JPH02257026A - Laser frequency stability measuring instrument - Google Patents

Laser frequency stability measuring instrument

Info

Publication number
JPH02257026A
JPH02257026A JP8006289A JP8006289A JPH02257026A JP H02257026 A JPH02257026 A JP H02257026A JP 8006289 A JP8006289 A JP 8006289A JP 8006289 A JP8006289 A JP 8006289A JP H02257026 A JPH02257026 A JP H02257026A
Authority
JP
Japan
Prior art keywords
frequency
output
wavelength
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8006289A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8006289A priority Critical patent/JPH02257026A/en
Publication of JPH02257026A publication Critical patent/JPH02257026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure the frequency stability of an optional laser beam by performing a step sweeping till the output wavelength of a variable wavelength light source becomes the nearest to the wavelength of the light to be measured in an arithmetic operation controller. CONSTITUTION:The laser beam to be measured with a frequency fx is made incident on one input end of an optical coupler 22 and the output light beam with the frequency fs from the variable wavelength light source 20 is made incident on the other input end of the optical coupler 22 through an optical fiber. And the light which is multiplexed by the coupler 22 is inputted in a photodetector 23 and the frequency difference between two laser light beams fx-fs is detected. The beat signal from the photodetector 23 is amplified 24 and the frequency fb is measured in a frequency counter 25. And the stability of the variance of erlang, etc., is arithmetically operated based on the fluctuation in the frequency fb in the arithmetic operation controller 26. When the output frequency fs of the light source 20 closes to the frequency fx of the laser beam to be measured by the output of the step sweeping in the controller 26, the frequency fb is detected 23 and the sweeping is stopped in the controller 26.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザの周波数安定度を簡便に測定する装置
の実現に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to the realization of a device for easily measuring the frequency stability of a laser.

〈従来の技術〉 従来、レーザ光の周波数安定度を測定する場合に、次の
ような方法が一般に行なわれている。
<Prior Art> Conventionally, when measuring the frequency stability of laser light, the following method is generally used.

(1)安定な基準レーザと合波してビート周波数を求め
、その安定度から評価する。
(1) Obtain the beat frequency by combining with a stable reference laser and evaluate based on its stability.

(2)同一のレーザを2台作り、その2台のレーザ出力
のビー1へ周波数から相対的な安定度を求める。
(2) Make two identical lasers and find the relative stability of the output of the two lasers to Be 1 from the frequency.

〈発明が解決しようとする課題〉 しかしながら、(1)の場合には基準レーザがら離れた
周波数のレーザの安定度は測定できず、(2)の場合に
は2台作るのか大変で、また相対的な安定度しか分らな
いことが問題である。
<Problem to be solved by the invention> However, in case (1), it is not possible to measure the stability of a laser at a frequency far from that of the reference laser, and in case (2), it is difficult to make two units, and the relative The problem is that we only know the relative stability.

本発明はとのような問題点を解決するなめに成されたも
ので、任意のレーザ光の周波数安定度を簡便に測定する
装置を実現することをも目的とする。
The present invention has been made to solve the above problems, and another object of the present invention is to realize an apparatus for easily measuring the frequency stability of any laser beam.

