JPH0269702A - Waveguide and its manufacture, and optical switch - Google Patents

Waveguide and its manufacture, and optical switch

Info

Publication number
JPH0269702A
JPH0269702A JP63222937A JP22293788A JPH0269702A JP H0269702 A JPH0269702 A JP H0269702A JP 63222937 A JP63222937 A JP 63222937A JP 22293788 A JP22293788 A JP 22293788A JP H0269702 A JPH0269702 A JP H0269702A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
width
wide
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63222937A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Koichi Takahashi
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63222937A priority Critical patent/JPH0269702A/en
Publication of JPH0269702A publication Critical patent/JPH0269702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the waveguide which is small in coupling loss and wave guiding loss and stable in standard frequency by providing a width variation part which is arranged between a wide and a narrow part and varies the widths of the wide and narrow parts continuously. CONSTITUTION:The waveguide is a three-dimensional waveguide. The waveguide 3 is formed by diffusing a material which increases the refractive index in a waveguide substrate 2 and consists of the constant-width wide part 4, the narrow part 5 which has narrower constant width, and the width variation part 6 which is arranged between the wide part 4 and narrow part 5. The narrow part 5 is formed coaxially with the wide part 4 and the width variation part 6 is so formed as to vary the widths of the wide part 4 and narrow part 5 continuously. In the waveguide 1, the specific refractive index difference is smaller at the wide part 4 than at the narrow part 5 and the specific refractive index difference at the width variation part 6 varies continuously from that at the wide part to that at the narrow part. Consequently, the coupling loss and wave guiding loss are small and the standard frequency is stable.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、光ファイバとの結合を良好にした導波路と
その製造方法、およびこの導波路を応用してなる光スイ
ッチに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a waveguide with good coupling to an optical fiber, a method for manufacturing the same, and an optical switch using this waveguide.

「従来の技術」 近時、種々の導波形光デバイスが提案され、光スイッチ
などに応用されている。
"Prior Art" Recently, various waveguide type optical devices have been proposed and applied to optical switches and the like.

ところで、このような導波形光デバイスの基礎となる二
次元先導波路(以下、導波路と略称する)としては、三
次元導波層が導波路中において同一の幅を有するととも
に均一な比屈折率差を有して構成されるものが普通であ
る。
By the way, the two-dimensional guiding waveguide (hereinafter abbreviated as waveguide), which is the basis of such a waveguide type optical device, has a three-dimensional waveguide layer that has the same width and a uniform relative refractive index in the waveguide. It is common for things to be configured with differences.

「発明が解決しようとする課題」 しかしながら、上記の導波路にあっては、光ファイバに
接続するにあたって導波路における導波層の断面積が小
さい場合、該断面積と光ファイバのコア面とが一致せず
、これに起因して結合損失が大きくなるといった問題が
ある。一方、このような導波路を例えば光スィッチに適
用するにあたり、導波層を導波路基板中で折曲して作製
した場合には、導波層の断面積が大きいほどその折曲部
分において大きな導波損失が生ずるといった問題がある
"Problem to be Solved by the Invention" However, in the above waveguide, when the cross-sectional area of the waveguide layer in the waveguide is small when connecting to an optical fiber, the cross-sectional area and the core surface of the optical fiber are They do not match, and this causes a problem of increased coupling loss. On the other hand, when applying such a waveguide to an optical switch, for example, if the waveguide layer is fabricated by bending it in the waveguide substrate, the larger the cross-sectional area of the waveguide layer, the larger the bending area. There is a problem that waveguide loss occurs.

よって、導波路を光スイッチ等に応用するに際し上述し
たような損失を少なくするには、光ファイバとの結合部
分で導波層の断面を大きくし、かつ導波層の折曲する部
分で断面を小さくすれば良いと考えられるが、その場合
規格化周波数を変えずに上記両方の条件を満足するよう
な導波路を作製する方法が現在のところ提供されておら
ず、したがって現状ではこのようなものを得るのは不可
能である。
Therefore, in order to reduce the above-mentioned loss when applying a waveguide to an optical switch, etc., the cross section of the waveguide layer should be made large at the coupling part with the optical fiber, and the cross section should be made large at the part where the waveguide layer is bent. It may be possible to make the waveguide smaller, but there is currently no method to fabricate a waveguide that satisfies both of the above conditions without changing the normalized frequency. It is impossible to get things.

