JP2004340690A - Light frequency measuring instrument and measuring method using multi-color mode-locked laser - Google Patents

Light frequency measuring instrument and measuring method using multi-color mode-locked laser Download PDF

Info

Publication number
JP2004340690A
JP2004340690A JP2003136429A JP2003136429A JP2004340690A JP 2004340690 A JP2004340690 A JP 2004340690A JP 2003136429 A JP2003136429 A JP 2003136429A JP 2003136429 A JP2003136429 A JP 2003136429A JP 2004340690 A JP2004340690 A JP 2004340690A
Authority
JP
Japan
Prior art keywords
lightwave
monochromatic
wave
light wave
optical frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136429A
Other languages
Japanese (ja)
Other versions
JP4164599B2 (en
Inventor
Feng-Lei Hong
鋒雷 洪
Kaoru Minojima
薫 美濃島
Atsushi Oonae
敦 大苗
Koichi Matsumoto
弘一 松本
Mutsumi Yoshida
睦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Aisin Seiki Co Ltd
Priority to JP2003136429A priority Critical patent/JP4164599B2/en
Publication of JP2004340690A publication Critical patent/JP2004340690A/en
Application granted granted Critical
Publication of JP4164599B2 publication Critical patent/JP4164599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light frequency measuring instrument and a measuring method having a wide range of measurable wavelengths and used for finding a carrier envelope offset frequency f<SB>ceo</SB>with a high S/N. <P>SOLUTION: The range of measurable wavelengths can be widened because of using a multi-color mode-locked laser light source 1. Further, it is not necessary to generate higher harmonic wave by means of a nonlinear optical effect after enlarging a spectrum, since this instrument is of a non-f-2f self-reference type wherein a heterodyne interference beat is detected between the other monochromatic light wave (light comb) obtained by the multiplexing of a first multiplexing means 4 and enlarged light wave (light comb), which enables to find the f<SB>ceo</SB>with a high S/N. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レーザの光周波数を高精度に測定する技術に関する。詳しくは、モードロックレーザからの超短パルス出力の光コム(comb)を「光周波数の物差し」として用いる光周波数測定技術に関する。
【0002】
1983年の第17回国際度量衡総会において、長さの単位「m」は、時間の単位「s」と結びつく形で次のように定義された。「メートルは、1秒の299,792,458分の1の時間に光が真空中を伝わる行程の長さである。」これは、光速度cを299,792,458m/sと定義したことと等価である。波長λ、周波数f、時間tの間には、
λ=c/f (1)
f=1/t (2)
の関係があるので、メートルの定義を忠実に実現するには、周波数安定化レーザの光周波数を測定して、上記のように定義された光速度を割ることにより真空波長を求めることで達成される。
【0003】
【従来の技術】
繰り返しパルス間隔が1/frepの超短パルス出力を周波数軸上に模式的に示すと、図7の実線で示す櫛の歯状になることから、これを光コムと呼ぶ。図7でfceoはキャリア・エンベロープ・オフセット(CEO)周波数と呼ばれる。このモードロックレーザと被測定CWレーザとをヘテロダイン干渉させると、図7に点線で示すようなビート(δは実線の光コムとのオフセット)が観測される。実線の光コムのn番目のコムは、
f(n)=nfrep+fceo (3)
と表される。同様に、点線の光コムのn番目のコムは、
cw(n)=nfrep+fceo±δ (4)
と表される。(4)式でfrepは既知であり、δは図7から求まるので、fceoが決まれば、被測定CWレーザの光周波数fcwが求まることになる。なお、(4)式には、nと±の曖昧さがあるが、これは被測定レーザの波長を通常の波長計等で測定することで除かれる。
【0004】
従来の光周波数測定では、fceoを次のように求めている(例えば、非特許文献1参照。)。波長が778nmのTi:S(チタン:サファイア)レーザのスペクトルをフォトニック結晶ファイバ(FCB)を用いて1オクターブ以上の500nmから1100nmまで拡張して、図7に示すような1オクターブ以上に広がるTi:Sレーザの光コムを作った。すると、n番目から1オクターブ離れた2n番目のコムは、
f(2n)=2nfrep+fceo (3’)
と表される。一方、低周波の部分を切り出して第2高調波発生結晶(BBO)で第2高調波2f(n)を発生させる。そして、2n番目のコムf(2n)と第2高調波2f(n)をヘテロダイン干渉(f−2f干渉)させてビート周波数δを観測すると、(3)式から2f(n)は、
2f(n)=2nfrep+2fceo (5)
と表されるので、
δ=2f(n)−f(2n)=fceo
となり、fceoが求められる。このような求め方をf−2f自己参照型(self−referenced)技術と呼ぶ。
【0005】
つまり、従来は、f−2f自己参照型技術、すなわち、基本波スペクトルを1オクターブ以上に拡張して、その後、第2高調波を発生させてf−2fヘテロダイン干渉させるものである。この従来のf−2f自己参照型技術で必要な1オクターブ以上に拡張することは、FCBの損失により強度の高い(パワーの大きい)光コムを作ることができないといった問題を有している。また、基本波から切り出して第2高調波を発生させるため、ますます強度の低い光コムになってしまう。強度が低いとfceoを高いS/Nで求めることができない。さらに、この従来の光周波数測定では、光コムが上記したように、500nm〜1100nmであるため、光通信帯の1500nm(1.5μm)のレーザの光周波数を測定することができない。
【0006】
【非特許文献1】David J. Jones et al.,”Carrier−Envelope Phase Control of Femtosecond Mode−Locked Lasers and Direct Optical Frequency Synthesis”, SIENCE, Vol.288, 28 APRIL 2000, pp635−639
【0007】
【発明が解決しようとする課題】
上記のように従来の光周波数測定では、1オクターブ以上の光コムを必要とし、fceoを高いS/Nで求めることができず、測定できる波長範囲が狭いといった問題があった。
【0008】
本発明は上記従来の光周波数測定技術の問題に鑑みてなされたものであり、測定できる波長範囲の広く、1オクターブ以上の光コムを必要とせず、且つfceoを高いS/Nで求めることができる光周波数測定装置及び測定方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の光周波数測定装置は、基本波と該基本波の逓倍波とを含む複数の光波を発生する多色モードロックレーザ光源と、該多色モードロックレーザ光源から発生される該複数の光波を各単色光波に分離する波長分離素子と、該波長分離素子で分離された該各単色光波の一方の単色光波のスペクトルを他方の単色光波のスペクトルとオーバラップするまで拡張するスペクトル拡張手段と、該他方の単色光波と該拡張手段で拡張された光波とを合波する第1合波手段と、該第1合波手段で合波された該他方の単色光波と該拡張された光波とのヘテロダイン干渉ビートを検出する第1検出器と、該波長分離素子で分離された該各単色光波の一つ、または該拡張された光波の一部と被測定光波とを合波する第2合波手段と、該第2合波手段で合波された該各単色光波の一つ、または該拡張された光波の一部と該被測定光波とのヘテロダイン干渉ビートを検出する第2検出器と、を有する。
【0010】
多色モードロックレーザ光源を用いているので、測定可能な波長範囲を広くすることができる。また、第1合波手段で合波された他方の単色光波と拡張された光波とのヘテロダイン干渉ビートを検出する非f−2f自己参照型のため、スペクトルを拡張した後に非線形光学効果で高調波を発生する必要がなく、高いS/Nでfceoを求めることができ、その分、光周波数を高精度で測定することができる。
【0011】
多色モードロックレーザ光源は、受動型モードロックレーザと、逓倍手段と、を有することもできる。
【0012】
受動型モードロックレーザから発生される超短パルスを基本波とし、それを逓倍手段で逓倍するので、光源をコンパクト化することができ、光源を含む光周波数測定装置を小型且つ簡便化できるようになる。
【0013】
受動型モードロックレーザは、エルビウム・ドープ・ファイバを有することができる。
【0014】
エルビウムドープファイバをレーザ媒質とすることで、受動型モードロックレーザからは、波長が1.5μmの超短パルスが発生され、これを基本波として逓倍手段で逓倍するので、測定波長範囲が可視から近赤の1.5μmまで広がる。
【0015】
逓倍波は、第2高調波と周波数が3倍の光波を含み、前記一方の単色光波は該第2高調波で、前記他方の単色光波は該3倍の光波であるようにすることもできる。
【0016】
スペクトルを拡張する一方の単色光波を第2高調波とし、拡張された第2高調波とヘテロダイン干渉する他方の単色光波を周波数が3倍の光波とすることで、拡張する一方の単色光波(光コム)を、0.5オクターブ拡張するだけで他方の単色光波(光コム)とオーバラップするので、拡張された光波の強度低下が押さえられ、fceoを高いS/Nで求めることができるようになる。
【0017】
第1合波手段は、合波される他方の単色光波と拡張手段で拡張された光波との一方を遅延する遅延線を有することもできる。
【0018】
合波される光波を遅延線で遅延することで、合波させる両光波のタイミングを合わせヘテロダイン干渉ビートのコントラストを上げることができる。
【0019】
第1合波手段は、合波される他方の単色光波と拡張手段で拡張された光波との偏光を調節する偏光調節素子とビームスプリッタとを有することもできる。
【0020】
偏光調節素子で合波される一方の光波をp偏光とし、他方の光波をs偏光としてビームスプリッタで合波することで、ヘテロダイン干渉させる両光波の強度が調節し易く、干渉ビートのコントラスト向上に寄与する。
【0021】
第1合波手段は、合波された他方の単色光波と拡張手段で拡張された光波との偏光を調節して両光波の強度を調節する強度調節部を有することもできる。
【0022】
強度調節部で両光波の強度を等しくすることで、ヘテロダイン干渉ビートのコントラストが高くになり、fceoを高いS/Nで求めることができるようになる。
【0023】
また、第1合波手段は、シングルモードファイバを有することもできる。
【0024】
合波された他方の単色光波と拡張手段で拡張された光波とをシングルモードファイバに通すことで、両光波の重ね合わせとモードマッチングを確実にすることができ、干渉ビートのコントラストが高くなり、fceoをより高いS/Nで求めることができるようになる。
【0025】
第2合波手段は、合波される各単色光波の一つ、または該拡張された光波の一部と被測定光波との偏光を調節する偏光調節素子とビームスプリッタとを有することもできる。
【0026】
偏光調節素子で、合波される一方の光波をp偏光とし、他方の光波をs偏光としてビームスプリッタで合波することで、ヘテロダイン干渉させる両光波の強度が調節し易く、干渉ビートのコントラスト向上に寄与する。
【0027】
また、第2合波手段は、合波された各単色光波の一つ、または該拡張された光波の一部と被測定光波との偏光を調節して両光波の強度を調節する強度調節部を有することもできる。
【0028】
強度調節部で両光波の強度を等しくすることで、ヘテロダイン干渉ビートのコントラストが高くになり、δを高いS/Nで求めることができるようになる。
【0029】
さらに、第2合波手段は、シングルモードファイバを有することもできる。
【0030】
合波された各単色光波の一つ、または該拡張された光波の一部と被測定光波とをシングルモードファイバに通すことで、両光波の重ね合わせとモードマッチングを確実にすることができ、干渉ビートのコントラストが高くなり、δをより高いS/Nで求めることができるようになる。
【0031】
【発明の実施の形態】
基本波と逓倍波とを含む複数の光波を発生する多色モードロックレーザ光源は、基本波とその基本波の逓倍波とを含む複数の光波を発生する光源であれば何でもよいが、受動型モードロックレーザと逓倍手段とを有し、その受動型モードロックレーザは、エルビウム・ドープ・ファイバを有することが好ましい。波長が1.5μmの超短パルスが発生され、これを基本波(基本光コム)として逓倍手段で逓倍するので、測定波長範囲が可視から近赤の1.5μmまで広がる。
【0032】
逓倍手段としては、ADP、KDP、LiNbO、BBO、などの非線形性結晶を用いることができる。
【0033】
多色モードロックレーザ光源から発生される複数の光波(光コム)を各単色光波(光コム)に分離する波長分離素子としては、2色ミラー、回折格子、ビームスプリッタとバンドパス・フィルタを組み合わせたもの、等を使用できる。
【0034】
波長分離素子で分離された各単色光波の一方の単色光波のスペクトルを他方の単色光波のスペクトルとオーバラップするまで拡張するスペクトル拡張手段としては、フォトニック結晶ファイバなどが用いられる。
【0035】