く課題を解決するだめの手段〉 本発明に係るレーザ周波数安定度側′定装置はファブリ
・ペロー・エタロンの透過波長を基準波長光源の出力光
の波長に制御し、前記ファブリ・ペロー・エタロンの透
過波長の1つに半導体レーザの出力波長を制御し、前記
半導体レーザの電流または温度を掃引入力として出力波
長がステップ的に可変となるように構成した可変波長光
源と、この可変波長光源の出力光と被測定光とを合波す
る合波手段と、この合波手段の出力光からと−1〜信号
を検出する光検出器と、この光検出器の出力信号のビー
1−周波数を測定する周波数カウンタと、この周波数カ
ウンタの出力から安定度を演算する演算制御手段とを備
え、演算制御手段か可変波長光源の出力波長を被測定光
の波長と最も近くなるまでステップ掃引するように構成
したことを特徴とする。
A device for determining the laser frequency stability according to the present invention controls the transmission wavelength of the Fabry-Perot etalon to the wavelength of the output light of the reference wavelength light source, and A tunable wavelength light source configured such that the output wavelength of a semiconductor laser is controlled as one of the transmission wavelengths, and the output wavelength is varied in steps by using the current or temperature of the semiconductor laser as a sweep input, and the output of the tunable wavelength light source. A combining means for combining the light and the light to be measured, a photodetector for detecting a signal from the output light of the combining means, and a Be1 frequency of the output signal of the photodetector. and a calculation control means for calculating stability from the output of the frequency counter, and configured to step sweep the output wavelength of the variable wavelength light source until the calculation control means or the output wavelength of the variable wavelength light source becomes closest to the wavelength of the light to be measured. It is characterized by what it did.

く作用〉 演算制御手段が可変波長光源の出力波長を被測定光の波
長と最も近くなるまで掃引し、被測定光の周波数安定度
を可変波長光源の出力光を基準として測定することがで
きる。
Function> The arithmetic control means sweeps the output wavelength of the variable wavelength light source until it becomes closest to the wavelength of the light to be measured, and the frequency stability of the light to be measured can be measured using the output light of the variable wavelength light source as a reference.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係るレーザ周波数安定爪測定装置の一
実施例を示す構成ブロック図である。1mlにおいて、
21は被測定レーザ光を光ファイバに導入する光学系、
20は後述の可変周波数光源、22は光学系21の出力
光と可変周波数光源20の出力光とを光ファイバを介し
て入射し合波する光カプラ、23は光カプラ22の合波
出力光を入射する光検出器、24は光検出器23の電気
信号出力を増幅する増幅器、25は増幅器2/1の出力
のビート周波数を測定する周波数カウンタ、26はマイ
クロプロセッサ等から構成され、用変周波数光源20の
出力周波数を掃引するとともに、周波数カウンタ25の
出力から安定度を演算する演算制御装置である。可変周
波数光源20において1は例えばCsやRb等の原子吸
収線に半導体レーザの波長を制御する等により波長を非
常に安定にしな基準波長光源、2はこの基準波長光源1
の出力光を入射する第1の偏光ビームスプリッタ、4は
この偏光ビームスプリッタ2の出力光を入射するファブ
リ・ペロー・エタロン、5はこのファブリ・ペロー・エ
タロン4の出力光を入射する第2の偏光ビームスプリッ
タ、6はこの偏光ビームスプリッタ5の透過光を入射す
るフォトタイオド等の受光素子、7はこの受光素子6の
電気出力を入力するロックインアンプ等で構成される制
御回路、9は制御回路7の出力を入力してファブリ・ペ
ロー・エタロン4を駆動するPZT等の圧電素子、10
は半導体レーザ、11はこの半導体レーザ10の出力光
を平行にするレンズ、13はこのレンズ11の出力光を
ビームスプリッタ12偏光ビームスプリツタ2.ファブ
リ・ペロー・エタロン4および偏光ビームスプリッタ5
を介して入射するフォトタイオド等の受光A子、14は
この受光素子13の電気出力を入力しその出力で半導体
レーザ10の注入電流を制御するロックインアンプ等で
構成される制御回路である。基準波長光源1としては、
例えは同一出願人による特願昭(il−11894号に
記載の装置等を用いることができる。
FIG. 1 is a block diagram showing an embodiment of a laser frequency stable nail measuring device according to the present invention. In 1 ml,
21 is an optical system that introduces the laser beam to be measured into the optical fiber;
20 is a variable frequency light source which will be described later; 22 is an optical coupler that inputs and combines the output light of the optical system 21 and the output light of the variable frequency light source 20 via an optical fiber; and 23 is the multiplexed output light of the optical coupler 22; An incident photodetector, 24 an amplifier for amplifying the electrical signal output of the photodetector 23, 25 a frequency counter for measuring the beat frequency of the output of the amplifier 2/1, 26 a microprocessor, etc. This is an arithmetic and control device that sweeps the output frequency of the light source 20 and calculates stability from the output of the frequency counter 25. In the variable frequency light source 20, 1 is a reference wavelength light source whose wavelength is made very stable by controlling the wavelength of a semiconductor laser to an atomic absorption line such as Cs or Rb, and 2 is this reference wavelength light source 1.
4 is a Fabry-Perot etalon that receives the output light of this polarizing beam splitter 2, and 5 is a second polarizing beam splitter that receives the output light of this Fabry-Perot etalon 4. A polarizing beam splitter, 6 a light receiving element such as a photodiode which receives the transmitted light from the polarizing beam splitter 5, 7 a control circuit comprising a lock-in amplifier etc. which inputs the electric output of the light receiving element 6, and 9 a control circuit. A piezoelectric element such as PZT which inputs the output of 7 and drives the Fabry-Perot etalon 4, 10
11 is a semiconductor laser; 11 is a lens that parallelizes the output light of this semiconductor laser 10; and 13 is a beam splitter 12 that converts the output light of this lens 11 into a polarizing beam splitter 2. Fabry-Perot etalon 4 and polarizing beam splitter 5
The light-receiving element 14, such as a photodiode, which is incident through the light-receiving element 13, is a control circuit composed of a lock-in amplifier, etc., which inputs the electrical output of the light-receiving element 13 and controls the current injected into the semiconductor laser 10 using the output. As the reference wavelength light source 1,
For example, the apparatus described in Japanese Patent Application No. IL-11894 filed by the same applicant may be used.

