が異常であることを外部に発信する。
(e)赤外吸収式ガス分析装置の測定値が利用できないことを外部に発信する。
As a process for the abnormality, one or more selected from the following (a) to (e) can be performed.
(A) The drive voltage of the infrared light source 110 is lowered by the voltage control circuit 116.
(B) The drive voltage of the infrared light source 110 is cut by the voltage control circuit 116.
(C) The measurement by the infrared absorption gas analyzer is stopped.
(D) Transmitting to the outside that the infrared absorption gas analyzer is abnormal.
(E) Transmitting to the outside that the measured value of the infrared absorption gas analyzer cannot be used.

上記赤外光源110としては、パルスあるいは連続点灯可能なフィラメントや、薄膜を熱源とする赤外光源等を用いることができるが、本例では表1に示すように複数の赤外光源としてタングステン光源およびIR(赤外線)光源の2種類を使用し、光源種類としてNOガスではタングステン光源、CFガスではIR光源を記憶部114に記憶させ、それらの駆動条件として前記表1に示す光源電圧および電流上限を記憶部114に記憶させる。 As the infrared light source 110, a pulse or continuous lighting filament, an infrared light source using a thin film as a heat source, or the like can be used. In this example, as shown in Table 1, a tungsten light source is used as a plurality of infrared light sources. And an IR (infrared) light source, the light source type is a tungsten light source in the case of N 2 O gas, and an IR light source is stored in the storage unit 114 in the case of CF 4 gas. The current upper limit is stored in the storage unit 114.

本例の赤外線制御システムでは、特定ガス成分の濃度測定条件として複数の赤外光源の種類および駆動条件を記憶部(メモリ)に記憶させ、この駆動条件を用いて制御部の制御により目的ガス成分の測定に適した赤外光源を駆動することにより、1つの実装回路(電圧制御回路)で複数の赤外光源を駆動することが可能となる。この場合、上記記憶部には、赤外光源の種類および駆動条件以外の特定ガス成分の濃度測定条件および濃度演算条件も記憶させることができる。   In the infrared control system of this example, the types and driving conditions of a plurality of infrared light sources are stored in the storage unit (memory) as the concentration measurement conditions for the specific gas component, and the target gas component is controlled by the control unit using these driving conditions. It is possible to drive a plurality of infrared light sources with a single mounting circuit (voltage control circuit) by driving an infrared light source suitable for the measurement. In this case, the storage unit can also store the concentration measurement condition and the concentration calculation condition of the specific gas component other than the type of the infrared light source and the driving condition.

なお、本発明の赤外吸収式ガス分析装置は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することが可能である。例えば、上記実施形態では2種類の目的ガス成分の濃度測定条件および濃度演算方式をCPUに記憶させたが、3種類以上の目的ガス成分の濃度測定条件および濃度演算方式を記憶させてもよい。   The infrared absorption gas analyzer of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, the concentration measurement conditions and concentration calculation methods for two types of target gas components are stored in the CPU, but the concentration measurement conditions and concentration calculation methods for three or more types of target gas components may be stored.

本発明の一実施形態に係る非分散型赤外吸収式ガス分析装置を示すフロー図である。It is a flowchart which shows the non-dispersion type | mold infrared absorption type gas analyzer which concerns on one Embodiment of this invention. 実施形態で用いた赤外線制御システムを示すフロー図である。It is a flowchart which shows the infrared control system used by embodiment. 非分散型赤外吸収式ガス分析装置の測定セルの一例を示す概略図である。It is the schematic which shows an example of the measurement cell of a non-dispersion type infrared absorption gas analyzer.

符号の説明Explanation of symbols

10 測定部
12 赤外光源
14 受光部
16 増幅部
20 制御部
22 中央演算処理装置
23 記憶部
24 アナログ・デジタル変換回路
26 デジタル・アナログ変換回路
28 シリアル通信部
30 ディップスイッチ
32 光源駆動電源
DESCRIPTION OF SYMBOLS 10 Measuring part 12 Infrared light source 14 Light receiving part 16 Amplifying part 20 Control part 22 Central processing unit 23 Memory | storage part 24 Analog / digital conversion circuit 26 Digital / analog conversion circuit 28 Serial communication part 30 Dip switch 32 Light source drive power supply

Claims (3)