他方の単色光波と拡張手段で拡張された光波とを合波する第1合波手段は、両光波を合波するものであればファイバカップラ等何でもよいが、一方の光波を遅延させる遅延線と両光波の偏光を調節する偏光調節素子とビームスプリッタと合波された光波の偏光を調節して両光波の強度を調節する強度調節部とシングルモード・ファイバとを有することが好ましい。遅延線で遅延することで、合波させる両光波のタイミングを合わせ、偏光調節素子で合波される一方の光波をp偏光とし、他方の光波をs偏光とし、ビームスプリッタで両光波を合波し、強度調節部で両光波の強度を等しくし、シングルモードファイバに通すことで、両光波の重ね合わせとモードマッチングを確実にするので、ヘテロダイン干渉ビートのコントラストを高くすることができる。
【0036】
波長分離素子で分離された各単色光波の一つと被測定光波とを合波する第2合波手段としては、上記の第1合波手段と同じものを用いることができる。但し、被測定光波は一般に連続発振レーザであり、第2合波手段で合波される両光波の間の時間差が問題にならず遅延線はなくてもよい。
【0037】
遅延線は、複数のミラーを所定の間隔で配置することで構成してもよいし、ミラーとキャッツアイプリズムを所定の間隔で配置することでも構成できる。偏光調節素子としては、偏光子や1/2波長板などを用いることができるが、強度をロスしない点で1/2波長板が好ましい。ビームスプリッタとしては、ハーフミラーや偏光ビームスプリッタなどを用いることができるが、強度をロスしない点で偏光ビームスプリッタが好ましい。強度調節部としては、偏光子や1/2波長板と偏光ビームスプリッタを組み合わせたもの、等を用いることができる。
【0038】
第1合波手段で合波された他方の単色光波と拡張された光波とのヘテロダイン干渉ビートを検出する第1検出器と、第2合波手段で合波された各単色光波の一つと被測定光波とのヘテロダイン干渉ビートを検出する第2検出器には、フォトダイオード、アバランシェ・フォトダイオードやPM等を用いることができる。
【0039】
【実施例】
実施例1.図1は本発明の一実施例の光周波数測定装置の構成図である。
【0040】
本実施例の光周波数測定装置は、1.5μmの基本波(光コム)と780nmの第2高調波(光コム)と、520nmの和周波(光コム)を発生する多色モードロックレーザ光源1と、3色を単色にする波長分離素子2と、780nmの第2高調波のスペクトルを拡張するスペクトル拡張手段3と、520nmの和周波と拡張された第2高調波とを合波する第1合波手段4と、和周波と拡張された第2高調波とのヘテロダイン干渉ビート信号を検出する第1検出器5と、1.5μmの基本波と被測定光波とを合波する第2合波手段6と、基本波と被測定光波とのヘテロダイン干渉ビート信号を検出する第2検出器7と、を有する。
【0041】
多色モードロックレーザ光源1は、エルビウム・ドープ・ファイバを利得媒質とする受動型モードロック・ファイバレーザ11と逓倍手段12とを有し、逓倍手段12は、周期的に分極されたLiNbOを備えており、約50mWの基本波と第2高調波及び1mW以下の和周波を発生する。発生される超短パルスのパルス幅は121fsであり、パルスの繰り返し周期frep=49.13MHzである。
【0042】
波長分離素子2は2色ミラー21、22を備え、2色ミラー21で1.5μmの基本波が分離(反射)され、次の2色ミラー22で520nmの和周波が分離(反射)され、2色ミラー22から780nmの第2高調波が透過される。
【0043】
スペクトル拡張手段3は、クリスタル・ファイバー社(Crystal Fiber)の長さが50cmのフォトニック結晶ファイバ(PCF)である。PCF3は、コア径が1.8μmの偏光保持ファイバで、2色ミラー22から透過された780nmの第2高調波は、ミラー102で折り曲げられ、1/2波長板103で偏光が調節され、集光レンズ106でPCF3の入射端に結合される。PCF3を通過してスペクトルが短波長側に0.5オクターブ拡張された第2高調波(光コム)は、コリメータレンズ106’でコリメートされ、2色ミラー104で550nm以下のスペクトルが分離(反射)される。2色ミラー104を透過した550nm〜780nmの光波は光トラップ104でトラップされる。
【0044】
第1合波手段4は、遅延線41と、偏光調節素子42a、42bと、ビームスプリッタ43と、強度調節部44と、シングルモードファイバ45と、を備えている。遅延線41は、キャッツアイプリズム411とミラー412とからなる。偏光調節素子42a、42bは、1/2波長板で、ビームスプリッタ43は偏光ビームスプリッタであり、強度調節部44は偏光子である。2色ミラー22で分離(反射)された520nmの和周波は、780nmの第2高調波と等しい光路長になるように遅延線41で遅延され、1/2波長板42aでp偏光に調節され、偏光ビームスプリッタ43に入射される。一方、2色ミラー104で分離(反射)された第2高調波の緑部分は、1/2波長板42bでs偏光に調節され偏光ビームスプリッタ43に入射される。p偏光とs偏光は偏光ビームスプリッタ43で合波され、p偏光とs偏光が出射され、ヘテロダイン干渉する。偏光ビームスプリッタ43から出射されたp偏光とs偏光は、偏光子44でp偏光成分とs偏光成分が等しい直線偏光にされ、ミラー102で折り曲げられ、集光レンズ106でシングルモードファイバ45の入射端に結合され、シングルモードファイバ45で和周波(p偏光成分)と第2高調波(s偏光成分)の重ね合わせとモードマッチングが確実に行われる。
【0045】
第1検出器5は、Siフォトダイオードで、第1合波手段4のシングルモードファイバ45から出射される重ね合わされた和周波(p偏光成分)と第2高調波(s偏光成分)を受光する。
【0046】
第2合波手段6は、第1合波手段4から遅延線41を除いたものに等しく、偏光調節素子61a、61bと、ビームスプリッタ62と、強度調節部63と、シングルモードファイバ64と、からなる。偏光調節素子61a、61bは、1/2波長板で、ビームスプリッタ62は偏光ビームスプリッタであり、強度調節部63は偏光子である。2色ミラー21で分離(反射)された1.5μmの基本波(光コム)は、1/2波長板61aでp偏光に調節され、偏光ビームスプリッタ62に入射される。一方、入力ポート101から入射される被測定光波は、1/2波長板61bでs偏光に調節され、偏光ビームスプリッタ62に入射される。p偏光とs偏光は偏光ビームスプリッタ62で合波されp偏光とs偏光が出射され、ヘテロダイン干渉する。偏光ビームスプリッタ62から出射されたp偏光とs偏光は、偏光子63でp偏光成分とs偏光成分が等しい直線偏光にされ、ミラー102で折り曲げられ、集光レンズ106でシングルモードファイバ64の入射端に結合され、シングルモードファイバ64で基本波(p偏光成分)と被測定光波(s偏光成分)の重ね合わせとモードマッチングが確実に行われる。
【0047】
第2検出器7は、Siフォトダイオードで、第2合波手段4のシングルモードファイバ64から出射される重ね合わされた基本波(p偏光成分)と被測定光波(s偏光成分)を受光する。
【0048】
本実施例の光周波数測定装置で波長1.5μmの外部共振器型連続発振半導体レーザの光周波数を測定した。入力ポート101から1.5μmの被測定光波を入射させて測定した結果が図2、3で、図2は第1検出器5の出力をスペクトラム・アナライザで解析したビート信号スペクトル、図3は第2検出器7の出力をスペクトラム・アナライザで解析したビート信号スペクトルである。
【0049】
図2からfceo=17.4MHzであり、図3からδ1.5=18.7MHzであることがわかる。したがって、通常の波長計等を使って整数nさえ決まれば(4)式からf1.5が決まる。すなわち、本実施例の光周波数測定装置は、fceoを従来のようにf−2f自己参照型で求めず、且つスペクトルを0.5オクターブ拡張するだけでよいため、光周波数を高精度に測定することができた。
【0050】
実施例2.図4は、本発明の実施例2の光周波数測定装置の構成図である。実施例1の光周波数測定装置では、1.5μmの光通信波長帯しか測定できなかったが、この実施例2の測定装置は、1.5μm以外に可視波長領域の520nm〜780nmの光周波数も測定できるようにしたものである。したがって、実施例1(図1)の第2合波手段6と第2検出器7のペアをさらに2ペア(6’と7’、6’’と7’’)備えている。
【0051】
図4では、実施例1と同じ構成要素には図1と同じ番号(’、’’付きの違いはある)が付されてあり説明を省略する。520nm〜550nmの光周波数を測定するために、第1合波手段4の偏光ビームスプリッタ43から出射される和周波(p偏光成分)と第2高調波(s偏光成分)から第2高調波(s偏光成分)を分離する必要があり、実施例1の強度調節部44が1/2波長板441と偏光ビームスプリッタ442とからなる。また、550nm〜780nmの光周波数を測定するために、実施例1(図1)の光トラップ105をミラー102に替えて2色ミラー104を透過する550nm〜780nmの光波(光コム)を第2合波手段6’に入射させるようになっている。
【0052】
本実施例の光周波数測定装置で波長780nmの外部共振器型連続発振半導体レーザの光周波数と波長532nmの周波数安定化YAGレーザの光周波数を測定した。入力ポート101’から780nmの被測定光波を、入力ポート101’’から532nmの被測定光波を入射させて測定した結果が図5、6で、図5は第2検出器7’の出力をスペクトラム・アナライザで解析したビート信号スペクトル、図6は第2検出器7’’の出力をスペクトラム・アナライザで解析したビート信号スペクトルである。
【0053】
図5からδ780=19.8MHz、図6からδ532=16.5MHzであり、通常の波長計等を使って整数nさえ決まれば、(4)式からf780およびf532が求まる。
【0054】
このように、本第2実施例の光周波数測定装置1台で、520nmの可視光から1.5μmの近赤外光までの光周波数を測定することができる。
【0055】
【発明の効果】
以上説明したように、本発明の光周波数測定装置は、多色モードロックレーザ光源を用いているので、測定可能な波長範囲を広くすることができる。また、第1合波手段で合波された他方の単色光波と拡張された光波とのヘテロダイン干渉ビートを検出する非f−2f自己参照型のため、スペクトルを拡張した後に非線形光学効果で高調波を発生する必要がなく、高いS/Nでfceoを求めることができ、その分、光周波数を高精度で測定することができる。
【0056】
また、多色モードロックレーザ光源は、受動型モードロックレーザと、逓倍手段と、を有することもできるので、受動型モードロックレーザから発生される超短パルスを基本波とし、それを逓倍手段で逓倍するので、光源をコンパクト化することができ、光源を含む光周波数測定装置を小型且つ簡便化できるようになる。
【0057】
さらに、受動型モードロックレーザは、エルビウム・ドープ・ファイバを有することができるので、受動型モードロックレーザからは、波長が1.5μmの超短パルスが発生され、これを基本波として逓倍手段で逓倍するので、測定波長範囲が可視から近赤の1.5μmまで広がる。
【0058】
逓倍波は、第2高調波と周波数が3倍の光波を含み、前記一方の単色光波は該第2高調波で、前記他方の単色光波は該3倍の光波であるようにすることもできる。スペクトルを拡張する一方の単色光波を第2高調波とし、拡張された第2高調波とヘテロダイン干渉する他方の単色光波を周波数が3倍の光波とすることで、拡張する一方の単色光波を、0.5オクターブ拡張するだけで他方の単色光波とオーバラップするので、拡張された光波の強度低下が押さえられ、fceoを高いS/Nで求めることができるようになる。
【図面の簡単な説明】
【図1】実施例1の多色モードロックレーザを用いた光周波数測定装置の概略構成図である。
【図2】実施例1の光周波数測定装置で観測したキャリアエンベロープオフセット周波数fceoを求めるためのビート信号スペクトルである。
【図3】実施例1の光周波数測定装置で観測した波長1.5μmの被測定光波のオフセット周波数δ1.5を求めるためのビート信号スペクトルである。
【図4】実施例2の多色モードロックレーザを用いた光周波数測定装置の概略構成図である。
【図5】実施例2の光周波数測定装置で観測した波長780nmの被測定光波のオフセット周波数δ780を求めるためのビート信号スペクトルである。
【図6】実施例2の光周波数測定装置で観測した波長532nmの被測定光波のオフセット周波数δ532を求めるためのビート信号スペクトルである。
【図7】従来の自己参照型でのfceoの観測
【符号の説明】
1 ・・・・・・・・・・・・・・・・多色モードロックレーザ光源
2・・・・・・・・・・・・・・・・波長分離素子
3・・・・・・・・・・・・・・・・スペクトル拡張手段
4・・・・・・・・・・・・・・・・第1合波手段
5・・・・・・・・・・・・・・・・第1検出器
6,6’,6’’・・・・・・・・・・・・・・第2合波手段
7,7’,7’’・・・・・・・・・・・・・・第2検出器
11・・・・・・・・・・・・・・・・受動型モードロックレーザ
12・・・・・・・・・・・・・・・・逓倍手段
41・・・・・・・・・・・・・・・・遅延線
42a,42b,61a,61b,61’a,61’b,61’’a,61’’b・・・偏光調節素子
43,62,62’,62’’・・・・・・・・・・・・ビームスプリッタ
44,63,63’,63’’・・・・・・・・・・・・強度調節部
45,64,64’,64’’・・・・・・・・・・・・シングルモードファイバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for measuring the optical frequency of a laser with high accuracy. More specifically, the present invention relates to an optical frequency measurement technique using an optical comb (comb) having an ultrashort pulse output from a mode-locked laser as an “optical frequency ruler”.
[0002]
At the 17th International Metrology Meeting in 1983, the unit of length "m" was defined as follows in connection with the unit of time "s": "A meter is the length of the path that light travels through a vacuum in 1 / 299,792,458 of a second." This defines the light speed c as 299,792,458 m / s. Is equivalent to Between the wavelength λ, the frequency f, and the time t,
λ = c / f (1)
f = 1 / t (2)
In order to achieve the definition of the meter faithfully, it is achieved by measuring the optical frequency of the frequency-stabilized laser and dividing the light speed defined above to obtain the vacuum wavelength. You.
[0003]
[Prior art]
When an ultrashort pulse output with a repetition pulse interval of 1 / f rep is schematically shown on the frequency axis, it becomes a comb-like shape shown by a solid line in FIG. 7 and is called an optical comb. In FIG. 7, f ceo is called a carrier envelope offset (CEO) frequency. When the mode-locked laser and the CW laser to be measured are subjected to heterodyne interference, a beat as shown by a dotted line in FIG. 7 (δ is an offset from the solid line optical comb) is observed. The nth comb of the solid optical comb is