上記のような構成の装置の動作を第2図の周波数スペク
1〜ル図を用いて次に説明する。周波数1゛χの被測定
レーザ光は光学系21および光ファイバを介して光カプ
ラ22の一方の入力ボートに入射する。また可変波長光
源20の周波数fSの出力光は光ファイバを介して光カ
プラ22の他方の入カポ−1−に入射する。光カプラ2
2で合波された光か光検出器23に入射し、2つのレー
ザ光の周波数差(ビート周波数)fχ−fsが検出され
る。光検出器23からのビート信号は増幅器24で増幅
されて周波数カウンタ25でその周波数fbか測定され
る。制御演算装置26はこの周波数fbの変動からアラ
ン分散等の安定度を演算する。
The operation of the apparatus configured as described above will now be explained using the frequency spectrum diagrams 1 to 1 in FIG. A laser beam to be measured with a frequency of 1.chi. enters one input port of an optical coupler 22 via an optical system 21 and an optical fiber. Further, the output light of the frequency fS from the variable wavelength light source 20 enters the other input coupler 1- of the optical coupler 22 via the optical fiber. Optical coupler 2
The light multiplexed in step 2 enters the photodetector 23, and the frequency difference (beat frequency) fχ-fs between the two laser beams is detected. The beat signal from the photodetector 23 is amplified by an amplifier 24, and its frequency fb is measured by a frequency counter 25. The control calculation device 26 calculates the stability of Allan dispersion and the like from the fluctuation of this frequency fb.