この発明は上記事情に鑑みてなされたもので、そのH的
とするところは、結合損失、導波損失が少なく、かつ規
格周波数が安定した導波路およびその製造方法を提供す
るとともに、伝送損失の少ない光スィッチを提供するこ
とにある。
This invention was made in view of the above circumstances, and its H purpose is to provide a waveguide with low coupling loss and waveguide loss and a stable standard frequency, and a manufacturing method thereof, and to reduce transmission loss. The purpose is to provide fewer light switches.

[課題を解決するための手段」 本発明における請求項1に記載した発明の導波路では、
一定の幅の幅広部と、この幅広部より狭い幅で一定の幅
を何しかつ上記幅広部と同一の軸を育する幅狭部と、こ
れら幅広部と幅狭部との間に配置されて幅広部と幅狭部
との幅を連続的に変化せしめろ幅変部とからなる導波層
を有し、上記幅広部とその周辺導波路基板との比屈折率
差が上記幅狭部とその周辺基板との比屈折率差より小さ
く、かつ上記幅変部とその周辺導波路基板との比屈折率
差が上記の幅広部における比屈折率差から幅狭部におけ
る比屈折率差まで連続的に変化することを上記課題の解
決手段とした。
[Means for solving the problem] In the waveguide of the invention described in claim 1 of the present invention,
A wide part having a constant width, a narrow part having a constant width narrower than the wide part and having the same axis as the wide part, and arranged between the wide part and the narrow part. It has a waveguide layer consisting of a width changing part in which the width of the wide part and the narrow part is continuously changed, and the relative refractive index difference between the wide part and the surrounding waveguide substrate is the narrow part. and its surrounding substrate, and the relative refractive index difference between the variable width portion and its surrounding waveguide substrate is from the relative refractive index difference in the wide portion to the relative refractive index difference in the narrow portion. The solution to the above problem was to change continuously.

また、本発明における請求項2に記載した発明の導波路
の製造方法では、導波路基板に、屈折率を高める物質を
一定の幅で拡散して拡散路を形成し、次にこの拡散路の
一方を拡幅しかつ他方を狭幅するとともに、これらの間
の幅が連続的に変化するよう上記導波路基板上に屈折率
を低める物質を付着せしめて付着層を形成し、かつ上記
拡散路にlσった屈折率を低める物質の非付着部分を仮
導波層とし、次いで上記付着層を、仮導波層の幅の広い
方が幅の狭い方より薄くなるよう調整し、その後上記付
着層を構成する物質を導波路基板中に拡散せしめ、仮導
波層に沿って導波層を形成することを上記課題の解決手
段とした。
In addition, in the method for manufacturing a waveguide according to the second aspect of the present invention, a diffusion path is formed by diffusing a substance that increases the refractive index into the waveguide substrate with a constant width, and then the diffusion path is One width is widened and the other is narrowed, and a substance that lowers the refractive index is deposited on the waveguide substrate so that the width between them changes continuously to form an adhesion layer, and the diffusion path is The part where the substance that lowers the refractive index lσ is not attached is used as a temporary waveguide layer, and then the above-mentioned attached layer is adjusted so that the wider side of the temporary waveguide layer is thinner than the narrower side, and then the above-mentioned attached layer is The solution to the above problem is to diffuse a material constituting the waveguide into a waveguide substrate and form a waveguide layer along the temporary waveguide layer.

さらに、本発明における請求項3に記載した光スィッチ
では、導波路基板上に一対の三次元導波層を形成し、こ
れら三次元導波層をそれぞれ両端となる直線部とこれら
直線部の間に配置されろ湾曲部とから構成し、これら湾
曲部に該湾曲部が互いに狭隙を介して隣合う隣合部を設
け、この隣合部に電圧を印加するための電極を該隣合部
近傍あるいは隣合部上に設け、上記三次元導波層をなす
直線部の湾曲部と反対側の端部をそれぞれ光ファイバ結
合部とする光スィッチにおいて、上記直線部とその周辺
を構成する導波路基板にそれぞれ請求項1に記載した導
波路を用い、かっ該導波路の幅広部側を光ファイバ結合
部とし、幅狭側を湾曲部側との結合部としたことを上記
課題の解決手段とした。
Furthermore, in the optical switch according to claim 3 of the present invention, a pair of three-dimensional waveguide layers are formed on the waveguide substrate, and these three-dimensional waveguide layers are arranged between the straight portions serving as both ends and the straight portions. These curved parts are provided with adjacent parts where the curved parts are adjacent to each other through a narrow gap, and an electrode for applying a voltage to the adjacent parts is provided in the adjacent parts. In an optical switch, which is provided in the vicinity or on an adjacent part, and in which the end opposite to the curved part of the straight part forming the three-dimensional waveguide layer serves as an optical fiber coupling part, A means for solving the above problems is to use the waveguides described in claim 1 in each waveguide substrate, and to use the wide part side of the waveguide as an optical fiber coupling part and the narrow width part as a coupling part with the curved part side. And so.