f (n) = nf rep + f ceo (3)
It is expressed as Similarly, the nth comb of the dotted optical comb is
f cw (n) = nf rep + f ceo ± δ (4)
It is expressed as In equation (4), f rep is known, and δ is obtained from FIG. 7. Therefore, if f ceo is determined, the optical frequency f cw of the measured CW laser is obtained. Note that there is an ambiguity between n and ± in equation (4), but this is removed by measuring the wavelength of the laser to be measured with a normal wavelength meter or the like.
[0004]
In conventional optical frequency measurement, f ceo is obtained as follows (for example, see Non-Patent Document 1). The spectrum of a Ti: S (titanium: sapphire) laser having a wavelength of 778 nm is extended from 500 nm to 1100 nm, which is one octave or more, using a photonic crystal fiber (FCB), and Ti is spread over one octave as shown in FIG. : Optical comb of S laser was made. Then, the 2nth comb, one octave away from the nth,
f (2n) = 2nf rep + f ceo (3 ′)
It is expressed as On the other hand, a low-frequency portion is cut out and a second harmonic 2f (n) is generated by a second harmonic generation crystal (BBO). Then, when the beat frequency δ 0 is observed by heterodyne interference (f−2f interference) between the 2n-th comb f (2n) and the second harmonic 2f (n), 2f (n) is obtained from the equation (3).
2f (n) = 2nf rep + 2f ceo (5)
Is expressed as
δ 0 = 2f (n) −f (2n) = f ceo
And f ceo is obtained. Such a method is called an f-2f self-referenced technique.
[0005]
That is, conventionally, the f-2f self-referencing technique, that is, the fundamental wave spectrum is extended to one octave or more, and then the second harmonic is generated to cause f-2f heterodyne interference. Expanding beyond the one octave required by the conventional f-2f self-referencing technology has the problem that a high-strength (high-power) optical comb cannot be made due to FCB loss. In addition, since the second harmonic is generated by cutting out from the fundamental wave, an optical comb having an even lower intensity is obtained. If the strength is low, f ceo cannot be obtained with a high S / N. Further, in the conventional optical frequency measurement, since the optical comb has a wavelength of 500 nm to 1100 nm as described above, it is not possible to measure the optical frequency of a 1500 nm (1.5 μm) laser in the optical communication band.
[0006]
[Non-Patent Document 1] David J. Jones et al. , "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", SIENCE, Vol. 288, 28 APRIL 2000, pp635-639
[0007]
[Problems to be solved by the invention]
As described above, the conventional optical frequency measurement requires an optical comb of one octave or more, cannot obtain f ceo with a high S / N, and has a problem that the measurable wavelength range is narrow.
[0008]
The present invention has been made in view of the above-mentioned conventional optical frequency measurement technology, and has a wide measurable wavelength range, does not require an optical comb of one octave or more, and obtains f ceo with a high S / N. It is an object of the present invention to provide an optical frequency measuring device and a measuring method which can perform the measurement.
[0009]
[Means for Solving the Problems]
An optical frequency measurement device according to the present invention includes a multicolor mode-locked laser light source that generates a plurality of lightwaves including a fundamental wave and a multiple of the fundamental wave, and the plurality of lightwaves generated from the multicolor modelocked laser light source. A wavelength separating element that separates each monochromatic light wave, and a spectrum extending unit that extends the spectrum of one monochromatic light wave of each monochromatic light wave separated by the wavelength separating element until it overlaps with the spectrum of the other monochromatic light wave, First multiplexing means for multiplexing the other monochromatic lightwave and the lightwave extended by the extension means; and a first multiplexing means for multiplexing the other monochromatic lightwave and the extended lightwave multiplexed by the first multiplexing means. A first detector for detecting a heterodyne interference beat, and a second multiplexer for multiplexing one of the monochromatic lightwaves separated by the wavelength separation element or a part of the expanded lightwave with a lightwave to be measured. And the second multiplexing means. One of the respective monochromatic light wave, or having, a second detector for detecting the heterodyne interference beat of a portion 該被 measuring light waves of the extended light waves.
[0010]
Since the multicolor mode-locked laser light source is used, the wavelength range that can be measured can be widened. Also, since the non-f-2f self-referencing type detects a heterodyne interference beat between the other monochromatic light wave multiplexed by the first multiplexing means and the expanded light wave, the harmonics are increased by the nonlinear optical effect after the spectrum is expanded. Does not need to be generated, f feo can be obtained with a high S / N, and the optical frequency can be measured with high accuracy.
[0011]
The multicolor mode-locked laser light source may include a passive mode-locked laser and a multiplying unit.
[0012]
Since an ultrashort pulse generated from a passive mode-locked laser is used as a fundamental wave and multiplied by a multiplication means, the light source can be made compact, and the optical frequency measuring device including the light source can be made compact and simple. Become.
[0013]
Passive mode-locked lasers can have erbium-doped fibers.
[0014]
By using an erbium-doped fiber as a laser medium, an ultrashort pulse having a wavelength of 1.5 μm is generated from a passive mode-locked laser, which is multiplied by a multiplication means as a fundamental wave. Spread to near red 1.5 μm.
[0015]
The multiplied wave may include a second harmonic and a light wave whose frequency is tripled, wherein the one monochromatic light wave is the second harmonic and the other monochromatic light wave is the tripled light wave. .
[0016]
One monochromatic light wave that expands the spectrum is a second harmonic, and the other monochromatic light wave that heterodynes with the extended second harmonic is a light wave whose frequency is tripled, so that one monochromatic light wave (light Comb) is overlapped with the other monochromatic lightwave (light comb) only by extending it by 0.5 octave, so that the intensity drop of the expanded lightwave is suppressed and f seo can be obtained with a high S / N. become.
[0017]
The first multiplexing means may have a delay line for delaying one of the other monochromatic lightwave to be multiplexed and the lightwave expanded by the expansion means.
