JPH0114567B2 - - Google Patents

Info

Publication number
JPH0114567B2
JPH0114567B2 JP58166869A JP16686983A JPH0114567B2 JP H0114567 B2 JPH0114567 B2 JP H0114567B2 JP 58166869 A JP58166869 A JP 58166869A JP 16686983 A JP16686983 A JP 16686983A JP H0114567 B2 JPH0114567 B2 JP H0114567B2
Authority
JP
Japan
Prior art keywords
light
polarized
separated
modulated
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58166869A
Other languages
Japanese (ja)
Other versions
JPS6057824A (en
Inventor
Terumi Chikama
Hideo Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58166869A priority Critical patent/JPS6057824A/en
Publication of JPS6057824A publication Critical patent/JPS6057824A/en
Publication of JPH0114567B2 publication Critical patent/JPH0114567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は安価に構成出来るヘテロダイン光通信
方式に関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a heterodyne optical communication system that can be constructed at low cost.

(b) 技術の背景 ゼーマンレーザは磁場の強さによるエネルギー
レベルの分離の大きさg・μ・H(但しgは
gfactor、μは磁気能率、Hは磁界の強さ)だけ
波長の違う2つの光を出力する。又この2つの光
の一方は右円偏波であり他方は左円偏波である。
又、各光が発生するためのエネルギーレベルの差
は、通常の温度変化範囲内では一定であり、従つ
ての差は一定である。
(b) Background of the technology Zeeman lasers are based on the magnitude of energy level separation g・μ・H depending on the strength of the magnetic field (where g is
It outputs two lights with different wavelengths by gfactor, μ is the magnetic efficiency, and H is the strength of the magnetic field. Also, one of these two lights is right-handed circularly polarized, and the other is left-handed circularly polarized.
Also, the difference in energy level for each light to be generated is constant within a normal temperature change range, and therefore the difference is constant.

(c) 従来技術と問題点 ヘテロダイン光通信方式においては、中間周波
数を一定に保つために発振器及び局部発振器の周
波数の安定化が非常に困難な問題である。この周
波数を安定化するには、従来発振器及び局部発振
器の温度を温度変動巾1/100度程度の精密な制御
を行う方法又は光注入同期法が用いられている。
(c) Prior art and problems In the heterodyne optical communication system, it is extremely difficult to stabilize the frequencies of the oscillator and local oscillator in order to keep the intermediate frequency constant. To stabilize this frequency, conventional methods have been used in which the temperatures of the oscillator and local oscillator are precisely controlled within a temperature fluctuation range of about 1/100 degree, or an optical injection locking method is used.

しかし、前者は複雑な電子回路を必要とし、後
者は光学系の調整が困難で製作歩留りが悪い。
However, the former requires a complicated electronic circuit, and the latter has a difficult manufacturing yield because it is difficult to adjust the optical system.

従つていづれの方法を用いてもヘテロダイン光
通信方式は高価になる欠点がある。
Therefore, no matter which method is used, the heterodyne optical communication system has the drawback of being expensive.

(d) 発明の目的 本発明の目的は上記の欠点に鑑み、安価に構成
出来るヘテロダイン光通信方式の提供にある。
(d) Object of the Invention In view of the above drawbacks, the object of the present invention is to provide a heterodyne optical communication system that can be constructed at low cost.

(e) 発明の構成 本発明は上記の目的を達成するために、ゼーマ
ンレーザの右円偏波及び左円偏波の2つの光の発
振波長に差があり、温度が変動してもこの波長差
は殆ど変化しない点に着目したものであり、ゼー
マンレーザからの右円偏波及び左円偏波の出力光
をλ/4板(λは波長)を通し直交した直線偏波
とし、該直交した直線偏波された光を第1の偏光
子を用いて分離し、分離された一方の光を外周周
波数変調器で変調した後、分離された他方の光と
合成し、単一モード定偏波フアイバに入射し、該
単一モード定偏波フアイバからの出力光を再び第
2の偏光子で分離し、分離されたいずれか一方の
偏光に対しλ/2板を通し他方の偏光と偏波面を
合わせるとともに変調されていない方の偏光を光
増幅器で増幅し、変調されている方の偏光と変調
されていない方の偏光とを合成し、受光器に入射
することによりヘテロダイン検波を行うことを特
徴とする。
(e) Structure of the Invention In order to achieve the above object, the present invention has a difference in the oscillation wavelength of the right-handed circularly polarized light and the left-handed circularly polarized light of the Zeeman laser, and even when the temperature changes, this wavelength remains unchanged. Focusing on the point that the difference hardly changes, the right-handed circularly polarized wave and left-handed circularly polarized output light from the Zeeman laser are made into orthogonal linearly polarized waves through a λ/4 plate (λ is the wavelength). The linearly polarized light is separated using a first polarizer, one of the separated lights is modulated by an outer frequency modulator, and then combined with the other separated light to produce a single mode constant polarization. The output light from the single mode polarization fixed fiber is separated again by a second polarizer, and one of the separated polarized lights is passed through a λ/2 plate and then polarized with the other polarized light. Heterodyne detection is performed by aligning the wavefronts, amplifying the unmodulated polarized light with an optical amplifier, combining the modulated polarized light with the unmodulated polarized light, and inputting the combined light into a photoreceiver. It is characterized by

