JPS62194423A - Apparatus for measuring width of laser beam - Google Patents

Apparatus for measuring width of laser beam

Info

Publication number
JPS62194423A
JPS62194423A JP3629386A JP3629386A JPS62194423A JP S62194423 A JPS62194423 A JP S62194423A JP 3629386 A JP3629386 A JP 3629386A JP 3629386 A JP3629386 A JP 3629386A JP S62194423 A JPS62194423 A JP S62194423A
Authority
JP
Japan
Prior art keywords
modulated
light
detector
prism
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3629386A
Other languages
Japanese (ja)
Inventor
Masao Hirano
平野 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3629386A priority Critical patent/JPS62194423A/en
Publication of JPS62194423A publication Critical patent/JPS62194423A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify and facilitate the adjustment of the system, by inputting beam modulated by an acoustooptical modulator to a detector through a prism while inputting beam not modulated to the detector through a fiber and the prism. CONSTITUTION:The beam incident to an acoustooptical (AO) modulator 1 is divided into beam A being modulated and beam B being not modulated. The beam A modulated is inputted to a detector 7 through prisms 2, 3 while the beam B not modulated is condensed by a lens 5 to pass through a fiber 4 and again condensed by a lens 6 to enter the detector 7 by the prism 3. By mixing beams A, B the width of beam can be measured according to a heterodyne system.

Description

【発明の詳細な説明】 〔概要〕 遅延自己ヘテロゲイン方式のレーザ線幅測定装置におい
て、音響光(以下略してAOと書く)変調器により変調
された光と、されない光が射出光角度が異なることを利
用して、プリズムと、ファイバーにより光学系を構成し
、系の調整を簡便、かつ容易にする。
[Detailed Description of the Invention] [Summary] In a delayed self-hetero gain type laser linewidth measuring device, light modulated by an acousto-optic (hereinafter abbreviated as AO) modulator and light not modulated have different emission angles. By using this, an optical system is constructed with a prism and a fiber, making the adjustment of the system simple and easy.

〔産業上の利用分野〕[Industrial application field]

本発明は遅延自己ヘテロゲイン方式により、簡便、かつ
容易に測定できるレーザ線幅測定装置に関する。
The present invention relates to a laser linewidth measurement device that uses a delayed self-heterogain method to perform simple and easy measurement.

半導体レーザ、例えば1.3μm帯の発振周波数は約2
00THzで、線幅は10KHz 、すなわち波長で0
.001人と極めて狭い。
The oscillation frequency of a semiconductor laser, for example in the 1.3 μm band, is approximately 2
00 THz, the linewidth is 10 KHz, i.e. 0 in wavelength
.. 001 people, which is extremely small.

このように狭い線幅は分光器で測定できないが、簡便の
ためファブリ・ペロー干渉計を用いると、高々0.05
人の線幅しか測定できない。
Such a narrow linewidth cannot be measured with a spectrometer, but for convenience a Fabry-Perot interferometer can be used to measure a linewidth of at most 0.05.
It can only measure a person's line width.

一方、自己遅延ヘテロゲイン方式によると、10KHz
 、すなわち0.00001人程度の線幅が測定可能で
ある。
On the other hand, according to the self-delayed heterogain method, 10KHz
In other words, a line width of about 0.00001 people can be measured.

一般に、半導体レーザに対しては、コヒーレント光通信
時において少なくともIMHz以下の線幅測定が要求さ
れる。
In general, semiconductor lasers are required to measure line widths at least below IMHz during coherent optical communication.

〔従来の技術〕[Conventional technology]

第2図は従来例による遅延自己ヘテロダイン方式による
レーザ線幅測定装置の構成図である。
FIG. 2 is a configuration diagram of a conventional delayed self-heterodyne laser linewidth measuring device.

図において、21は被測定半導体レーザ、22はAO変
調器、23はファイバー、24.25はハーフミラ−1
26は検知器である。
In the figure, 21 is the semiconductor laser to be measured, 22 is the AO modulator, 23 is the fiber, and 24.25 is the half mirror 1.
26 is a detector.

図のように従来の光学系は、光学装置を個々に設置して
構成されている。
As shown in the figure, a conventional optical system is constructed by installing optical devices individually.