[0018]
By delaying the lightwaves to be multiplexed by the delay line, the timing of the two lightwaves to be multiplexed can be adjusted to increase the contrast of the heterodyne interference beat.
[0019]
The first multiplexing means may include a polarization adjusting element for adjusting the polarization of the other monochromatic lightwave to be multiplexed and the lightwave expanded by the expansion means, and a beam splitter.
[0020]
By combining one lightwave combined by the polarization adjusting element with p-polarized light and the other lightwave as s-polarized light with a beam splitter, the intensity of both light waves for heterodyne interference can be easily adjusted, and the contrast of the interference beat can be improved. Contribute.
[0021]
The first multiplexing unit may include an intensity adjustment unit that adjusts the polarization of the other combined monochromatic lightwave and the lightwave expanded by the expansion unit to adjust the intensity of both lightwaves.
[0022]
By making the intensities of both light waves equal in the intensity adjusting unit, the contrast of the heterodyne interference beat becomes high, and f ceo can be obtained with a high S / N.
[0023]
Further, the first multiplexing means may include a single mode fiber.
[0024]
By passing the other combined monochromatic lightwave and the lightwave expanded by the expansion means through a single mode fiber, it is possible to ensure the superposition of both lightwaves and mode matching, and the contrast of the interference beat is increased, f ceo can be obtained with a higher S / N.
[0025]
The second multiplexing means may include a polarization adjusting element and a beam splitter for adjusting the polarization of one of the monochromatic light waves to be multiplexed or a part of the expanded light wave and the light wave to be measured.
[0026]
The polarization adjusting element combines one lightwave to be p-polarized light and the other lightwave to be s-polarized light by a beam splitter, so that the intensity of both lightwaves for heterodyne interference can be easily adjusted, thereby improving the contrast of the interference beat. To contribute.
[0027]
In addition, the second multiplexing unit includes an intensity adjusting unit that adjusts the polarization of one of the multiplexed monochromatic lightwaves or a part of the expanded lightwave and the lightwave to be measured to adjust the intensity of both lightwaves. Can also be provided.
[0028]
By making the intensities of both light waves equal in the intensity adjusting section, the contrast of the heterodyne interference beat becomes high, and δ can be obtained with a high S / N.
[0029]
Further, the second multiplexing means may include a single mode fiber.
[0030]
By passing one of the combined monochromatic lightwaves, or a part of the expanded lightwave and the lightwave to be measured through a single mode fiber, it is possible to ensure superposition and mode matching of both lightwaves, The contrast of the interference beat is increased, and δ can be obtained with a higher S / N.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
The multicolor mode-locked laser light source that generates a plurality of light waves including a fundamental wave and a multiplied wave may be any light source that generates a plurality of light waves including a fundamental wave and a multiplied wave of the fundamental wave. It is preferable that the passive mode-locked laser includes a mode-locked laser and a multiplying means, and the passive mode-locked laser includes an erbium-doped fiber. Since an ultrashort pulse having a wavelength of 1.5 μm is generated and is multiplied by a multiplication means as a fundamental wave (basic optical comb), the measurement wavelength range is widened from visible to near red 1.5 μm.
[0032]
As the multiplying means, a non-linear crystal such as ADP, KDP, LiNbO 3 , BBO can be used.
[0033]
A wavelength separation element that separates multiple light waves (optical combs) generated from a multicolor mode-locked laser light source into each monochromatic light wave (optical comb) combines a two-color mirror, a diffraction grating, a beam splitter, and a bandpass filter. Can be used.
[0034]
A photonic crystal fiber or the like is used as spectrum expanding means for expanding the spectrum of one monochromatic light wave of each monochromatic light wave separated by the wavelength separating element until it overlaps the spectrum of the other monochromatic light wave.
[0035]
The first multiplexing means for multiplexing the other monochromatic lightwave and the lightwave expanded by the expansion means may be any fiber coupler or the like as long as it multiplexes both lightwaves. It is preferable to have a polarization adjusting element for adjusting the polarization of both light waves, a beam splitter, an intensity adjusting section for adjusting the polarization of the combined light wave to adjust the intensity of both light waves, and a single mode fiber. By delaying with a delay line, the timing of both light waves to be combined is adjusted, one light wave combined by the polarization adjusting element is set to p-polarized light, the other light wave is set to s-polarized light, and both light waves are combined by a beam splitter. Since the intensity of both light waves is made equal by the intensity adjusting unit and the two light waves are passed through a single mode fiber, superposition of both light waves and mode matching are ensured, so that the contrast of the heterodyne interference beat can be increased.
[0036]
As the second multiplexing means for multiplexing one of the monochromatic light waves separated by the wavelength separation element and the light wave to be measured, the same as the first multiplexing means described above can be used. However, the lightwave to be measured is generally a continuous wave laser, and the time difference between the two lightwaves multiplexed by the second multiplexing means does not matter, and the delay line may be omitted.
[0037]
The delay line may be configured by arranging a plurality of mirrors at a predetermined interval, or by arranging a mirror and a cat's eye prism at a predetermined interval. As the polarization adjusting element, a polarizer, a half-wave plate, or the like can be used, but a half-wave plate is preferable because the intensity is not lost. As the beam splitter, a half mirror, a polarizing beam splitter, or the like can be used, but a polarizing beam splitter is preferable because the intensity is not lost. As the intensity adjusting unit, a combination of a polarizer, a half-wave plate, and a polarizing beam splitter can be used.
[0038]
A first detector for detecting a heterodyne interference beat between the other monochromatic lightwave multiplexed by the first multiplexing means and the expanded lightwave, and one of the monochromatic lightwaves multiplexed by the second multiplexing means to receive A photodiode, an avalanche photodiode, PM, or the like can be used as the second detector that detects the heterodyne interference beat with the measurement light wave.