「実施例」 まず、本発明の請求項1に記載した導波路について説明
する。
"Example" First, the waveguide described in claim 1 of the present invention will be described.

第1図は本発明の導波路の一例を示すもめで、第1図中
符号lは導波路である。この導波路lは三次元導波路で
あって、導波路基板2と導波層3とからなるものである
。導波路基板2は、LiNbO3、L iT ao 3
、PLZT[PZT(チタン酸・ジルコン酸鉛固溶体P
bTiO3・PbZr03)のPbの一部をLaで置換
した透光性圧電材料)等の電気光学結晶や、あるいはガ
ラス(コーニング7059)、石英などの材料からなる
ものであって、後述するように導波層3の周辺部に屈折
率を低める物質を拡散してなるものである。ここで、屈
折率を低める物質としては、Mg、Na、A I、F等
の元素あるいはこれら元素を含む化合物が用いられる。
FIG. 1 shows an example of a waveguide according to the present invention, and reference numeral l in FIG. 1 indicates a waveguide. This waveguide l is a three-dimensional waveguide, and is composed of a waveguide substrate 2 and a waveguide layer 3. The waveguide substrate 2 is made of LiNbO3, LiTao3
, PLZT [PZT (lead titanate/lead zirconate solid solution P
It is made of an electro-optical crystal such as a translucent piezoelectric material in which part of the Pb in bTiO3/PbZr03) is replaced with La), or a material such as glass (Corning 7059) or quartz, and is made of a material such as a conductive material as described below. It is formed by diffusing a substance that lowers the refractive index in the periphery of the wave layer 3. Here, as the substance that lowers the refractive index, elements such as Mg, Na, AI, F, or compounds containing these elements are used.

導波層3は、導波路基板2に屈折率を高める物質が拡散
されて形成されたもので、一定の幅の幅広部4と、この
幅広部4より狭い幅で一定の幅を有する幅狭部5と、こ
れら幅広部4と幅狭部5との間に配置された幅変部6と
からなるものである。
The waveguide layer 3 is formed by diffusing a substance that increases the refractive index into the waveguide substrate 2, and includes a wide portion 4 having a constant width and a narrow portion having a constant width narrower than the wide portion 4. 5, and a width varying portion 6 disposed between the wide portion 4 and the narrow portion 5.

幅狭部5は幅広部4と同一の軸を存して形成されたしの
であり、幅変部6は幅広部4と幅狭部5との幅を連続的
に変化せしめるよう形成されたものである。ここで、屈
折率を高める物質としては、TiJ’e、Ta、Nb、
Ag等の元素あるいはこれら元素を含む化合物が用いら
れる。
The narrow width portion 5 is formed along the same axis as the wide width portion 4, and the width changing portion 6 is formed so as to continuously change the width of the wide width portion 4 and the narrow width portion 5. It is. Here, the substances that increase the refractive index include TiJ'e, Ta, Nb,
Elements such as Ag or compounds containing these elements are used.

また、導波路!においては、導波層3とその周辺の導波
路基板2との比屈折率差(Δ)が第1図に示すように導
波層3の各部によって異なっている。
Also, waveguides! In this case, the relative refractive index difference (Δ) between the waveguide layer 3 and the surrounding waveguide substrate 2 differs depending on each part of the waveguide layer 3, as shown in FIG.