レーザのコヒーレント長は0.3〜300m程度であり
、これ以上の長いファイバー24を用いると検知器26
に入る2つの光は異質なものとなり、干渉しない。
The coherent length of the laser is about 0.3 to 300 m, and if a longer fiber 24 is used, the detector 26
The two lights that enter will be different and will not interfere.

干渉しない2つの光を検知器26に入れると、わずかな
定在波の持つ線幅に相当した形で与えられる雑音が得ら
れる。
When two lights that do not interfere are input into the detector 26, a noise corresponding to the linewidth of a slight standing wave is obtained.

光のエネルギ分布がローレンツ型の場合は、雑音はその
まま検知器26の光出力として観測することができる。
When the energy distribution of light is Lorentzian, the noise can be directly observed as the optical output of the detector 26.

このようにして、検知器26に得られた光出力−エネル
ギ関係をスペクトルアナライザにより、光出力−周波数
関係にラプラス変換して、その分布曲線の半値幅をとっ
てレーザの線幅とする。
The optical output-energy relationship thus obtained by the detector 26 is Laplace-transformed into an optical output-frequency relationship using a spectrum analyzer, and the half-width of the distribution curve is taken as the linewidth of the laser.

この場合、スペクトルアナライザは周波数Oのとき雑音
が大きいので、スペクトルアナライザの出力を、原点よ
りずらせて光出力−周波数関係を表示させるため、AO
変調器22により周波数を移動している。
In this case, since the spectrum analyzer has a large noise when the frequency is O, the output of the spectrum analyzer is shifted from the origin to display the optical output-frequency relationship.
The frequency is shifted by a modulator 22.

AO変調器22は超音波を加えることにより、変調を行
う。
The AO modulator 22 performs modulation by applying ultrasonic waves.

このような、へ〇変調器22によるヘテロダイン方式に
より、自己の光を2分し、その一方をAO変調器22に
より変調し、他方をファイバ23により遅延させたのち
、2光を混合して検知器26に受けている。
Using such a heterodyne method using the He〇 modulator 22, the own light is divided into two, one of which is modulated by the AO modulator 22, the other is delayed by the fiber 23, and then the two lights are mixed and detected. It is received in the container 26.

ここで、コヒーレント長とは、光を自己で2分してお互
いに干渉しうる長さをいう。
Here, the coherent length refers to the length at which light can be divided into two parts and interfere with each other.

以上のように、遅延自己へテロゲイン方式によると、測
定感度は上がるが、光学針の調節が極めて難しい。
As described above, the delayed self-hetero gain method increases measurement sensitivity, but it is extremely difficult to adjust the optical needle.

すなわち、用いるファイバーはシングルモードファイバ
ーであるため、わずかにずれても光がファイバーに入ら
なくなる。測定は2つの光の雑音をとるため、2つの光
が強くなければならず、他の雑音、例えは白色雑音より
抜き出て強くなければならない。
That is, since the fiber used is a single mode fiber, even a slight deviation will prevent light from entering the fiber. Since the measurement takes the noise of two lights, the two lights must be strong and must be stronger than other noises, such as white noise.

また、2つの光の偏光を合わせることが必要である。偏
光が90°ずれると測定に必要な相関雑音は得られなく
なる。
It is also necessary to match the polarizations of the two lights. If the polarization shifts by 90°, the correlated noise necessary for measurement cannot be obtained.

そのために、遅延自己ヘテロゲイン方式による測定の簡
易化が望まれている。
For this reason, it is desired to simplify measurement using a delayed self-hetero gain method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の遅延自己ヘテロゲイン方式によるレーザ線幅測定
装置では、光学装置を個々に設置して構成しているため
、温度変化等の環境変化に弱く、光、及び装置の調節が
困難であった。
A conventional laser linewidth measuring device using the delayed self-hetero gain method is configured by installing optical devices individually, so it is vulnerable to environmental changes such as temperature changes, and it is difficult to adjust the light and the device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、音響光変調器と、プリズムと、フ
ァイバーと、検知器とを有し、入射光が該音響光変調器
に入り、該音響光変調器により変調された光が該プリズ
ムを経由して該検知器に入り、該音響光変調器により変
調されない光がファイバーと該プリズムを経由して検知
器に入るように構成されてなる本発明によるレーザ線幅
測定装置により達成される。
The solution to the above problem includes an acousto-optic modulator, a prism, a fiber, and a detector, in which incident light enters the acousto-optic modulator, and light modulated by the acousto-optic modulator passes through the prism. This is achieved by the laser linewidth measuring device according to the invention, which is configured such that the light that is not modulated by the acousto-optic modulator enters the detector via a fiber and the prism. .