[0039]
【Example】
Embodiment 1 FIG. FIG. 1 is a configuration diagram of an optical frequency measurement device according to one embodiment of the present invention.
[0040]
The optical frequency measuring apparatus of this embodiment is a multi-color mode-locked laser light source that generates a fundamental wave (optical comb) of 1.5 μm, a second harmonic (optical comb) of 780 nm, and a sum frequency (optical comb) of 520 nm. 1, a wavelength separating element 2 for converting the three colors into a single color, a spectrum expanding means 3 for expanding the spectrum of the second harmonic of 780 nm, and a second element for multiplexing the sum frequency of 520 nm and the expanded second harmonic. (1) multiplexing means 4, a first detector 5 for detecting a heterodyne interference beat signal of a sum frequency and an extended second harmonic, and a second detector 5 for multiplexing a 1.5 μm fundamental wave and a lightwave to be measured. It has a multiplexing means 6 and a second detector 7 for detecting a heterodyne interference beat signal between the fundamental wave and the lightwave to be measured.
[0041]
The multicolor mode-locked laser light source 1 has a passive mode-locked fiber laser 11 using an erbium-doped fiber as a gain medium and a multiplying means 12, and the multiplying means 12 is composed of periodically polarized LiNbO 3 . And generates a fundamental wave of about 50 mW, a second harmonic, and a sum frequency of 1 mW or less. The pulse width of the generated ultrashort pulse is 121 fs, and the pulse repetition period frep = 49.13 MHz.
[0042]
The wavelength separation element 2 includes two-color mirrors 21 and 22. The two-color mirror 21 separates (reflects) a fundamental wave of 1.5 μm, and the next two-color mirror 22 separates (reflects) a sum frequency of 520 nm. The second harmonic of 780 nm is transmitted from the two-color mirror 22.
[0043]
The spectrum extending means 3 is a photonic crystal fiber (PCF) having a length of 50 cm from Crystal Fiber. The PCF 3 is a polarization maintaining fiber having a core diameter of 1.8 μm. The second harmonic of 780 nm transmitted from the two-color mirror 22 is bent by the mirror 102, the polarization is adjusted by the half-wave plate 103, and the light is collected. The light is coupled to the incident end of the PCF 3 by the optical lens 106. The second harmonic (optical comb) whose spectrum has been extended by 0.5 octave to the shorter wavelength side after passing through the PCF 3 is collimated by the collimator lens 106 ′, and the spectrum of 550 nm or less is separated (reflected) by the two-color mirror 104. Is done. The light wave of 550 nm to 780 nm transmitted through the two-color mirror 104 is trapped by the optical trap 104.
[0044]
The first multiplexing unit 4 includes a delay line 41, polarization adjusting elements 42a and 42b, a beam splitter 43, an intensity adjusting unit 44, and a single mode fiber 45. The delay line 41 includes a cat's eye prism 411 and a mirror 412. The polarization adjustment elements 42a and 42b are 波長 wavelength plates, the beam splitter 43 is a polarization beam splitter, and the intensity adjustment unit 44 is a polarizer. The sum frequency of 520 nm separated (reflected) by the two-color mirror 22 is delayed by the delay line 41 so as to have an optical path length equal to the second harmonic of 780 nm, and adjusted to p-polarized light by the half-wave plate 42a. , Into the polarization beam splitter 43. On the other hand, the green portion of the second harmonic separated (reflected) by the two-color mirror 104 is adjusted to s-polarized light by the half-wave plate 42b, and is incident on the polarization beam splitter 43. The p-polarized light and the s-polarized light are multiplexed by the polarization beam splitter 43, and the p-polarized light and the s-polarized light are emitted to cause heterodyne interference. The p-polarized light and the s-polarized light emitted from the polarizing beam splitter 43 are linearly polarized by the polarizer 44 so that the p-polarized light component and the s-polarized light component are equal, bent by the mirror 102, and incident on the single mode fiber 45 by the condenser lens 106. At the end, the single mode fiber 45 reliably superimposes the sum frequency (p-polarized component) and the second harmonic (s-polarized component) and performs mode matching.
[0045]
The first detector 5 is a Si photodiode and receives the superimposed sum frequency (p-polarized component) and second harmonic (s-polarized component) emitted from the single mode fiber 45 of the first multiplexing means 4. .
[0046]
The second multiplexing unit 6 is equivalent to the first multiplexing unit 4 except for the delay line 41, and includes a polarization adjusting element 61a, 61b, a beam splitter 62, an intensity adjusting unit 63, a single mode fiber 64, Consists of The polarization adjustment elements 61a and 61b are 波長 wavelength plates, the beam splitter 62 is a polarization beam splitter, and the intensity adjustment unit 63 is a polarizer. The 1.5 μm fundamental wave (optical comb) separated (reflected) by the two-color mirror 21 is adjusted to p-polarized light by the 波長 wavelength plate 61 a and is incident on the polarization beam splitter 62. On the other hand, the lightwave to be measured input from the input port 101 is adjusted to s-polarized light by the half-wave plate 61b, and is input to the polarization beam splitter 62. The p-polarized light and the s-polarized light are multiplexed by the polarization beam splitter 62, and the p-polarized light and the s-polarized light are emitted to cause heterodyne interference. The p-polarized light and the s-polarized light emitted from the polarization beam splitter 62 are linearly polarized by the polarizer 63 so that the p-polarized component and the s-polarized component are equal, bent by the mirror 102, and incident on the single mode fiber 64 by the condenser lens 106. At the end, the superposition of the fundamental wave (p-polarized component) and the measured light wave (s-polarized component) and the mode matching are reliably performed by the single mode fiber 64.
[0047]
The second detector 7 receives the superimposed fundamental wave (p-polarized component) and the lightwave to be measured (s-polarized component) emitted from the single mode fiber 64 of the second multiplexing means 4 with a Si photodiode.
[0048]
The optical frequency of an external resonator type continuous wave semiconductor laser having a wavelength of 1.5 μm was measured by the optical frequency measuring apparatus of the present embodiment. FIGS. 2 and 3 show the results of measurement when a 1.5 μm light wave to be measured is incident from the input port 101, FIG. 2 shows the beat signal spectrum obtained by analyzing the output of the first detector 5 with a spectrum analyzer, and FIG. 2 is a beat signal spectrum obtained by analyzing the output of the detector 7 with a spectrum analyzer.
