JPH02260480A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH02260480A JPH02260480A JP8006389A JP8006389A JPH02260480A JP H02260480 A JPH02260480 A JP H02260480A JP 8006389 A JP8006389 A JP 8006389A JP 8006389 A JP8006389 A JP 8006389A JP H02260480 A JPH02260480 A JP H02260480A
- Authority
- JP
- Japan
- Prior art keywords
- etalon
- semiconductor laser
- frequency
- light
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000010408 sweeping Methods 0.000 claims abstract description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 abstract description 8
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000004069 differentiation Effects 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 108010045512 cohesins Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、半導体レーザの波長を安定化する装置の特性
の改善に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improving the characteristics of a device for stabilizing the wavelength of a semiconductor laser.
〈従来の技術〉
コヒーレント光通信やコヒーシンl−光計測器では半導
体レーザの狭スペクトル化が重要な課題であり、吸収線
やエタロンを周波数弁別に用い、広帯域に電気的負帰還
をかけたものが従来から提案されている6例えば半導体
レーザの出力光をファブリ・ペロー・エタロンに通して
、位相ゆらぎ(周波数ゆらぎ)を振幅ゆらぎに変換し広
帯域でフィードバックし、スペクトルを細くすることは
既に行なわれている(古田島、大津:注入電流制御によ
る1、5.czm171GaAgpレーザの発振線幅狭
帯域化、儒学技報0QE84−130>。<Conventional technology> Narrowing the spectrum of semiconductor lasers is an important issue in coherent optical communication and cohesin l-optical measuring instruments. 6 For example, the method of narrowing the spectrum by passing the output light of a semiconductor laser through a Fabry-Perot etalon, converting phase fluctuations (frequency fluctuations) into amplitude fluctuations and feeding them back over a wide band, has already been proposed. (Furutashima, Otsu: Narrowing the oscillation linewidth of a 1,5.czm171 GaAgp laser by injection current control, Confucian Technical Report 0QE84-130).
〈発明が解決しようとする課題〉
上記のような構成の半導体レーザ装置では、広帯域の負
帰還をかけるために、あらかじめ半導体レーザの発振波
長を、位相ゆらぎを振幅ゆらぎに変換する際最もゲイン
が高くなる、ファプリ・ペロー・エタロン共振特性の屑
の部分に設定することが必要である。しかし一般に半導
体レーザの波長は一定ではないし、可変波長光源として
使う場合には周波数掃引されるので、動作点がエタロン
の特性のどこになるか不明である。またレーザ周波数を
安定化しても、エタロンの温度ドリフトやレーザパワー
変動等でエタロンの弁別感度が変化してしまう、このた
め広帯域の負帰還が不安定となってしまい、充分な狭ス
ペクトル幅を実現できない。またドリフト防止や、温度
で周波数掃引するために、エタロンを恒温槽に入れると
、大型で構成が複雑になってしまう。<Problems to be Solved by the Invention> In a semiconductor laser device having the above configuration, in order to apply wideband negative feedback, the oscillation wavelength of the semiconductor laser is set in advance to the highest gain when converting phase fluctuation into amplitude fluctuation. It is necessary to set this to the part of the Fapry-Perot etalon resonance characteristic. However, in general, the wavelength of a semiconductor laser is not constant, and when used as a variable wavelength light source, the frequency is swept, so it is unclear where the operating point will be in the characteristics of the etalon. Furthermore, even if the laser frequency is stabilized, the etalon's discrimination sensitivity will change due to etalon temperature drift, laser power fluctuations, etc. This makes broadband negative feedback unstable, making it possible to achieve a sufficiently narrow spectral width. Can not. Furthermore, if the etalon were placed in a constant temperature bath to prevent drift or to sweep the frequency with temperature, the structure would be large and complicated.
本発明はこのような問題点を解決するためになされたも
ので、半導体レーザの周波数やエタロンの温度が変化し
ても広帯域の負帰還が安定で、狭スペクトル幅の半導体
レーザ装置を実現することを目的とする。The present invention has been made to solve these problems, and aims to realize a semiconductor laser device with a narrow spectrum width and stable negative feedback over a wide band even when the frequency of the semiconductor laser or the temperature of the etalon changes. With the goal.