すなわち、導波路lにおいて導波層3の幅広部4におけ
る比屈折率差は幅狭部5における比屈折率差より小さく
、かつ上記幅変部6における比屈折率差は上記の幅広部
における比屈折率差から幅狭部における比屈折率差まで
連続的に変化するものとなっている。
That is, in the waveguide l, the relative refractive index difference in the wide part 4 of the waveguide layer 3 is smaller than the relative refractive index difference in the narrow part 5, and the relative refractive index difference in the width changing part 6 is smaller than the relative refractive index difference in the wide part 5. The refractive index difference changes continuously from the refractive index difference to the relative refractive index difference at the narrow portion.

次に、請求項2に記載した製造方法に基づき、上記導波
路lの製造方法を説明する。
Next, a method for manufacturing the waveguide 1 will be described based on the manufacturing method according to claim 2.

まず、第2図に示すように導波路基板2に、上記した屈
折率を高める物質を一定の幅で拡散して拡散路7を形成
する。ここで、拡散路7の形成法としては、例えばTi
拡散導波路を作製する場合、導波路基板2上にTiをス
パッタして導波層パターンを形成した後、熱拡散するな
どの方法が採用される。
First, as shown in FIG. 2, a diffusion path 7 is formed in the waveguide substrate 2 by diffusing the above-described substance that increases the refractive index in a constant width. Here, as a method for forming the diffusion path 7, for example, Ti
When producing a diffusion waveguide, a method such as sputtering Ti onto the waveguide substrate 2 to form a waveguide layer pattern and then thermally diffusing it is employed.

次に、第3図および第4図に示すように、上記屈折率を
低める物質をスパッタリング等によって導波路基板2お
よび拡散路7上に付着せしめ、付着層8を形成するとと
もに、拡散路7に沿った屈折率を低める物質の非付着部
分を教導波層9とする。ここで付着層8の形成にあたっ
ては、第3図に示すように拡散路7の一方の幅が拡げら
れ、かつ他方の幅かを狭められるとともに、これらの間
の幅が連続的に変化するよう上記屈折率を低める物質が
付着せしめられる。すなわち、拡散路7の一方の側では
上記物質が拡散路7の外方の導波路基板2上にのみ付着
され、他方では導波路基板2上から拡散路7上のやや内
側にかけて付着され、またその間では付着層8の縁8a
が導波路基板2側から導波層内側に連続的に変化するよ
う付着されろ。
Next, as shown in FIGS. 3 and 4, the substance that lowers the refractive index is deposited on the waveguide substrate 2 and the diffusion path 7 by sputtering or the like to form an adhesion layer 8 and The portion along which the substance that lowers the refractive index is not attached is defined as the guiding wave layer 9. Here, in forming the adhesion layer 8, as shown in FIG. 3, one width of the diffusion path 7 is widened and the other width is narrowed, and the width between them is changed continuously. A substance that lowers the refractive index is deposited. That is, on one side of the diffusion path 7, the substance is deposited only on the waveguide substrate 2 outside the diffusion path 7, and on the other side, it is deposited from the top of the waveguide substrate 2 to slightly inside the diffusion path 7, and In between, the edge 8a of the adhesive layer 8
is attached so that it changes continuously from the waveguide substrate 2 side to the inside of the waveguide layer.

次いで、上記付着層8を、第5図に示すように教導波層
9の幅の広い方が幅の狭い方より薄く、かつこれらの間
の付着層8の厚さが連続的に変化するよう調整する。こ
の場合に付着層8の調整法としては、付着層8上の適宜
箇所にマスクを付け、変化をつけつつエツチングして教
導波路9の幅の広い方の側を削るなどの方法や、逆に屈
折率を低める物質を再度付着層8上の適宜箇所に付着し
、教導波路9の幅の狭い方の側を厚くするなどの方法が
採用される。
Next, as shown in FIG. 5, the adhesive layer 8 is formed so that the wider side of the guiding wave layer 9 is thinner than the narrower side, and the thickness of the adhesive layer 8 between them changes continuously. adjust. In this case, the adhesion layer 8 can be adjusted by attaching a mask to an appropriate location on the adhesion layer 8 and etching it while changing the etching to shave off the wide side of the teaching waveguide 9, or vice versa. A method may be adopted in which a substance that lowers the refractive index is re-attached to appropriate locations on the adhesion layer 8 and the narrower side of the teaching waveguide 9 is made thicker.