可変周波数光源20において、基準波長光源1の出力光
は偏光ビームスプリッタ2を介してファブリ・ペロー・
エタロン4に入射する。ファブリ・ペロー・エタロン4
は制御口II!87の出力に重畳する変調信号により共
振器長を周期的に変化されるのて、その透過光強度が変
調を受ける。偏光ビムスプリッタ5を介して透過光を受
光素子6で検出し、制御回路′7において同期検波し、
圧電素子9の印加電圧に帰還し、ファブリ・ペロー・エ
タロン4の透過波長のうちいずれか一つのピークを基準
波長光源1の発振波長に制御する(第2図(A)(I−
3))。半導体レーザ10の出力光はレンズ11によっ
て平行光となりビームスプリッタ12を透過後、偏光ビ
ームスプリッタ2で反射されて基準波長光と同一の光路
に入り、ファブリ・ペロー・エタロン4に入射して基準
波長光と同様に変調を受り、その透過光か偏光ビームス
プリッタ5で反射して基準波長光から分離され、受光素
子13に入射する。基準波長光源1の出力光と半導体レ
ーザ10の出力光の偏光方向か互いに垂直となるように
し、前者を透過し後者を反射するように偏光ビームスプ
リッタ2,5を設置することにより、両光の合成1分離
か可能となる。受光素子13の出力は制御回路14で同
期検波されな後半導体レーザ10の注入電流に帰還され
、半導体レーザ10の発振波長をファブリ・ペロー・エ
タロン4の透過波長の一つに制御する(第2図(C)の
イ)6ビームスプリツタ12により半導体レサ10の出
力光の一部が反射され、レンズ15で集光されて光ファ
イバに出力される。
In the variable frequency light source 20, the output light from the reference wavelength light source 1 is converted into a Fabry-Perot beam via a polarization beam splitter 2.
It enters etalon 4. Fabry Perrault Etalon 4
is control port II! As the resonator length is periodically changed by a modulation signal superimposed on the output of 87, the transmitted light intensity is modulated. The transmitted light is detected by the light receiving element 6 through the polarizing beam splitter 5, and synchronously detected by the control circuit '7.
Feedback is applied to the voltage applied to the piezoelectric element 9, and the peak of any one of the transmission wavelengths of the Fabry-Perot etalon 4 is controlled to the oscillation wavelength of the reference wavelength light source 1 (Fig. 2 (A) (I-
3)). The output light of the semiconductor laser 10 becomes parallel light by the lens 11, passes through the beam splitter 12, is reflected by the polarizing beam splitter 2, enters the same optical path as the reference wavelength light, enters the Fabry-Perot etalon 4, and becomes the reference wavelength light. It undergoes modulation in the same way as light, and the transmitted light is reflected by the polarizing beam splitter 5, separated from the reference wavelength light, and enters the light receiving element 13. By making the polarization directions of the output light of the reference wavelength light source 1 and the output light of the semiconductor laser 10 perpendicular to each other, and installing the polarizing beam splitters 2 and 5 so that the former is transmitted and the latter is reflected, the polarization of both lights is Synthesis and separation are possible. The output of the light receiving element 13 is synchronously detected by the control circuit 14 and then fed back to the injection current of the semiconductor laser 10, and the oscillation wavelength of the semiconductor laser 10 is controlled to one of the transmission wavelengths of the Fabry-Perot etalon 4 (second (a) In Figure (C), a part of the output light from the semiconductor laser 10 is reflected by the six-beam splitter 12, focused by the lens 15, and output to the optical fiber.

この状態で演算制御手段26からの掃引信号て、制御回
路14が半導体レーザ10の注入電流を変えてゆくと、
半導体レーザ10の波長を制御する制御ループが働いて
いるうちは注入電流による波長変化を電流に負帰還して
修正動作を行うので、波長は一定であるが、制御ループ
か飽和してルプが切れるとファブリ・ペロー・エタロン
4の次の透過波長ピークに波長がジャンプする。この動
作を繰返すことにより、波長をステップ状に変化させる
ことかできる。
In this state, when the control circuit 14 changes the injection current of the semiconductor laser 10 using the sweep signal from the arithmetic control means 26,
While the control loop that controls the wavelength of the semiconductor laser 10 is working, the wavelength change caused by the injected current is negatively fed back to the current to perform a correction operation, so the wavelength remains constant, but the control loop becomes saturated and breaks. The wavelength jumps to the next transmission wavelength peak of the Fabry-Perot etalon 4. By repeating this operation, the wavelength can be changed in steps.