く課題を解決するための手段〉
本発明に係る半導体レーザ装置は半導体レーザと、この
半導体レーザの出力光の一部を入射する掃引型ファブリ
・ベロー・エタロンと、この掃引型ファブリ・ベロー・
エタロンの透過光を検出する受光素子と、この受光素子
の出力信号が特定の値になるように前記掃引型ファブリ
・ベロー・エタロンの掃引手段に負帰還を行う第1の制
御回路と、前記受光素子の出力のゆらぎ成分を小さくす
!
るように半導体レーザの注入電流を制御する広帯域の第
2の制御回路とを備えたことを特徴とする。Means for Solving the Problems> A semiconductor laser device according to the present invention includes a semiconductor laser, a swept Fabry-Bello etalon into which a part of the output light of the semiconductor laser is incident, and the swept Fabry-Bello etalon.
a light-receiving element for detecting light transmitted through the etalon; a first control circuit for providing negative feedback to the sweeping means of the swept Fabry-Bello etalon so that the output signal of the light-receiving element becomes a specific value; Reduce the fluctuation component of the element output! and a broadband second control circuit that controls the injection current of the semiconductor laser so as to control the injection current of the semiconductor laser.
く作用〉
受光素子の出力信号が所定の値となるようにファブリ・
ベロー・エタロンのミラー間隔が制御され、常にファプ
リ・ベロー・エタロンが所定の弁別感度を得ることがで
きるので安定に負帰還をかけることができる。Effect> Fabrication is performed so that the output signal of the light receiving element becomes a predetermined value.
Since the mirror spacing of the bellows etalon is controlled and the Fabry-bellows etalon can always obtain a predetermined discrimination sensitivity, negative feedback can be stably applied.
〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.
第1図は本発明に係る半導体レーザの一実施例を示す構
成ブロック図である。1はレーザ周波数掃引信号の入力
端子、2は前記掃引信号を通過する広域カット用のイン
ダクタンス、3はインダクタンス2を介して前記掃引信
号により発振周波数を設定される半導体レーザ、4は半
導体レーザ3の出力光を2方向に分離するビームスプリ
ッタ、5はビームスプリッタ4の反射光を入射するPZ
Till引型ファブ口型ファブリエタロン(以下エタロ
ンと呼ぶ)である、エタロン5において、51は対向す
るミラー、52はミラー51の間隔を変化さぜる掃引手
段を構成するp z ’rである。6はエタロン5を透
過した光を検出する受光素子、7は受光素子6の出力電
気信号を5のP Z ’r” 52に負帰還する第1の
制御回路、8は発振器、9は発振器8の出力を制御回路
7の出力と加算してPzT 52に印加する加算回路、
10は発振器8の出力周波数の2倍の周波数信号を発生
L7て制御回路7の参照信号入力となる逓倍回路、11
は受光素子6の出力を広帯域で増幅して半導体レーザ3
の注入電流に負帰還する第2の制御回路を構成する広帯
域増幅器、12は広帯域増幅器11の出力が加わる低域
カット用のキャパシタである。第1の制御回路7は例え
ばロックインアンプ等の検波回路とこれに接続するPI
Dコンコンローラ等から構成されている。FIG. 1 is a block diagram showing an embodiment of a semiconductor laser according to the present invention. 1 is an input terminal for a laser frequency sweep signal, 2 is an inductance for wide-range cutting through which the sweep signal passes, 3 is a semiconductor laser whose oscillation frequency is set by the sweep signal via the inductance 2, and 4 is an input terminal of the semiconductor laser 3. A beam splitter that separates the output light into two directions; 5 is a PZ that receives the reflected light from the beam splitter 4;
In the etalon 5, which is a Till pull type fab type Fabry etalon (hereinafter referred to as etalon), 51 is an opposing mirror, and 52 is a p z 'r constituting a sweeping means for changing the interval between the mirrors 51. 6 is a light receiving element that detects the light transmitted through the etalon 5; 7 is a first control circuit that negatively feeds back the output electrical signal of the light receiving element 6 to the P Z 'r'' 52 of 5; 8 is an oscillator; 9 is an oscillator 8 an adder circuit that adds the output of the control circuit 7 with the output of the control circuit 7 and applies the result to the PzT 52;
10 is a multiplier circuit which generates a frequency signal twice the output frequency of the oscillator 8 and serves as a reference signal input to the control circuit 7; 11;
amplifies the output of the light-receiving element 6 in a wide band and transmits it to the semiconductor laser 3.