[0049]
It can be seen from FIG. 2 that f ceo = 17.4 MHz, and from FIG. 3 that δ 1.5 = 18.7 MHz. Therefore, if only an integer n is determined using a normal wavelength meter or the like, f 1.5 is determined from equation (4). That is, the optical frequency measuring apparatus of the present embodiment measures the optical frequency with high accuracy because the f ceo is not obtained by the f-2f self-referencing type as in the conventional case, and the spectrum only needs to be extended by 0.5 octave. We were able to.
[0050]
Embodiment 2. FIG. FIG. 4 is a configuration diagram of the optical frequency measurement device according to the second embodiment of the present invention. Although the optical frequency measuring device of the first embodiment can measure only the optical communication wavelength band of 1.5 μm, the measuring device of the second embodiment also has an optical frequency of 520 nm to 780 nm in the visible wavelength region in addition to 1.5 μm. It is one that can be measured. Therefore, two pairs (6 ′ and 7 ′, 6 ″ and 7 ″) of the second multiplexing unit 6 and the second detector 7 of the first embodiment (FIG. 1) are further provided.
[0051]
In FIG. 4, the same components as those in the first embodiment are denoted by the same reference numerals as those in FIG. In order to measure an optical frequency of 520 nm to 550 nm, the second harmonic (from the sum frequency (p-polarized component) and the second harmonic (s-polarized component) emitted from the polarization beam splitter 43 of the first multiplexing means 4 is used. It is necessary to separate the s-polarized light component), and the intensity adjusting unit 44 of the first embodiment includes a half-wave plate 441 and a polarizing beam splitter 442. In order to measure an optical frequency of 550 nm to 780 nm, the optical trap 105 of the first embodiment (FIG. 1) is replaced with a mirror 102 and a light wave (optical comb) of 550 nm to 780 nm transmitted through a two-color mirror 104 is used as a second light. The light is incident on the multiplexing means 6 '.
[0052]
The optical frequency of the external-cavity continuous-wave semiconductor laser having a wavelength of 780 nm and the optical frequency of a frequency-stabilized YAG laser having a wavelength of 532 nm were measured by the optical frequency measuring apparatus of this embodiment. FIGS. 5 and 6 show the results of measuring a lightwave to be measured of 780 nm from the input port 101 ′ and a lightwave of 532 nm from the input port 101 ″, and FIG. 5 shows the spectrum of the output of the second detector 7 ′. 6 is a beat signal spectrum analyzed by an analyzer, and FIG. 6 is a beat signal spectrum obtained by analyzing the output of the second detector 7 ″ by a spectrum analyzer.
[0053]
From FIG. 5, δ 780 = 19.8 MHz, and from FIG. 6, δ 532 = 16.5 MHz. If only an integer n is determined using a normal wavelength meter or the like, f 780 and f 532 can be obtained from equation (4).
[0054]
As described above, the single optical frequency measuring device of the second embodiment can measure the optical frequency from 520 nm visible light to 1.5 μm near infrared light.
[0055]
【The invention's effect】
As described above, the optical frequency measuring device of the present invention uses the multicolor mode-locked laser light source, so that the measurable wavelength range can be widened. Also, since the non-f-2f self-referencing type detects a heterodyne interference beat between the other monochromatic light wave multiplexed by the first multiplexing means and the expanded light wave, the harmonics are increased by the nonlinear optical effect after the spectrum is expanded. Does not need to be generated, f feo can be obtained with a high S / N, and the optical frequency can be measured with high accuracy.
[0056]
Further, since the multicolor mode-locked laser light source can have a passive mode-locked laser and a multiplying unit, an ultrashort pulse generated from the passive mode-locked laser is used as a fundamental wave, and the fundamental wave is used by the multiplying unit. Since the multiplication is performed, the light source can be made compact, and the optical frequency measurement device including the light source can be made small and simple.
[0057]
Further, since the passive mode-locked laser can have an erbium-doped fiber, an ultrashort pulse having a wavelength of 1.5 μm is generated from the passive mode-locked laser. Because the frequency is multiplied, the measurement wavelength range extends from visible to near red 1.5 μm.
[0058]
The multiplied wave includes a second harmonic and a light wave whose frequency is tripled, wherein the one monochromatic light wave is the second harmonic wave and the other monochromatic light wave is the triple light wave. . One monochromatic lightwave that expands the spectrum is the second harmonic, and the other monochromatic lightwave that heterodynes with the expanded second harmonic is a lightwave whose frequency is tripled. Since only the extension by 0.5 octaves overlaps with the other monochromatic light wave, a decrease in the intensity of the expanded light wave is suppressed, and f seo can be obtained with a high S / N.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical frequency measurement device using a multicolor mode-locked laser according to a first embodiment.
FIG. 2 is a beat signal spectrum for obtaining a carrier envelope offset frequency f ceo observed by the optical frequency measurement device of the first embodiment.
FIG. 3 is a beat signal spectrum for obtaining an offset frequency δ 1.5 of a measured light wave having a wavelength of 1.5 μm, which is observed by the optical frequency measuring device of the first embodiment.
FIG. 4 is a schematic configuration diagram of an optical frequency measurement device using a multicolor mode-locked laser according to a second embodiment.
FIG. 5 is a beat signal spectrum for obtaining an offset frequency δ 780 of a measured light wave having a wavelength of 780 nm, which is observed by the optical frequency measuring device of the second embodiment.
FIG. 6 is a beat signal spectrum for obtaining an offset frequency δ 532 of a measured light wave having a wavelength of 532 nm, which is observed by the optical frequency measuring device of the second embodiment.
FIG. 7: Observation of f ceo in the conventional self-reference type [Explanation of symbols]
1 Multicolor mode-locked laser light source 2 Wavelength separation element 3 ·········· Spectrum expansion means 4 ······ First multiplexing means 5 ··· ..First detectors 6, 6 ', 6 "... second combining means 7, 7', 7" ... ················································ Multiplication means 41 delay lines 42a, 42b, 61a, 61b, 61'a, 61'b, 61''a, 61''b polarization adjusting element 43,62,62 ', 62''... beam splitters 44,63,63', 6 '' ............ strength adjusting portions 45,64,64 ', 64''............ single mode fiber