本発明によれば、波長差が温度変動に対し一
定、即ち、周波数差が一定となるため、一方の光
を局部発振用に他方の光を信号変調用に用い、中
間周波数の安定化が可能となる。
According to the present invention, since the wavelength difference remains constant despite temperature fluctuations, that is, the frequency difference remains constant, it is possible to stabilize the intermediate frequency by using one light for local oscillation and the other for signal modulation. becomes.

(f) 発明の実施例 以下本発明の一実施例につき図に従つて説明す
る。
(f) Embodiment of the invention An embodiment of the invention will be described below with reference to the drawings.

図は本発明の実施例のヘテロダイン光通信方式
のブロツク図である。
The figure is a block diagram of a heterodyne optical communication system according to an embodiment of the present invention.

図中1はゼーマンレーザ、2はλ/4板、3,
3′は偏光子、4は外部変調器、5は単一モード
定偏波フアイバ、6,6′,6″,6はミラー、
7,7′はハーフミラー、8はλ/2板、9は光
増巾器を示す。
In the figure, 1 is a Zeeman laser, 2 is a λ/4 plate, 3,
3' is a polarizer, 4 is an external modulator, 5 is a single mode polarization constant fiber, 6, 6', 6'', 6 is a mirror,
7 and 7' are half mirrors, 8 is a λ/2 plate, and 9 is an optical amplifier.

ゼーマンレーザ1から右円偏波(波長λ1)及び
左円偏波(波長λ2)の光が出力されている。これ
らの光をλ/4板(λは波長)2を通して2つの
直交する直線偏波にする。
The Zeeman laser 1 outputs right-handed circularly polarized light (wavelength λ 1 ) and left-handed circularly polarized light (wavelength λ 2 ). These lights are converted into two orthogonal linearly polarized waves through a λ/4 plate (λ is wavelength) 2.

その後偏光子3を用いて2偏波を分離し、一方
の偏光はミラー6を介して外部変調器4に入力、
位相もしくは周波数変調する。この外部変調器4
による変調は、例えば媒質TeO2やPbM0O4等の
電気光学効果を用いるとか音響光学効果を用いて
変調する。他方の偏光はミラー6′を介し、外部
変調器4で変調された光と、バツクミラー7′に
て合成し、伝送路である単一モード定偏波フアイ
バ5に入射する。
After that, the polarizer 3 is used to separate the two polarized waves, and one polarized light is input to the external modulator 4 via the mirror 6.
Modulate phase or frequency. This external modulator 4
The modulation is carried out using, for example, the electro-optic effect of a medium such as TeO 2 or PbM 0 O 4 or the acousto-optic effect. The other polarized light passes through a mirror 6' and is combined with the light modulated by the external modulator 4 at a back mirror 7', and enters the single mode polarization fiber 5, which is a transmission path.

単一モード定偏波フアイバ5を出た光は再び偏
光子3′にて分けられ変調されていない偏光は
λ/2板8で90度偏光方向を回転し、変調されて
いる方の偏光と偏波面を合し、光増巾器9で強度
を増加し、ミラー6″,6を介した変調されて
いる方の偏光と、ハーフミラー7′にて合成し、
受光器10に入射してヘテロダイン検波を行う。
The light exiting the single mode polarization fiber 5 is separated again by the polarizer 3', and the unmodulated polarized light is rotated by 90 degrees by the λ/2 plate 8, and is separated from the modulated polarized light. The planes of polarization are combined, the intensity is increased by an optical amplifier 9, and the polarized light which has been modulated via mirrors 6'' and 6 is combined by a half mirror 7'.
The light enters the photoreceiver 10 and performs heterodyne detection.