A wideband amplifier 12 constitutes a second control circuit that provides negative feedback to the injected current. Reference numeral 12 is a low-frequency cut capacitor to which the output of the wideband amplifier 11 is added. The first control circuit 7 includes a detection circuit such as a lock-in amplifier and a PI connected to the detection circuit.
It consists of a D controller, etc.
上記のような構成の半導体レーザ装置の動作を次に説明
する。半導体レーザ3は端子1に入力した掃引信号によ
り設定される発振周波数の光を出力する。第2図(A)
にその周波数スペクトラムを示す、この光はビームスプ
リッタ4を透過して外部への出力光となる。ビームスプ
リッタ4で反射した光はエタロン5に入射する。エタロ
ン5のミラー間隔は発振器8の微小電圧出力がP Z
’!” 5に加わり、周波数f、、’t−掃引されてい
るので、第2図(B)に示すその共振特性は透過ビー=
りが周波数f、で左右に動いている。エタロン5の透過
光は受光素子6で検出され、周波数f、で変調されたそ
の出力電気信号は制御回路7において周波数2f、で同
期検波され、第2図(D)に示すような2次微分波形信
号となる。制御回路7はこの波形の零点く第2図(D)
のA点)となるようにPZT52を駆動する。上記のよ
うにエタロン5に負帰還をかけることにより、エタロン
5は1/−ザ周波数に対して常に第2図(C)の1次微
分波形のピーク、すなわちエタロン5の共振特性を示す
第2図(、B)の最大傾斜の点となるように制御される
。その結果、半導体レーザ3の周波数が掃引されても前
記A点にロックしたままエタロンが追従する。この状態
で受光索子6の出力には第3図に示すように、レーザス
ペクトルaの幅に基づく位相ゆらぎbがエタロン5の共
振特性Cによって振幅ゆらぎdに変換された信号が現れ
る。前述のようにエタロン5は半導体レーザ3の発振周
波数において、エタロン5の共振特性の最大傾斜の点と
なるように制御されており、この点は検出感度が最大の
点でもあるから、最大感度で検出された前記振幅ゆらぎ
信号は広帯域増幅器11.キャパシタ12を介して安定
に半導体レーザに負帰還され、発振スペクトル幅を狭く
する。The operation of the semiconductor laser device configured as described above will be explained next. The semiconductor laser 3 outputs light at an oscillation frequency set by the sweep signal input to the terminal 1. Figure 2 (A)
This light, whose frequency spectrum is shown in , passes through the beam splitter 4 and becomes output light to the outside. The light reflected by the beam splitter 4 enters the etalon 5. The mirror spacing of the etalon 5 is determined by the minute voltage output of the oscillator 8.
'! ” 5 and the frequency f,,'t-swept, its resonance characteristic shown in Fig. 2(B) is as follows:
is moving left and right at frequency f. The transmitted light of the etalon 5 is detected by the light receiving element 6, and the output electric signal modulated at the frequency f is synchronously detected at the frequency 2f in the control circuit 7, and the quadratic differential as shown in FIG. 2(D) is obtained. It becomes a waveform signal. The control circuit 7 is connected to the zero point of this waveform as shown in Fig. 2 (D).
The PZT 52 is driven so as to reach point A). By applying negative feedback to the etalon 5 as described above, the etalon 5 always has a peak of the first-order differential waveform shown in FIG. It is controlled to reach the point of maximum slope in the figure (,B). As a result, even if the frequency of the semiconductor laser 3 is swept, the etalon follows while being locked to the point A. In this state, as shown in FIG. 3, in the output of the light receiving probe 6, a signal appears in which the phase fluctuation b based on the width of the laser spectrum a is converted into an amplitude fluctuation d by the resonance characteristic C of the etalon 5. As mentioned above, the etalon 5 is controlled to be at the point of maximum slope of the resonance characteristic of the etalon 5 at the oscillation frequency of the semiconductor laser 3, and this point is also the point where the detection sensitivity is maximum. The detected amplitude fluctuation signal is sent to a wideband amplifier 11. Negative feedback is stably provided to the semiconductor laser via the capacitor 12, narrowing the oscillation spectrum width.