その後、導波路基板2全体を加熱し、上記付着層8を構
成する物質を導波路基板中に拡散せしめ、第1図に示す
ように教導波層9の幅の広い側を幅広部4、幅の狭い側
を幅狭部5、その間を幅変部6とする導波層3を得る。
Thereafter, the entire waveguide substrate 2 is heated to diffuse the substance constituting the adhesion layer 8 into the waveguide substrate, and as shown in FIG. A waveguide layer 3 is obtained in which the narrow side thereof is a narrow width portion 5 and the space therebetween is a width variation portion 6.

このようにして得られた導波路lにあっては、導波層3
の一方の断面が大きく、他方が小さいため、大きい方を
光ファイバとの結合部とすればその結合損失が少なくな
り、また小さい方を折曲した場合にその導波損失が少な
くなる。さらに、幅広部4における比屈折率差を幅狭部
5における比屈折率差より小さくし、かつ幅変部6にお
けろ比屈折率差を幅広部4における比屈折率差から幅狭
部5における比屈折率差にまで連続的に変化するように
したので、導波層3全長に亙ってほぼ規格化周波数が一
定になる。
In the waveguide l obtained in this way, the waveguide layer 3
Since one cross section is large and the other is small, if the larger one is used as a coupling part with an optical fiber, the coupling loss will be reduced, and if the smaller one is bent, the waveguide loss will be reduced. Further, the relative refractive index difference in the wide portion 4 is made smaller than the relative refractive index difference in the narrow portion 5, and the relative refractive index difference in the width changing portion 6 is changed from the relative refractive index difference in the wide portion 4 to the narrow portion 5. Since the relative refractive index difference is made to change continuously up to the relative refractive index difference, the normalized frequency becomes approximately constant over the entire length of the waveguide layer 3.

次に、このような導波路lの応用例として請求項3に記
載した光スィッチを説明する。
Next, an optical switch according to claim 3 will be explained as an application example of such a waveguide l.

第6図は本発明の請求項3に記載した光スイッチの一例
を示すもので、第6図中符号[0は光スイツチである。
FIG. 6 shows an example of an optical switch according to claim 3 of the present invention, and the reference numeral [0 in FIG. 6 indicates an optical switch.

この光スィッチ10は、YカットL + N bo 3
などからなる導波路基板ll上に一対の三次元導波層1
2、I2を形成し、かつ該三次元導波層12.12間に
電圧を印加するための電極13.13を設けたものであ
る。
This optical switch 10 has Y cut L + N bo 3
A pair of three-dimensional waveguide layers 1 are placed on a waveguide substrate ll consisting of
2. I2 is formed, and an electrode 13.13 is provided for applying a voltage between the three-dimensional waveguide layer 12.12.

三次元導波層I2.12は、それぞれ両端となる直線部
12a、12a・・とこれら直線部12a。
The three-dimensional waveguide layer I2.12 has straight portions 12a, 12a, . . . which serve as both ends, and these straight portions 12a.

12a・・の間に配置される湾曲部+2b、12bとか
らなっている。直線部12a、12a・およびその周辺
部は、上記の第1図に示した導波路Iと同様の構成から
なるもので、幅広部と幅変部と幅狭部とからなり、かつ
これら各部におけろ比屈折率差が幅広部から幅狭部にか
けて順次大きくなるよう形成されたものである。また、
これら直線部12a、12a・・は、導波路基板II上
においてその幅広部が外方に配置され、かつ幅狭部が内
方に配置されており、これによって幅広部が第6図ウニ
点鎖線で示す光ファイバ14・・との結合部となってい
る。湾曲部12b、12bは、上記幅狭部と同一の幅を
有し、かつ同一の比屈折率差を何するよう形成されたも
ので、互いに狭隙を介して隣合う隣合部15が設けられ
たものである。
It consists of curved parts +2b and 12b arranged between 12a... The straight parts 12a, 12a, and their surrounding parts have the same configuration as the waveguide I shown in FIG. It is formed so that the relative refractive index difference becomes larger from the wide part to the narrow part. Also,
These straight portions 12a, 12a... are arranged such that their wide portions are placed outward and their narrow portions are placed inward on the waveguide substrate II. It is a coupling part with the optical fiber 14 shown by . The curved portions 12b, 12b have the same width as the narrow portion and are formed to have the same relative refractive index difference, and the adjacent portions 15 that are adjacent to each other with a narrow gap are provided. It is something that was given.