制御演算装置26の掃引出力により、可変波長光源20
の出力周波数fsが被測定レーザ光の周波数fχの近傍
まで来ると、ビート周波数fbが光検出器23で検出さ
れ、このとき演算制御手段26が掃引を停止する。その
結果、半導体レーザ10の出力周波数はファブリ・ペロ
ー・エタロンの最も近い共振ピークにロックされる(第
2図(C)の口および゛(D))。この状態でビー1−
周波数fb=fχ−fχの変動から被測定レーザ光の周
波数変動を推定する。ここでは可変波長光源20の安定
度を基準とする安定度を測定しているが、可変波長光源
20の出力光の各ステップの波長はファブリ・ペロー・
エタロン4の透過波長ピクに対応し、ピーク間隔はファ
ブリ・ペロエタロン4のFSR(Free  Spec
trumRange)によって決まり、また、Rb等の
標準物質の吸収線を基準にしているので、精度が非常に
秀れている。
The variable wavelength light source 20 is controlled by the sweep output of the control calculation device 26.
When the output frequency fs approaches the frequency fχ of the laser beam to be measured, the beat frequency fb is detected by the photodetector 23, and at this time the arithmetic control means 26 stops the sweep. As a result, the output frequency of the semiconductor laser 10 is locked to the nearest resonant peak of the Fabry-Perot etalon (Figure 2(C) and (D)). In this state, Bee 1-
The frequency fluctuation of the laser beam to be measured is estimated from the fluctuation of the frequency fb=fχ−fχ. Here, the stability is measured based on the stability of the variable wavelength light source 20, but the wavelength of each step of the output light of the variable wavelength light source 20 is Fabry-Perot.
The peak interval corresponds to the transmission wavelength peak of the etalon 4, and the peak interval is the FSR (Free Spec) of the Fabry-Perot etalon 4.
trumRange) and is based on the absorption line of a standard substance such as Rb, so it has very high accuracy.

上記の構成において、ファブリ・ペロー・エタロン4の
F S 1%を例えば2 G Hzとすれは、ビト周波
数fbは最大1. G Hzとなるので、増幅器24、
カウンタ25等はその範囲の周波数帯域があれはよい。
In the above configuration, if the F S 1% of the Fabry-Perot etalon 4 is, for example, 2 GHz, the bit frequency fb is at most 1. GHz, so the amplifier 24,
The counter 25 and the like may have any frequency band within that range.

このような構成のレーザ周波数安定度測定装置によれは
、可変周波数光源かステップ状に安定化できる光源なの
で、安定度か良い。実験では10−g桿度の周波数安定
度まで測定できる。
The laser frequency stability measuring device with such a configuration has good stability because it is a variable frequency light source or a light source that can be stabilized in steps. In experiments, frequency stability up to 10-g rods can be measured.

またファブリ・ペロー・エラ1コンを仲介しているので
、半導体レーザ10の可変範囲であれは、基準レーザ1
と異なる任意の波長の被測定レーザ光を測定できる。
In addition, since the Fabry-Perot-Era 1 controller is used as an intermediary, the variable range of the semiconductor laser 10 is controlled by the reference laser 1.
It is possible to measure a laser beam of any wavelength different from that of the laser beam.

なお上記の実施例では被測定レーザ光と可変周波数光源
光を光ファイバやファイバカプラを用いて合波している
が、光ファイバを用いずに、ビムスプリツタや偏光板で
合波してもよい。
In the above embodiment, the laser beam to be measured and the variable frequency light source light are combined using an optical fiber or a fiber coupler, but they may be combined using a beam splitter or a polarizing plate without using an optical fiber.

また第1図のファブリ・ペロー・エタロン4のミラーは
通常の平行ミラーでもよいが、互いの焦点が他方の鏡面
」二に来るように設置された2枚の凹面鏡を用いれば、
小形化することかてきる。また凹面鏡と対向して平面鏡
を配置してもよい。
Furthermore, the mirrors of the Fabry-Perot etalon 4 in Fig. 1 may be ordinary parallel mirrors, but if two concave mirrors are used so that their focal points are on the mirror surface of the other,
You can make it smaller. Alternatively, a plane mirror may be placed opposite the concave mirror.