上記実施例では、変調されない偏光は、偏光子
3からミラー6′、ミラー7、単一モード定偏波
フアイバ5、偏光子3′、ミラー6″、ミラー6
を介し、外部変調器4で変調された偏光は、ミラ
ー7、偏光子3′λ/2板8、光増幅器9を介し
てミラー7′にて合成する例で示した。ここで、
偏光子3及び3′の偏光分離方向は互いに異なる
もので示してあるが、同一のものを使用した場合
には、変調されない偏光が透過方向となるため、
光増幅器9はミラー6″とミラー6との間に置
かれることになる。
In the above embodiment, unmodulated polarized light is transmitted from polarizer 3 to mirror 6' to mirror 7 to single mode polarization fixed fiber 5 to polarizer 3' to mirror 6'' to mirror 6.
An example is shown in which the polarized light modulated by the external modulator 4 is synthesized by the mirror 7' via the mirror 7, the polarizer 3', the λ/2 plate 8, and the optical amplifier 9. here,
Although the polarizers 3 and 3' are shown with different polarization separation directions, if the same polarizers are used, the unmodulated polarized light will be in the transmission direction.
The optical amplifier 9 will be placed between the mirrors 6''.

また、上記実施例では、変調されていない偏光
の偏波面を変調されている偏光の偏波面に合わせ
る例で説明したが、この逆の場合、即ち、変調さ
れている偏光の偏波面を変調されていない偏光の
偏波変に合わせるものであつてもよい。その場合
には、λ/2板8をミラー6″とミラー6との
間に設けることになるが、何れに合わせるかは、
本発明の本質ではない。
Furthermore, in the above embodiment, the polarization plane of unmodulated polarized light is adjusted to the polarization plane of modulated polarized light, but in the opposite case, that is, the polarization plane of modulated polarized light is It may be adapted to the change in polarization of polarized light. In that case, the λ/2 plate 8 will be provided between the mirrors 6'', but which one to match will depend on
This is not the essence of the invention.

以上のようにすることによりゼーマンレーザ1
の温度を特に制御する必要もなく、又レーザとし
てはゼーマンレーザ1のみでヘテロダイン光通信
方式が構成出来かつ発光側受光側共特別な光学的
調整も不要で製作上の歩留りもなく安価にヘテロ
ダイン光通信方式が構成出来る。
By doing the above, Zeeman laser 1
There is no need to particularly control the temperature of the laser, and a heterodyne optical communication system can be configured using only the Zeeman laser 1. No special optical adjustment is required for both the light emitting and light receiving sides, and there is no manufacturing yield and the heterodyne light can be produced at low cost. Communication method can be configured.

(g) 発明の効果 以上詳細に説明せる如く本発明によれば、安定
した中間周波数を得るに当たり、ゼーマンレーザ
の右円偏波と左円偏波の2つの光の波長差は、温
度変動に対し一定であるため、回路における温度
変化に対しレーザの温度は特に制御する必要もな
く又レーザは1個でよくかつ特別な光学的調整も
不要であるので、安価にヘテロダイン光通信方式
が構成出来る効果がある。
(g) Effects of the Invention As explained in detail above, according to the present invention, in obtaining a stable intermediate frequency, the wavelength difference between the right-handed circularly polarized wave and the left-handed circularly polarized wave of the Zeeman laser is On the other hand, since it is constant, there is no need to particularly control the laser temperature in response to temperature changes in the circuit, and only one laser is required, and no special optical adjustment is required, so a heterodyne optical communication system can be constructed at low cost. effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明のヘテロダイン光通信方式のブロ
ツク図である。 図中1はゼーマンレーザ、2はλ/2板、3,
3′は偏光子、4は外部変調器、5は単一モード
定偏波フアイバ、6,6′,6″,6はミラー、
7,7′はハーフミラー、8はλ/2板、9は光
増巾器、10は受光器を示す。
The drawing is a block diagram of the heterodyne optical communication system of the present invention. In the figure, 1 is a Zeeman laser, 2 is a λ/2 plate, 3,
3' is a polarizer, 4 is an external modulator, 5 is a single mode polarization constant fiber, 6, 6', 6'', 6 is a mirror,
7 and 7' are half mirrors, 8 is a λ/2 plate, 9 is an optical amplifier, and 10 is a light receiver.