このような構成の半導体レーザ装置によれば、半導体レ
ーザの発振周波数が変化しても、エタロンの温度が変化
しても、常にエタロンが追従して最大検出感度の点にロ
ックしているので、広帯域負帰還が安定にかかりスペク
トル幅を細くすることができる。According to the semiconductor laser device having such a configuration, even if the oscillation frequency of the semiconductor laser changes or the temperature of the etalon changes, the etalon always follows and locks at the point of maximum detection sensitivity. Broadband negative feedback stabilizes the spectrum, making it possible to narrow the spectrum width.
またエタロンを恒温槽に入れる必要がないので小形化が
容易である。Further, since there is no need to place the etalon in a constant temperature bath, miniaturization is easy.
なお上記の実施例において、半導体レーザとしてRb等
の吸収線やファブリ・ベロー・エタロンの共振特性に波
長をロックして安定化したものを用いれば、狭スペクト
ルでかつ高安定な光源となる。In the above embodiment, if a semiconductor laser whose wavelength is stabilized by locking it to the absorption line of Rb or the like or the resonance characteristics of a Fabry-Bérot etalon is used as the semiconductor laser, a highly stable light source with a narrow spectrum can be obtained.
またエタロン5のミラー51として互いの焦点が他方の
鏡面上に来るように配置された2枚の半透性の凹面鏡か
ら構成されるものや、半透性の凹面鏡を平面鏡と対向さ
せたもの等を用いれば、さらに小形化することができる
。In addition, the mirror 51 of the etalon 5 may be composed of two semi-transparent concave mirrors arranged so that the focal point of each is on the mirror surface of the other, or one in which a semi-transparent concave mirror is opposed to a plane mirror. By using , it is possible to further reduce the size.
またエタロン5の透過光を検出するのでなく、反射光の
共振特性を用いてもよい0反射光は共振したときにパワ
ーが最小になるので逆位相になるが、同様に利用できる
。Alternatively, instead of detecting the transmitted light of the etalon 5, the resonance characteristics of the reflected light may be used.The zero reflected light has the minimum power when it resonates, so the phase is opposite, but it can be used in the same way.
第4図は本発明に係る半導体レーザの他の実施例を示す
構成ブロック図である。第1図と同じ部分は同一の記号
を付して説明を省略する。第1図と異なるのは、エタロ
ン5を位相変調して2倍の周波数で同期検波せずに、バ
イアス電圧を加えて最大傾斜点にロックしている点であ
る。半導体レーザ3のパワー変動があってもロックする
点かずれないように、半導体レーザ3の出力光の一部を
ビームスプリッタ13で反射して受光索子14で検出し
、受光素子6の出力との差を引算器15で求めている。FIG. 4 is a block diagram showing another embodiment of the semiconductor laser according to the present invention. The same parts as in FIG. 1 are given the same symbols and the explanation is omitted. The difference from FIG. 1 is that the etalon 5 is not phase-modulated and synchronously detected at twice the frequency, but is locked at the maximum slope point by applying a bias voltage. In order to avoid shifting from the locked point even if the power of the semiconductor laser 3 varies, a part of the output light of the semiconductor laser 3 is reflected by the beam splitter 13 and detected by the light receiving element 14, and the output light of the light receiving element 6 and the output light of the light receiving element 6 are detected. The subtractor 15 calculates the difference between the two.
その出力が電圧源17の所定のバイアス電圧Vと等しく
なるように第1の制御回路17でエタロン5を制御する
。電圧Vを最大傾斜点に設定すれば第1図の場合と同様
の効果を得ることができる。The first control circuit 17 controls the etalon 5 so that its output becomes equal to a predetermined bias voltage V of the voltage source 17. By setting the voltage V to the maximum slope point, the same effect as in the case of FIG. 1 can be obtained.
〈発明の効果〉
以上述べたように本発明によれば、半導体レーザの周波
数やエタロンの温度が変化しても広帯域の負帰還が安定
に掛かる、狭スペクトル幅の半導体レーザ装置を簡単な
構成で実現することができる。<Effects of the Invention> As described above, according to the present invention, a semiconductor laser device with a narrow spectrum width, in which wide-band negative feedback is stably applied even when the frequency of the semiconductor laser or the temperature of the etalon changes, can be easily constructed. It can be realized.