(作用) 本発明はAO変調器により変調された光と、されない光
が射出光角度が異なることを利用して、一方の光はプリ
ズムを経由して、他方の光はプリズムとファイバーを経
由してそれぞれ検知器に受けるようにした光学系を構成
し、系の調整を簡便、かつ容易にしたものである。
(Function) The present invention takes advantage of the fact that the light modulated by the AO modulator and the light that is not modulated have different emission angles, so that one light passes through the prism and the other light passes through the prism and the fiber. An optical system is constructed in which each of the two detectors is received by a detector, making adjustment of the system simple and easy.

〔実施例〕〔Example〕

第1図は本発明による遅延自己ヘテロゲイン方式による
レーザ線幅測定装置の構成図である。
FIG. 1 is a configuration diagram of a laser linewidth measurement device using a delayed self-hetero gain method according to the present invention.

図において、1はAO変調器、2.3はプリズム(ビー
ムスプリッタ)、4はファイバー、5、6はレンズ、7
は検知器である。
In the figure, 1 is an AO modulator, 2.3 is a prism (beam splitter), 4 is a fiber, 5 and 6 are lenses, and 7
is a detector.

図のように本発明の光学系は、従来例のように光学装置
を個々に設置して構成したものでなく、プリズム2.3
を用いてコンパクトにまとめられている。
As shown in the figure, the optical system of the present invention is not constructed by installing optical devices individually as in the conventional example, but consists of prisms 2.3.
It is compactly summarized using

ここで、光路に挿入されたレンズ5.6はそれぞれファ
イバーへの入射光を集光し、ファイバーからの出射光を
プリズム3上に集光する役目をもつ。
Here, the lenses 5 and 6 inserted into the optical path each have the role of condensing light incident on the fiber and condensing light emitted from the fiber onto the prism 3.

AO変調器1に入射した光は、変調された光Aと、変調
されない光Bとに分かれる。
Light incident on the AO modulator 1 is divided into modulated light A and unmodulated light B.

光^はプリズム2.3を経由して、検知器7に入る。The light ^ enters the detector 7 via the prism 2.3.

光Bはレンズ5で集光されてファイバー4を通ってレン
ズ6で再び集光されて、プリズム3により、検知器7に
入る。
Light B is focused by a lens 5, passes through a fiber 4, is focused again by a lens 6, and enters a detector 7 through a prism 3.

光Aと、光Bの混合により、ヘテロダイン方式により線
幅が測定できる。
By mixing light A and light B, line width can be measured using a heterodyne method.

第3図はAO変調器を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the AO modulator.

図において、AO変調器1に波長λの光を入射し、ここ
に超音波を加えると波長λ±Δλの変調された光Aと、
波長λの変調されない光Bとに分かれる。
In the figure, when light with wavelength λ is input to AO modulator 1 and ultrasonic waves are applied thereto, modulated light A with wavelength λ±Δλ is produced.
It is split into unmodulated light B having a wavelength λ.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明による遅延自己ヘテロ
ダイン方式によるレーザ線幅測定装置では、簡便、かつ
容易に光学系を調節できる。
As described in detail above, in the laser linewidth measuring device using the delayed self-heterodyne method according to the present invention, the optical system can be adjusted simply and easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による遅延自己ヘテロダイン方式による
レーザ線幅測定装置の構成図、第2図は従来例による遅
延自己ヘテロダイン方式によるレーザ線幅測定装置の構
成図、第3図はAO変調器を説明する断面図である。 図において、 1はへ〇変調器、 2.3はプリズム、 4はファイバー、 5.6はレンズ、 7は検知器、 Aは変調された光、 Bは変調されない光 $2図
Fig. 1 is a block diagram of a laser linewidth measuring device using a delayed self-heterodyne method according to the present invention, Fig. 2 is a block diagram of a laser linewidth measuring device using a delayed self-heterodyne method according to a conventional example, and Fig. 3 shows an AO modulator. It is a sectional view for explanation. In the figure, 1 is the modulator, 2.3 is the prism, 4 is the fiber, 5.6 is the lens, 7 is the detector, A is the modulated light, and B is the unmodulated light.