Claims (21)

基本波と該基本波の逓倍波とを含む複数の光波を発生する多色モードロックレーザ光源と、
該多色モードロックレーザ光源から発生される該複数の光波を各単色光波に分離する波長分離素子と、
該波長分離素子で分離された該各単色光波の一方の単色光波のスペクトルを他方の単色光波のスペクトルとオーバラップするまで拡張するスペクトル拡張手段と、
該他方の単色光波と該拡張手段で拡張された光波とを合波する第1合波手段と、
該第1合波手段で合波された該他方の単色光波と該拡張された光波とのヘテロダイン干渉ビートを検出する第1検出器と、
該波長分離素子で分離された該各単色光波の一つ、または該拡張された光波の一部と被測定光波とを合波する第2合波手段と、
該第2合波手段で合波された該各単色光波の一つ、または該拡張された光波の一部と該被測定光波とのヘテロダイン干渉ビートを検出する第2検出器と、
を有し、該第1検出器で検出された干渉ビートからキャリア・エンベロープ・オフセット(CEO)周波数fceoを求め、該第2検出器で検出された干渉ビートからオフセット周波数δを求めて被測定光波の光周波数を測定することを特徴とする光周波数測定装置。
A multicolor mode-locked laser light source that generates a plurality of light waves including a fundamental wave and a multiple of the fundamental wave,
A wavelength separation element that separates the plurality of light waves generated from the multicolor mode-locked laser light source into respective monochromatic light waves,
Spectrum extending means for extending the spectrum of one monochromatic light wave of each monochromatic light wave separated by the wavelength separating element until overlapping with the spectrum of the other monochromatic light wave,
First multiplexing means for multiplexing the other monochromatic lightwave and the lightwave extended by the extension means;
A first detector for detecting a heterodyne interference beat between the other monochromatic lightwave multiplexed by the first multiplexing means and the extended lightwave;
Second multiplexing means for multiplexing one of the monochromatic lightwaves separated by the wavelength separation element, or a part of the expanded lightwave and the lightwave to be measured,
A second detector for detecting a heterodyne interference beat between one of the monochromatic light waves or a part of the expanded light wave and the light wave to be measured, multiplexed by the second multiplexing means;
And a carrier envelope offset (CEO) frequency f ceo is obtained from the interference beat detected by the first detector, and an offset frequency δ is obtained from the interference beat detected by the second detector. An optical frequency measuring device for measuring an optical frequency of an optical wave.
前記多色モードロックレーザ光源は、受動型モードロックレーザと、逓倍手段と、を有することを特徴とする請求項1に記載の光周波数測定装置。The optical frequency measuring apparatus according to claim 1, wherein the multicolor mode-locked laser light source includes a passive mode-locked laser and a multiplying unit. 前記受動型モードロックレーザは、エルビウム・ドープ・ファイバを有することを特徴とする請求項2に記載の光周波数測定装置。The optical frequency measurement device according to claim 2, wherein the passive mode-locked laser includes an erbium-doped fiber. 前記逓倍波は、第2高調波と周波数が3倍の光波を含み、前記一方の単色光波は該第2高調波で、前記他方の単色光波は該3倍の光波であることを特徴とする請求項1ないし3のいずれか1項に記載の光周波数測定装置。The multiplied wave includes a second harmonic and a light wave whose frequency is tripled, wherein the one monochromatic light wave is the second harmonic and the other monochromatic light wave is the tripled light wave. The optical frequency measurement device according to claim 1. 前記第1合波手段は、合波される前記他方の単色光波と前記拡張手段で拡張された光波との一方を遅延する遅延線を有することを特徴とする請求項1ないし4のいずれか1項に記載の光周波数測定装置。5. The device according to claim 1, wherein the first multiplexing unit includes a delay line that delays one of the other monochromatic lightwave to be multiplexed and the lightwave expanded by the expansion unit. 6. An optical frequency measurement device according to the item. 前記第1合波手段は、合波される前記他方の単色光波と前記拡張手段で拡張された光波との偏光を調節する偏光調節素子とビームスプリッタとを有することを特徴とする請求項1ないし5のいずれか1項に記載の光周波数測定装置。The first multiplexing means has a polarization adjusting element for adjusting the polarization of the other monochromatic lightwave to be multiplexed and the lightwave expanded by the expansion means, and a beam splitter. 6. The optical frequency measurement device according to any one of 5. 前記第1合波手段は、合波された前記他方の単色光波と前記拡張手段で拡張された光波との偏光を調節して両光波の強度を調節する強度調節部を有することを特徴とする請求項1ないし6のいずれか1項に記載の光周波数測定装置。The first multiplexing unit has an intensity adjusting unit that adjusts the polarization of the other monochromatic lightwave combined with the lightwave expanded by the expansion unit to adjust the intensity of both lightwaves. The optical frequency measurement device according to claim 1. 前記第1合波手段は、合波された前記他方の単色光波と前記拡張手段で拡張された光波との重ね合わせとモードマッチングを確実にするシングルモードファイバを有することを特徴とする請求項1ないし7のいずれか1項に記載の光周波数測定装置。The said 1st multiplexing means has a single mode fiber which ensures the superposition and mode matching of the other monochromatic lightwave multiplexed and the lightwave expanded by the expansion means. 8. The optical frequency measurement device according to any one of items 7 to 7. 前記第2合波手段は、合波される前記各単色光波の一つ、または前記拡張された光波の一部と被測定光波との偏光を調節する偏光調節素子とビームスプリッタとを有することを特徴とする請求項1ないし8のいずれか1項に記載の光周波数測定装置。The second multiplexing unit may include a polarization adjusting element and a beam splitter that adjust polarization of one of the monochromatic light waves to be multiplexed or a part of the extended light wave and the light wave to be measured. The optical frequency measurement device according to any one of claims 1 to 8, wherein 前記第2合波手段は、合波された前記各単色光波の一つ、または前記拡張された光波の一部と前記被測定光波との偏光を調節して両光波の強度を調節する強度調節部を有することを特徴とする請求項1ないし9のいずれか1項に記載の光周波数測定装置。The second multiplexing means adjusts the polarization of one of the multiplexed monochromatic lightwaves or a part of the expanded lightwave and the lightwave to be measured to adjust the intensity of both lightwaves. The optical frequency measurement device according to any one of claims 1 to 9, further comprising a unit. 前記第2合波手段は、合波された前記各単色光波の一つ、または前記拡張された光波の一部と前記被測定光波との重ね合わせとモードマッチングを確実にするシングルモードファイバを有することを特徴とする請求項1ないし10のいずれか1項に記載の光周波数測定装置。The second multiplexing unit includes a single mode fiber that ensures superposition and mode matching of one of the multiplexed monochromatic lightwaves or a part of the extended lightwave and the lightwave to be measured. The optical frequency measurement device according to any one of claims 1 to 10, wherein: 基本波と該基本波の逓倍波とを含む複数の光波を発生するステップ1と、
該複数の光波を各単色光波に分離するステップ2と、
該各単色光波の一方の単色光波のスペクトルを他方の単色光波のスペクトルとオーバラップするまで拡張するステップ3と、
該他方の単色光波と該ステップ3で拡張された光波とを合波させてヘテロダイン干渉させるステップ4と、
該他方の単色光波と該拡張された光波とのヘテロダイン干渉ビートを検出して該各単色光波の周波数スペクトルのキャリア・エンベロープ・オフセット周波数fceoを求めるステップ5と、
該各単色光波の一つ、または該拡張された光波の一部と被測定光波とを合波させてヘテロダイン干渉させるステップ6と、
該各単色光波の一つ、または該拡張された光波の一部と該被測定光波とのヘテロダイン干渉ビートを検出してオフセット周波数δを求め、前記fceoを使って被測定光波の周波数を測定するステップ7と、
を有することを特徴とする光周波数測定方法。
Generating a plurality of light waves including a fundamental wave and a multiplied wave of the fundamental wave;
Separating the plurality of light waves into monochromatic light waves;
Extending 3 the spectrum of one monochromatic lightwave of each monochromatic lightwave until it overlaps the spectrum of the other monochromatic lightwave;
Combining the other monochromatic lightwave and the lightwave extended in step 3 to cause heterodyne interference;
Detecting a heterodyne interference beat between the other monochromatic lightwave and the extended lightwave to determine a carrier envelope offset frequency fceo of a frequency spectrum of each monochromatic lightwave;
Step 6 of combining one of the monochromatic light waves or a part of the expanded light wave with the light wave to be measured to cause heterodyne interference,
A heterodyne interference beat between one of the monochromatic lightwaves or a part of the expanded lightwave and the lightwave to be measured is detected to determine an offset frequency δ, and the frequency of the lightwave to be measured is measured using the f ceo. Step 7 to do
An optical frequency measurement method, comprising:
前記ステップ1は基本波を発生するサブステップ11と該基本波を非線形光学効果で逓倍するサブステップ12とを有することを特徴とする請求項12に記載の光周波数測定方法。13. The optical frequency measuring method according to claim 12, wherein the step 1 includes a sub-step 11 for generating a fundamental wave and a sub-step 12 for multiplying the fundamental wave by a nonlinear optical effect. 前記基本波は、波長が1.5μmの光波を含み、前記逓倍波は、波長が780nmの第2高調波と波長が520nmの和周波とを含み、前記一方の単色光波は、該第2高調波であり、前記他方の単色光波は該和周波であることを特徴とする請求項12または13に記載の光周波数測定方法。The fundamental wave includes a light wave having a wavelength of 1.5 μm, the multiplied wave includes a second harmonic having a wavelength of 780 nm and a sum frequency having a wavelength of 520 nm, and the one monochromatic light wave includes the second harmonic. 14. The optical frequency measuring method according to claim 12, wherein the other monochromatic light wave is the sum frequency. 前記ステップ4は、合波される前記他方の単色光波と前記ステップ3で拡張された光波との一方を遅延するサブステップ41を有することを特徴とする請求項12ないし14のいずれか1項に記載の光周波数測定方法。The method according to any one of claims 12 to 14, wherein the step (4) includes a sub-step (41) for delaying one of the other monochromatic light wave to be multiplexed and the light wave extended in the step (3). The described optical frequency measurement method. 前記ステップ4は、合波される前記他方の単色光波と前記ステップ3で拡張された光波との偏光を調節するサブステップ42を有することを特徴とする請求項12ないし15のいずれか1項に記載の光周波数測定方法。16. The method according to claim 12, wherein the step (4) comprises a sub-step (42) for adjusting a polarization of the other monochromatic light wave to be multiplexed and the light wave expanded in the step (3). The described optical frequency measurement method. 前記ステップ4は、合波された前記他方の単色光波と前記ステップ3で拡張された光波との偏光を調節して両光波の強度を調節するサブステップ43を有することを特徴とする請求項12ないし16のいずれか1項に記載の光周波数測定方法。13. The method as claimed in claim 12, wherein the step (4) includes a sub-step (43) of adjusting the polarization of the combined monochromatic light wave and the light wave expanded in the step (3) to adjust the intensity of both light waves. 17. The optical frequency measurement method according to any one of items 16 to 16. 前記ステップ4は、合波された前記他方の単色光波と前記ステップ3で拡張された光波との重ね合わせとモードマッチングを確実にするサブステップ44を有することを特徴とする請求項12ないし17のいずれか1項に記載の光周波数測定方法。18. The method according to claim 12, wherein the step (4) includes a sub-step (44) for ensuring superposition and mode matching of the combined other monochromatic light wave and the light wave extended in the step (3). The optical frequency measurement method according to claim 1. 前記ステップ6は、合波される前記各単色光波の一つ、または前記拡張された光波の一部と前記被測定光波との偏光を調節するサブステップ61を有することを特徴とする請求項12ないし18のいずれか1項に記載の光周波数測定方法。13. The method according to claim 12, wherein the step (6) includes a sub-step (61) of adjusting a polarization of one of the monochromatic light waves to be combined or a part of the extended light wave and the light wave to be measured. 19. The optical frequency measurement method according to any one of items 18 to 18. 前記ステップ6は、合波された前記各単色光波の一つ、または前記拡張された光波の一部と前記被測定光波との偏光を調節して両光波の強度を調節するサブステップ62を有することを特徴とする請求項12ないし19のいずれか1項に記載の光周波数測定方法。Step 6 includes a sub-step 62 of adjusting the polarization of one of the multiplexed monochromatic lightwaves or a part of the extended lightwave and the lightwave to be measured to adjust the intensity of both lightwaves. 20. The optical frequency measurement method according to claim 12, wherein: 前記ステップ6は、合波された前記各単色光波の一つと前記被測定光波との重ね合わせとモードマッチングを確実にするサブステップ63を有することを特徴とする請求項12ないし20のいずれか1項に記載の光周波数測定方法。21. The method according to claim 12, wherein the step (6) includes a sub-step (63) for ensuring superposition and mode matching of one of the multiplexed monochromatic light waves and the light wave to be measured. The optical frequency measurement method according to the paragraph.
JP2003136429A 2003-05-14 2003-05-14 Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser Expired - Lifetime JP4164599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136429A JP4164599B2 (en) 2003-05-14 2003-05-14 Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136429A JP4164599B2 (en) 2003-05-14 2003-05-14 Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser

Publications (2)

Publication Number Publication Date
JP2004340690A true JP2004340690A (en) 2004-12-02
JP4164599B2 JP4164599B2 (en) 2008-10-15

Family

ID=33526398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136429A Expired - Lifetime JP4164599B2 (en) 2003-05-14 2003-05-14 Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser

Country Status (1)

Country Link
JP (1) JP4164599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149778A1 (en) 2008-07-31 2010-02-03 Mitutoyo Corporation Multiwavelength interferometric displacement measuring method and apparatus
JP2010531444A (en) * 2007-06-26 2010-09-24 ユニバーシテ ラバル Criteria for beat spectrum of optical frequency comb
DE102011000963A1 (en) 2010-03-01 2011-09-01 Advantest Corp. Pulse laser for controlling output time of optical pulse, has repetition frequency control portion controlling repetition frequency of mode-coupled laser to control output time of optical pulse issued by mode-coupled laser
CN103855599A (en) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 Method for achieving laser frequency-offset-lock through scanning confocal cavity F-P interferometer
CN108680099A (en) * 2018-03-24 2018-10-19 北京工业大学 A method of analysis laser beam amplitude fluctuation influences heterodyne interference nonlinear error

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531444A (en) * 2007-06-26 2010-09-24 ユニバーシテ ラバル Criteria for beat spectrum of optical frequency comb
EP2149778A1 (en) 2008-07-31 2010-02-03 Mitutoyo Corporation Multiwavelength interferometric displacement measuring method and apparatus
JP2010038552A (en) * 2008-07-31 2010-02-18 Mitsutoyo Corp Multiwavelength interferometric displacement measuring method and apparatus
DE102011000963A1 (en) 2010-03-01 2011-09-01 Advantest Corp. Pulse laser for controlling output time of optical pulse, has repetition frequency control portion controlling repetition frequency of mode-coupled laser to control output time of optical pulse issued by mode-coupled laser
CN103855599A (en) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 Method for achieving laser frequency-offset-lock through scanning confocal cavity F-P interferometer
CN108680099A (en) * 2018-03-24 2018-10-19 北京工业大学 A method of analysis laser beam amplitude fluctuation influences heterodyne interference nonlinear error
CN108680099B (en) * 2018-03-24 2019-08-23 北京工业大学 A method of analysis laser beam amplitude fluctuation influences heterodyne interference nonlinear error

Also Published As

Publication number Publication date
JP4164599B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US9885614B2 (en) Method and apparatus for multifrequency optical comb generation
US7570851B2 (en) Ultrashort photonic waveform measurement using quasi-phase-matched non-linear optics
US9153928B2 (en) Optical signal processing with modelocked lasers
US6008899A (en) Apparatus and method for optical pulse measurement
KR102459787B1 (en) Optical Frequency Comb Generator with Carrier Envelope Offset Frequency Detection
Wang et al. Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion
Onae et al. Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser
JP3631025B2 (en) Chromatic dispersion measurement apparatus and polarization dispersion measurement apparatus
JP2011181691A (en) Pulse laser, optical frequency stabilized laser, measuring device, and measuring method
EP1886107A1 (en) Ultra-short optical pulse measurement using a thick nonlinear crystal
JP2003028724A (en) Method and device for evaluating light pulse, and optical communication system
JP2010060751A (en) Terahertz wave generation device and generation method
JP2007271783A (en) Light source apparatus and light source system
JP2018142699A (en) Generation of laser pulse using time-variant talbot effect and spectroscopy
JP4164599B2 (en) Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser
EP2899816B1 (en) Method and device for time synchronization of picosecond and subpicosecond laser pulses
JPH067071B2 (en) Optical spectrum measuring device
JP4753063B2 (en) Photoelectric field waveform control method and control apparatus
JP4559291B2 (en) Interference signal amplifier
JPH0212227A (en) Light pulse generating device
JP2001156368A (en) Time-division wavelength multiple pulse-light generator and multiple wavelength measuring system
JP2723201B2 (en) Optical response speed measuring instrument
JP2012132704A (en) Peak power monitoring device and peak power monitoring method
JPH10197350A (en) Apparatus for measuring light-sampling waveform
JP6789658B2 (en) Light source device and information acquisition device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

R150 Certificate of patent or registration of utility model

Ref document number: 4164599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term