また光検出器23のビート信号をスペク1〜ルアナライ
ザに入力ずれは、スペク1−ル幅を測定することもでき
る。
Moreover, the input deviation of the beat signal of the photodetector 23 to the spectrum analyzer can also be used to measure the spectrum width.

また半導体レーザ10のレーザ温度を人力として発振波
長をステップ掃引することもできる。またレーザ温度を
帰還して制御ループを構成し、レーザ注入電流を入力と
して半導体レーザ10の発振波長をステップ状に変えて
もよい。
Further, the oscillation wavelength can also be swept in steps by manually controlling the laser temperature of the semiconductor laser 10. Alternatively, a control loop may be configured by feeding back the laser temperature, and the oscillation wavelength of the semiconductor laser 10 may be changed in steps by inputting the laser injection current.

またファブリ・ペロー・エタロン4の共振器長を変える
ために圧電素子を用いる代りに、ファブリ・ペロー・エ
タロン4のミラー間に電気光学素子を配置してその電圧
に帰還してもよい。
Furthermore, instead of using a piezoelectric element to change the resonator length of the Fabry-Perot etalon 4, an electro-optical element may be placed between the mirrors of the Fabry-Perot etalon 4 and the voltage may be fed back.

〈発明の効果〉 以上述べたように本発明によれば、任意のレーザ光の周
波数安定度を簡便に測定するレーザ周波数安定度測定装
置を簡単な構成で実現することができる。
<Effects of the Invention> As described above, according to the present invention, a laser frequency stability measuring device that easily measures the frequency stability of any laser beam can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るレーザ周波数安定度測定装置の1
実施例を示す構成ブロック図、第2図は第1図装置の動
作を説明するための特性曲線図である。 1・・・基準波長光源、4・・・ファブリ・ペロー・エ
タロン、10・・・半導体レーザ、20・・・可変波長
光・・合波手段、 23・・・光検出器、 ・・周 (A)第1のレーザ1出力 (D)被測定レ ザ光 第2図 f× −ラー士
FIG. 1 shows one of the laser frequency stability measuring devices according to the present invention.
FIG. 2 is a block diagram showing the configuration of the embodiment, and FIG. 2 is a characteristic curve diagram for explaining the operation of the device shown in FIG. DESCRIPTION OF SYMBOLS 1... Reference wavelength light source, 4... Fabry-Perot etalon, 10... Semiconductor laser, 20... Variable wavelength light...combining means, 23... Photodetector,... Frequency ( A) First laser output (D) Laser light to be measured Fig. 2

Claims (1)

【特許請求の範囲】[Claims] フアブリ・ペロー・エタロンの透過波長を基準波長光源
の出力光の波長に制御し、前記ファブリ・ペロー・エタ
ロンの透過波長の1つに半導体レーザの出力波長を制御
し、前記半導体レーザの電流または温度を掃引入力とし
て出力波長がステップ的に可変となるように構成した可
変波長光源と、この可変波長光源の出力光と被測定光と
を合波する合波手段と、この合波手段の出力光からビー
ト信号を検出する光検出器と、この光検出器の出力信号
のビート周波数を測定する周波数カウンタと、この周波
数カウンタの出力から安定度を演算する演算制御手段と
を備え、演算制御手段が可変波長光源の出力波長を被測
定光の波長と最も近くなるまでステップ掃引するように
構成したことを特徴とするレーザ周波数安定度測定装置
controlling the transmission wavelength of the Fabry-Perot etalon to be the wavelength of the output light of a reference wavelength light source; controlling the output wavelength of the semiconductor laser to one of the transmission wavelengths of the Fabry-Perot etalon; and controlling the current or temperature of the semiconductor laser. a variable wavelength light source configured such that the output wavelength is variable in steps with a sweep input; a combining means for combining the output light of the variable wavelength light source with the light to be measured; A photodetector for detecting a beat signal from the photodetector, a frequency counter for measuring the beat frequency of the output signal of the photodetector, and an arithmetic control means for calculating stability from the output of the frequency counter, the arithmetic control means for calculating the stability. A laser frequency stability measuring device characterized in that the output wavelength of a variable wavelength light source is step-swept until it becomes closest to the wavelength of the light to be measured.
JP8006289A 1989-03-30 1989-03-30 Laser frequency stability measuring instrument Pending JPH02257026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8006289A JPH02257026A (en) 1989-03-30 1989-03-30 Laser frequency stability measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8006289A JPH02257026A (en) 1989-03-30 1989-03-30 Laser frequency stability measuring instrument