Claims (1)

【特許請求の範囲】 1 ゼーマンレーザからの右円偏波及び左円偏波
の出力光をλ/4板(λは波長)を通し直交した
直線偏波とし、 該直交した直線偏波された光を第1の偏光子を
用いて分離し、 分離された一方の光を外部周波数変調器で変調
した後、分離された他方の光と合成し、 単一モード定偏波フアイバに入射し、 該単一モード定偏波フアイバからの出力光を再
び第2の偏光子で分離し、 分離されたいずれか一方の偏光に対しλ/2板
を通し他方の偏光と偏波面を合わせるとともに 変調されていない方の偏光を光増幅器で増幅
し、 変調されている方の偏光と変調されていない方
の偏光とを合成し、 受光器に入射することによりヘテロダイン検波
を行うこと を特徴とするヘテロダイン光通信方式。
[Claims] 1 Right-handed circularly polarized light and left-handed circularly polarized output light from a Zeeman laser are made into orthogonal linearly polarized waves through a λ/4 plate (λ is wavelength), and the orthogonally linearly polarized waves are made into orthogonal linearly polarized waves. The light is separated using a first polarizer, one of the separated lights is modulated by an external frequency modulator, and then combined with the other separated light and input into a single mode polarization fiber. The output light from the single mode polarization constant fiber is separated again by a second polarizer, and one of the separated polarized lights is passed through a λ/2 plate to match the plane of polarization with the other polarized light and is modulated. Heterodyne light is characterized by amplifying the unmodulated polarized light with an optical amplifier, combining the modulated polarized light with the unmodulated polarized light, and performing heterodyne detection by inputting the modulated light into a photoreceiver. Communication method.
JP58166869A 1983-09-10 1983-09-10 Heterodyne optical communication system Granted JPS6057824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166869A JPS6057824A (en) 1983-09-10 1983-09-10 Heterodyne optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166869A JPS6057824A (en) 1983-09-10 1983-09-10 Heterodyne optical communication system

Publications (2)

Publication Number Publication Date
JPS6057824A JPS6057824A (en) 1985-04-03
JPH0114567B2 true JPH0114567B2 (en) 1989-03-13

Family

ID=15839139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166869A Granted JPS6057824A (en) 1983-09-10 1983-09-10 Heterodyne optical communication system

Country Status (1)

Country Link
JP (1) JPS6057824A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723317A (en) * 1986-05-08 1988-02-02 American Telephone And Telegraph Company, At&T Bell Laboratories Optical heterodyne mixers providing image-frequency rejection
US4697284A (en) * 1986-05-08 1987-09-29 American Telephone And Telegraph Company, At&T Bell Laboratories Single-photodiode optical heterodyne mixers
GB8616050D0 (en) * 1986-07-01 1986-08-06 British Telecomm Optical local transmission system
US9134479B2 (en) 2012-09-05 2015-09-15 International Business Machines Corporation Polarization diverse demultiplexing

Also Published As

Publication number Publication date
JPS6057824A (en) 1985-04-03

Similar Documents

Publication Publication Date Title
US7009709B2 (en) Active control of two orthogonal polarizations for heterodyne beam delivery
GB2185567A (en) Optical frequency analyzer
US6862131B2 (en) Laser light generating apparatus and method
US3437955A (en) Phase locked laser oscillator
US5060233A (en) Miniature blue-green laser source using second-harmonic generation
Bertinetto et al. Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method
KR100363237B1 (en) Method and apparatus for generating second harmonic
JPH061912B2 (en) Frequency shift keying optical transmitter
US6961129B2 (en) Active control of two orthogonal polarizations for heterodyne interferometry
JPS63279115A (en) Measuring device with laser and annular resonator
US7362445B2 (en) Active control and detection of two nearly orthogonal polarizations in a fiber for heterodyne interferometry
US3653765A (en) Acousto-optic light spectrum analysis
JPH08204275A (en) Oscillation frequency stabilizing device and laser device
US3632193A (en) Method and apparatus for control of light transmission through an anisotropic medium
JPH0114567B2 (en)
US20110310919A1 (en) Laser System Provided With a Frequency Servo
US6301276B1 (en) Laser light generating apparatus
JP3351212B2 (en) Pulse light source
JP2980136B2 (en) Multi-wavelength stabilized laser device
JP3913339B2 (en) Polarization-independent polarizer and optical processing apparatus using the same
JPH04229842A (en) Polarization scrambler for laser
JPH04335589A (en) Optical frequency deviation-amount stabilization device
JPH08292458A (en) Four-light-wave mixed light generating device and semiconductor unpolarized light source used for the device
JPH05206561A (en) Light feedback type light frequency offset locking device
JPS63184385A (en) Laser source device