電極13.13は、上記隣合部15の側方に配置された
もので、該電極13.13間に電圧を印加ずろことによ
り、電気光学効果によって隣合部15における屈折率を
変化せしめるためのらのである。
The electrode 13.13 is arranged on the side of the adjacent portion 15, and by applying a voltage between the electrodes 13.13, the refractive index in the adjacent portion 15 is changed by an electro-optical effect. It's Norano.

このような構成のもとに光スィッチIOは、電極13.
13間に電圧を印加することにより、方の三次元導波層
12から他方の三次元導波層12へ光信号を伝送するこ
とが可能となる。
Based on such a configuration, the optical switch IO has electrodes 13 .
By applying a voltage between the two three-dimensional waveguide layers 13, it becomes possible to transmit an optical signal from one three-dimensional waveguide layer 12 to the other three-dimensional waveguide layer 12.

このような光スィッチ10にあっては、光ファイバI4
との結合部における導波層断面を大きくしたので結合損
失が小さくなり、また導波層断面の小さい幅狭部の構成
で湾曲部12bを形成したので導波損失が小さくなり、
しかも三次元導波層12の全長に亙ってほぼ規格化周波
数が一定になる。
In such an optical switch 10, the optical fiber I4
Since the cross section of the waveguide layer at the coupling part with the waveguide layer is made large, the coupling loss is reduced, and the curved part 12b is formed with a narrow part having a small cross section of the waveguide layer, so the waveguide loss is reduced.
Furthermore, the normalized frequency is approximately constant over the entire length of the three-dimensional waveguide layer 12.

以下、本発明の具体例を示す。Specific examples of the present invention will be shown below.

(具体例1) 第1図に示した導波路lを作製した。(Specific example 1) A waveguide 1 shown in FIG. 1 was fabricated.

まず、第2図に示すようにYカットL iN bo 3
製の導波路基板2に、スパッタリングによりTiを6μ
肩の幅で蒸着し、さらに水蒸気中にて1060°Cで5
時間加熱して拡散せしめ、これにより幅6μ次、最大深
さ3μmの拡散路7を形成した。
First, as shown in Fig. 2, Y cut L iN bo 3
6 μm of Ti was deposited on the waveguide substrate 2 made by sputtering.
Deposited at shoulder width and further heated at 1060°C in water vapor for 5 minutes.
The mixture was heated for a period of time to cause diffusion, thereby forming a diffusion path 7 having a width of 6 μm and a maximum depth of 3 μm.

次に、第3図および第4図に示すように、スパッタリン
グによりMgOを導波路基板2および拡散路7上に厚さ
2μmとなるよう付着せしめて付着層8を形成した。こ
こで、付着層8の形成にあたっては、拡散路7に沿った
非付着部の第3図中d1で示す幅が8μx 、d、で示
す幅が5μ肩、その間の幅が第3図に示すように8μ次
から5μ旧こ連続的に変化するように形成した。
Next, as shown in FIGS. 3 and 4, MgO was deposited onto the waveguide substrate 2 and the diffusion path 7 to a thickness of 2 μm by sputtering to form an adhesion layer 8. Here, in forming the adhesion layer 8, the width of the non-adhesion part along the diffusion path 7 indicated by d1 in FIG. It was formed so as to change continuously from the 8μ order to the 5μ order.

次いで、非付着層の幅が8μ肩である付着層8上以外に
マスク層を形成し、Ar ドライエツチングを施して第
5図に示すようにマスク層を設けない箇所の付着層8の
厚さを0.5μmとし、さらにマスク層の位置を適宜移
動してAr ドライエツチングを施し、非付着層の幅が
連続的に変化する部分の周辺の付着層8の厚さを連続的
に変化させた。
Next, a mask layer is formed on the adhesive layer 8 other than on the adhesive layer 8 where the width of the non-adhesive layer is 8μ shoulder, and Ar dry etching is performed to reduce the thickness of the adhesive layer 8 in the area where the mask layer is not provided as shown in FIG. was set to 0.5 μm, and Ar dry etching was performed by appropriately moving the position of the mask layer to continuously change the thickness of the adhesion layer 8 around the part where the width of the non-adhesion layer changed continuously. .

その後、導波路基板2全体を950℃にて4時間加熱し
、MgOを導波路基板2中に拡散せしめ、第1図に示す
導波路lを得た。
Thereafter, the entire waveguide substrate 2 was heated at 950° C. for 4 hours to diffuse MgO into the waveguide substrate 2, thereby obtaining the waveguide 1 shown in FIG. 1.