Publications (1)

Publication Number Publication Date
JPH02257026A true JPH02257026A (en) 1990-10-17

Family

ID=13707746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8006289A Pending JPH02257026A (en) 1989-03-30 1989-03-30 Laser frequency stability measuring instrument

Country Status (1)

Country Link
JP (1) JPH02257026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608327A1 (en) 2011-12-23 2013-06-26 Menlo Systems GmbH System for generating a beat signal
CN103983432A (en) * 2014-05-28 2014-08-13 中国科学院半导体研究所 Laser device frequency stability measuring system
CN105004510A (en) * 2015-07-02 2015-10-28 华东师范大学 Measuring device and measuring method for long-term frequency stability of laser
JP2016211965A (en) * 2015-05-08 2016-12-15 株式会社ミツトヨ Evaluation method of laser frequency measurement device using optical frequency com device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608327A1 (en) 2011-12-23 2013-06-26 Menlo Systems GmbH System for generating a beat signal
DE102011122232A1 (en) 2011-12-23 2013-06-27 Menlo Systems Gmbh System for generating a beat signal
US8995796B2 (en) 2011-12-23 2015-03-31 Menlo Systems Gmbh System for generating a beat signal
CN103983432A (en) * 2014-05-28 2014-08-13 中国科学院半导体研究所 Laser device frequency stability measuring system
JP2016211965A (en) * 2015-05-08 2016-12-15 株式会社ミツトヨ Evaluation method of laser frequency measurement device using optical frequency com device
CN105004510A (en) * 2015-07-02 2015-10-28 华东师范大学 Measuring device and measuring method for long-term frequency stability of laser

Similar Documents

Publication Publication Date Title
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
EP0401799B1 (en) Length measuring apparatus
JP2006337833A (en) Wavelength variable optical frequency comb generator
JP2698314B2 (en) Optical gas analyzer
JP2009031238A (en) Optical coherence tomography device
JPH02257026A (en) Laser frequency stability measuring instrument
JP2009033078A (en) Wavelength scanning light source
CN112751251B (en) Double-optical frequency comb generation system and generation method
JP3969666B2 (en) Tunable laser device
JP2937418B2 (en) Semiconductor laser device
JP2009016396A (en) Wavelength scanning type fiber laser light source
JP3976756B2 (en) Optical frequency comb generator controller
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JPH067099B2 (en) Gas sensor using tunable etalon
JP3926349B2 (en) Optical frequency comb generator controller
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JP6118507B2 (en) Spectrometer
JPS62194423A (en) Apparatus for measuring width of laser beam
JPH067100B2 (en) Gas concentration pressure detection method using tunable etalon
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
Wang et al. $1.5\\mu\mathrm {m} $ Wavelength Standard based on Acetylene Saturated Absorption at NIM
JPH11274606A (en) Apparatus for measuring ase component of laser beam
JPH0198283A (en) Variable wavelength light source
JPH04115584A (en) Frequency stabilized semiconductor laser
JP2002016317A (en) Semiconductor laser light source and measuring apparatus using the same