Claims (1)

【特許請求の範囲】 音響光変調器と、プリズムと、ファイバーと、検知器と
を有し、 入射光が該音響光変調器に入り、該音響光変調器により
変調された光が該プリズムを経由して該検知器に入り、
該音響光変調器により変調されない光がファイバーと該
プリズムを経由して検知器に入るように構成されてなる
ことを特徴とするレーザ線幅測定装置。
[Scope of Claims] An acousto-optic modulator, a prism, a fiber, and a detector, wherein incident light enters the acousto-optic modulator, and light modulated by the acousto-optic modulator passes through the prism. enters the detector via
A laser linewidth measurement device characterized in that the light not modulated by the acousto-optical modulator is configured to enter a detector via a fiber and the prism.
JP3629386A 1986-02-20 1986-02-20 Apparatus for measuring width of laser beam Pending JPS62194423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3629386A JPS62194423A (en) 1986-02-20 1986-02-20 Apparatus for measuring width of laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3629386A JPS62194423A (en) 1986-02-20 1986-02-20 Apparatus for measuring width of laser beam

Publications (1)

Publication Number Publication Date
JPS62194423A true JPS62194423A (en) 1987-08-26

Family

ID=12465759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3629386A Pending JPS62194423A (en) 1986-02-20 1986-02-20 Apparatus for measuring width of laser beam

Country Status (1)

Country Link
JP (1) JPS62194423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475928A (en) * 1987-09-17 1989-03-22 Hamamatsu Photonics Kk Optical heterodyne detector
JPH01141431U (en) * 1988-03-23 1989-09-28
US6787114B2 (en) 2000-11-17 2004-09-07 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurization
US7635455B2 (en) 2005-03-18 2009-12-22 Lentjes Gmbh Flue gas purification device having an improved oxidation device in the scrubbing liquid sump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475928A (en) * 1987-09-17 1989-03-22 Hamamatsu Photonics Kk Optical heterodyne detector
JPH01141431U (en) * 1988-03-23 1989-09-28
US6787114B2 (en) 2000-11-17 2004-09-07 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurization
US6932952B2 (en) 2000-11-17 2005-08-23 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurization
US7635455B2 (en) 2005-03-18 2009-12-22 Lentjes Gmbh Flue gas purification device having an improved oxidation device in the scrubbing liquid sump

Similar Documents

Publication Publication Date Title
Debuisschert et al. Observation of large quantum noise reduction using an optical parametric oscillator
US5898496A (en) Optical signal noise reduction for fiber optic gyroscopses
US4902125A (en) Optical system having beam amplification
US10790634B2 (en) Laser system with optical feedback
US5748313A (en) Signal-to-noise ratio of second harmonic interferometers
CN114755906B (en) Atomic beam optical clock with external modulation locking applied to detection light and preparation method thereof
US6141138A (en) Apparatus and method for measuring characteristics of light
JPS62194423A (en) Apparatus for measuring width of laser beam
JP2796650B2 (en) Multi-gas detector
US6801324B1 (en) Interferometer control and laser frequency locking
JPH06174592A (en) Measuring method for wavelength dispersion of optical fiber
JPH02257026A (en) Laser frequency stability measuring instrument
JPS62194424A (en) Apparatus for measuring width of laser beam
JPH0218526A (en) System and equipment for optical transmission
JP2004340690A (en) Light frequency measuring instrument and measuring method using multi-color mode-locked laser
JP2000039360A (en) Light spectrum-measuring apparatus
JPH0114567B2 (en)
Bukshtab et al. Direct Attenuation Measurements
JPH0716982Y2 (en) Optical frequency change measuring device
JPH04283603A (en) Optical measuring apparatus using infrared laser diode as light source
Tyurikov et al. Saturated dispersion spectroscopy of OsO/sub 4
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPH11274606A (en) Apparatus for measuring ase component of laser beam
JP2900529B2 (en) Apparatus for measuring high frequency response characteristics of semiconductor laser
JPH06273386A (en) Ultrasonic detector