第1図は本発明に係る半導体レーザ装置の一実施例を示
す構成ブロック図、第2図は第1図装置の動作を説明す
るための特性曲線図、第3図は第1図装置の動作を説明
するための動作説明図、第4図は本発明に係る半導体レ
ーザ装置の第2の実施例を示す構成ブロック図である。
3・・・半導体レーザ、5・・・掃引型ファブリ・ベロ
ー・エタロン、6・・・受光素子、7.17・・・第1
の制御回路、11・・・第2の制御回路。FIG. 1 is a configuration block diagram showing an embodiment of the semiconductor laser device according to the present invention, FIG. 2 is a characteristic curve diagram for explaining the operation of the device shown in FIG. 1, and FIG. 3 is an operation of the device shown in FIG. 1. FIG. 4 is a block diagram showing a second embodiment of the semiconductor laser device according to the present invention. 3... Semiconductor laser, 5... Swept type Fabry-Bello etalon, 6... Photodetector, 7.17... First
control circuit, 11... second control circuit.
Claims (1)
入射する掃引型ファブリ・ペロー・エタロンと、この掃
引型フアブリ・ペロー・エタロンの透過光を検出する受
光素子と、この受光素子の出力信号が所定の値になるよ
うに前記掃引型ファブリ・ペロー・エタロンの掃引手段
に負帰還を行う第1の制御回路と、前記受光素子の出力
のゆらぎ成分を小さくするように半導体レーザの注入電
流を制御する広帯域の第2の制御回路とを備えたことを
特徴とする半導体レーザ装置。A semiconductor laser, a swept Fabry-Perot etalon into which part of the output light of the semiconductor laser is incident, a light receiving element that detects the transmitted light of the swept Fabry-Perot etalon, and an output signal of this light receiving element. a first control circuit that provides negative feedback to the sweeping means of the swept Fabry-Perot etalon so that it reaches a predetermined value; and a first control circuit that controls the injection current of the semiconductor laser so as to reduce a fluctuation component of the output of the light receiving element. 1. A semiconductor laser device comprising: a broadband second control circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8006389A JPH02260480A (en) | 1989-03-30 | 1989-03-30 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8006389A JPH02260480A (en) | 1989-03-30 | 1989-03-30 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02260480A true JPH02260480A (en) | 1990-10-23 |
Family
ID=13707776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8006389A Pending JPH02260480A (en) | 1989-03-30 | 1989-03-30 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02260480A (en) |
-
1989
- 1989-03-30 JP JP8006389A patent/JPH02260480A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114899702A (en) | Laser device offset frequency stabilizing device and method based on optical fiber ring resonator | |
JP2002033548A (en) | Method and apparatus for driving mode-locked semiconductor laser | |
CN116706665A (en) | Fiber laser frequency stabilization system and method | |
JPS6130088A (en) | Semiconductor laser device | |
JP2009033078A (en) | Wavelength scanning light source | |
JP3391229B2 (en) | External cavity type semiconductor laser light source | |
JPH02260480A (en) | Semiconductor laser device | |
US4765738A (en) | Method and apparatus of measuring frequency response in an optical receiving system | |
JPH02244782A (en) | Frequency stabilized semiconductor laser driver | |
JPS62230073A (en) | Variable wavelength light source | |
CN113471806B (en) | Multi-feedback laser stepping frequency sweep driving device and method | |
JPH02257026A (en) | Laser frequency stability measuring instrument | |
JP3104715B2 (en) | Variable wavelength filter device | |
JPH02240546A (en) | Gas sensor using tunable etalon | |
JPH0218526A (en) | System and equipment for optical transmission | |
JPS61102081A (en) | Frequency stabilization of semiconductor laser | |
JPH0327859B2 (en) | ||
JPH0481724A (en) | Frequency conversion device | |
JPH04115584A (en) | Frequency stabilized semiconductor laser | |
Sun et al. | A Working Point Stabilization System of Broadband Optical Acoustic Sensor Based on Laser Frequency Locking Technology | |
JPH0453014Y2 (en) | ||
JPH01194484A (en) | Stabilizing method for oscillation frequency of laser device | |
JPH067100B2 (en) | Gas concentration pressure detection method using tunable etalon | |
JPS62198725A (en) | Variable wavelength light source | |
KR950007488B1 (en) | Starilization method and apparatus of laser frequency and power |