測定セルの内部に赤外光源および受光部が配置され、前記測定セル内に導入した試料ガスに前記赤外光源から赤外光を照射し、この赤外光を前記受光部で検出するとともに、制御部により前記受光部で検出した赤外光強度に基づいて試料ガス中の特定ガス成分の濃度を算出する赤外吸収式ガス分析装置において、前記制御部にある記憶部は、複数種の前記特定ガス成分の濃度測定条件および濃度演算方式を記憶しているとともに、前記複数種の特定ガス成分の濃度測定条件および濃度演算方式は切り換え手段により切り換え可能とされていることを特徴とする赤外吸収式ガス分析装置。   An infrared light source and a light receiving unit are arranged inside the measurement cell, and the sample gas introduced into the measurement cell is irradiated with infrared light from the infrared light source, and the infrared light is detected by the light receiving unit, In the infrared absorption gas analyzer that calculates the concentration of the specific gas component in the sample gas based on the infrared light intensity detected by the light receiving unit by the control unit, the storage unit in the control unit includes a plurality of types of the above-described storage units. The concentration measurement conditions and concentration calculation methods for the specific gas component are stored, and the concentration measurement conditions and concentration calculation methods for the plurality of types of specific gas components are switchable by a switching means. Absorption gas analyzer. 前記記憶部は、前記特定ガス成分の濃度測定条件として、少なくとも赤外光源の種類および駆動条件を記憶していることを特徴とする請求項1に記載の赤外吸収式ガス分析装置。   2. The infrared absorption gas analyzer according to claim 1, wherein the storage unit stores at least a type and a driving condition of an infrared light source as a concentration measurement condition of the specific gas component. 前記切り換え手段は、ディップスイッチであることを特徴とする請求項1または2に記載の赤外吸収式ガス分析装置。   3. The infrared absorption gas analyzer according to claim 1, wherein the switching means is a dip switch.
JP2007330417A 2007-12-21 2007-12-21 Infrared absorbing type gas analyzer Pending JP2009150827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330417A JP2009150827A (en) 2007-12-21 2007-12-21 Infrared absorbing type gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330417A JP2009150827A (en) 2007-12-21 2007-12-21 Infrared absorbing type gas analyzer

Publications (1)

Publication Number Publication Date
JP2009150827A true JP2009150827A (en) 2009-07-09

Family

ID=40920097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330417A Pending JP2009150827A (en) 2007-12-21 2007-12-21 Infrared absorbing type gas analyzer

Country Status (1)

Country Link
JP (1) JP2009150827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032310A (en) * 2015-07-29 2017-02-09 旭化成エレクトロニクス株式会社 Method for adjusting light source drive condition
JP2020519878A (en) * 2017-05-11 2020-07-02 メトラー−トレド ゲーエムベーハー Gas measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52165681U (en) * 1976-06-09 1977-12-15
JPH04303743A (en) * 1991-03-30 1992-10-27 Shimadzu Corp Carbon-dioxide-gas measuring apparatus
JPH05223735A (en) * 1992-02-08 1993-08-31 Horiba Ltd Differential amount gas analysis
JP2007240248A (en) * 2006-03-07 2007-09-20 Hitachi Cable Ltd Optical multiple gas concentration detection method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52165681U (en) * 1976-06-09 1977-12-15
JPH04303743A (en) * 1991-03-30 1992-10-27 Shimadzu Corp Carbon-dioxide-gas measuring apparatus
JPH05223735A (en) * 1992-02-08 1993-08-31 Horiba Ltd Differential amount gas analysis
JP2007240248A (en) * 2006-03-07 2007-09-20 Hitachi Cable Ltd Optical multiple gas concentration detection method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032310A (en) * 2015-07-29 2017-02-09 旭化成エレクトロニクス株式会社 Method for adjusting light source drive condition
JP2020519878A (en) * 2017-05-11 2020-07-02 メトラー−トレド ゲーエムベーハー Gas measurement system
US11327008B2 (en) 2017-05-11 2022-05-10 Mettler-Toledo Gmbh Gas measurement system

Similar Documents

Publication Publication Date Title
KR102455470B1 (en) Hydrogen gas sensor and method for measurement of hydrogen under atmospheric and elevated pressure
US10241037B2 (en) Laser sensor for trace gas detection
JP2006030032A (en) Method and device for determining quantitatively impurity in gas
US8128874B2 (en) Pressurized detectors substance analyzer
WO2016125338A1 (en) Gas analyzing method and gas analyzing device
EP3571489A1 (en) Close-coupled analyser
KR102176595B1 (en) Toc measuring system using high frequency heating combustion
JP2009150827A (en) Infrared absorbing type gas analyzer
CN109752344B (en) Portable non-methane total hydrocarbon concentration detector and detection method
EP1722214A1 (en) Gas sensor arrangement and measuring method for improving long-term stability
JP2009150828A (en) Infrared control system of infrared gas analyzer
JP2008157874A (en) Absorption analyzer
JP2005062013A (en) Analysis method and analysis device for sulfur component by ultraviolet fluorescence method
Wong et al. Zero drift NDIR gas sensors
JP2009139135A (en) Infrared absorption-type gas analyzer
JP4727444B2 (en) Gas analyzer and semiconductor manufacturing apparatus
JP2010286291A (en) Infrared spectroscope and infrared spectral measuring device
JP2006153543A (en) Device for supporting optical path length setting, and concentration measuring system
KR102015225B1 (en) Gas Concentration correction method using a Gas analyzer combined with Hitran bandpass filter and GFC
JP6888089B2 (en) Gas analyzer, program for gas analyzer, and gas analysis method
JP5421148B2 (en) Gas concentration calculation device and gas concentration measurement module
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JPH0552837A (en) Carbon measuring device
KR102083720B1 (en) Ndir analyzer having a helical optical path
JP3126981U (en) Fourier transform infrared spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A02