得られた導波路lの各部での比屈折率差を調べたところ
、第1図中Aで示す箇所では0.1%、Bで示す箇所で
は0.12%、Cで示す箇所では0.14%、Dで示す
箇所では0.16%であった。
When the relative refractive index difference at each part of the obtained waveguide l was investigated, it was found to be 0.1% at the location indicated by A in FIG. 1, 0.12% at the location indicated by B, and 0.0% at the location indicated by C. 14%, and 0.16% at the location indicated by D.

(具体例2 ) 第6図に示す光スィッチIOを作製した。(Specific example 2) An optical switch IO shown in FIG. 6 was manufactured.

先の具体例1で作製したものと同様の構成で直線部12
a、12a・・を形成するとともに、該直線部12aS
 12a間の距Hd3を250μzとした。
The straight portion 12 is made with the same configuration as that produced in the previous specific example 1.
a, 12a..., and the straight portion 12aS
The distance Hd3 between 12a was set to 250 μz.

また、湾曲部+2b、12bを、第6図中R1で示すア
ールを30R1同じ<R,で示すアールを3ORとした
。さらに隣合部15における各導波層間の間隔をd4を
4μmとした。
Further, for the curved portions +2b and 12b, the radius indicated by R1 in FIG. 6 was set to 30R1, and the radius indicated by <R was set to 3OR. Further, the distance d4 between each waveguide layer in the adjacent portion 15 was set to 4 μm.

このような構成の光スィッチに光ファイバを接続して伝
送損失を調べたところ、結合損失が25dB、導波損失
が0.5dB、計3.OdBであった。また、比較例と
して、均一な幅を育し、かつ各箇所において均一な比屈
折率差を有した従来の導波路からなる光スィッチに光フ
ァイバを接続し、同様に伝送損失を調べたところ、結合
損失が40dB、導波損失が2dBであった。これらの
結果より、本発明の光スィッチは従来のものに比べて優
れた伝送性能を有することが確認された。
When we connected an optical fiber to an optical switch with this configuration and examined the transmission loss, we found that the coupling loss was 25 dB and the waveguide loss was 0.5 dB, totaling 3. It was OdB. In addition, as a comparative example, an optical fiber was connected to an optical switch consisting of a conventional waveguide with a uniform width and a uniform relative refractive index difference at each location, and the transmission loss was similarly investigated. The coupling loss was 40 dB and the waveguide loss was 2 dB. From these results, it was confirmed that the optical switch of the present invention has superior transmission performance compared to the conventional one.

「発明の効果」 以上説明したように、本発明における請求項1に記載し
た導波路は、導波層の一方の断面が大きく、他方が小さ
いため、大きい方を光ファイバとの結合部とすればその
結合損失が少なくなり、また小さい方を折曲した場合に
その導波損失が少なくなる。さらに、幅広部における比
屈折率差を幅狭部における比屈折率差より小さくし、か
っ幅変部における比屈折率差を幅広部における比屈折率
差から幅狭部における比屈折率差にまで連続的に変化す
るようにしたので、導波層全長に亙ってほぼ規格化周波
数が一定となり、光スィッチなどの各種光素子として育
効に利用されるものとなる。
"Effects of the Invention" As explained above, in the waveguide according to claim 1 of the present invention, one of the waveguide layers has a large cross section and the other is small, so the larger one is used as the coupling part with the optical fiber. If the smaller one is bent, the waveguide loss will be reduced. Furthermore, the relative refractive index difference in the wide part is made smaller than the relative refractive index difference in the narrow part, and the relative refractive index difference in the beveled width part is increased from the relative refractive index difference in the wide part to the relative refractive index difference in the narrow part. Since it is made to change continuously, the normalized frequency is almost constant over the entire length of the waveguide layer, and it can be used for various optical devices such as optical switches.

また、本発明における請求項2に記載した導波路の製造
方法によれば、上記請求項1に記載した導波路を容易に
製造することができる。
Moreover, according to the method for manufacturing a waveguide described in claim 2 of the present invention, the waveguide described in claim 1 can be easily manufactured.

さらに、本発明の請求項3に記載した光スィッチにあっ
ては、光ファイバとの結合部における導波層断面を大き
くしたことから結合損失が小さくなり、また導波層断面
の小さい幅狭部の構成で湾曲部を形成したことがら導波
損失が小さくなり、しかも三次元導波層の全長に亙って
ほぼ規格化周波数が一定となるものであるので、全体の
小型化が図れ、光IC等への応用が十分可能となる。
Furthermore, in the optical switch according to claim 3 of the present invention, since the cross section of the waveguide layer at the coupling portion with the optical fiber is increased, the coupling loss is reduced, and the narrow portion with a small cross section of the waveguide layer is Since the curved part is formed in this configuration, the waveguide loss is reduced, and the normalized frequency is almost constant over the entire length of the three-dimensional waveguide layer, so the overall size can be reduced and the optical Application to IC etc. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の請求項1に記載した導波路の概略構成
図、第2図ないし第5図は請求項2に記載した製造方法
を工程順に説明するための図であって、第2図は要部斜
視図、第3図は平面図、第4図は第3図の■−IV線矢
視図、第5図は第2図の■−V線矢視図、第6図は請求
項3に記載した光スイッチの概略構成図である。 l・・・・・・導波路、2・・・・・・導波路基板、3
・・・・・・導波層、4・・・・・・幅広部、5・・・
・・・幅狭部、6・・・幅変部、7・・・・・・拡散路
、8・・・・・・付着部、9・・・・教導波路、IO・
・・・・・光スィッチ、II・・・・・・導波路基板、
12・・・・・・三次元導波層、12a・・・・・直線
部、+2b・・・・・湾曲部、13・・・・・・電極、
14・・・・・・光ファイバ、15・・・・・・隣合部
FIG. 1 is a schematic configuration diagram of a waveguide according to claim 1 of the present invention, and FIGS. 2 to 5 are diagrams for explaining the manufacturing method according to claim 2 in order of steps. The figure is a perspective view of the main parts, Figure 3 is a plan view, Figure 4 is a view taken along the ■-IV line in Figure 3, Figure 5 is a view taken along the ■-V line in Figure 2, and Figure 6 is a view taken along the ■-V line in Figure 2. FIG. 3 is a schematic configuration diagram of an optical switch according to claim 3. l... Waveguide, 2... Waveguide substrate, 3
...Waveguide layer, 4...Wide part, 5...
...Narrow width part, 6...Width change part, 7...Diffusion path, 8...Adhesion part, 9...Teaching wave path, IO・
...Optical switch, II...Waveguide substrate,
12... Three-dimensional waveguide layer, 12a... Straight part, +2b... Curved part, 13... Electrode,
14... Optical fiber, 15... Adjacent part.

Claims (3)

【特許請求の範囲】[Claims] (1)一定の幅の幅広部と、この幅広部より狭い幅で一
定の幅を有しかつ上記幅広部と同一の軸を有する幅狭部
と、これら幅広部と幅狭部との間に配置されて幅広部と
幅狭部との幅を連続的に変化せしめる幅変部とからなる
導波層を有し、上記幅広部とその周辺導波路基板との比
屈折率差が上記幅狭部とその周辺基板との比屈折率差よ
り小さく、かつ上記幅変部とその周辺導波路基板との比
屈折率差が上記の幅広部における比屈折率差から幅狭部
における比屈折率差まで連続的に変化することを特徴と
する導波路。
(1) A wide part with a constant width, a narrow part having a constant width narrower than the wide part and having the same axis as the wide part, and a space between the wide part and the narrow part. It has a waveguide layer consisting of a width changing part that is arranged to continuously change the width of the wide part and the narrow part, and the relative refractive index difference between the wide part and the surrounding waveguide substrate is the same as the width of the narrow part. smaller than the relative refractive index difference between the variable width section and its surrounding substrate, and the relative refractive index difference between the variable width section and its surrounding waveguide substrate is greater than the relative refractive index difference in the wide section to the relative refractive index difference in the narrow section. A waveguide that is characterized by a continuous change in temperature.
(2)導波路基板に、屈折率を高める物質を一定の幅で
拡散して拡散路を形成し、次にこの拡散路の一方を拡幅
しかつ他方を狭幅するとともに、これらの間の幅が連続
的に変化するよう上記導波路基板上に屈折率を低める物
質を付着せしめて付着層を形成し、かつ上記拡散路に沿
った屈折率を低める物質の非付着部分を仮導波層とし、
次いで上記付着層を、仮導波層の幅の広い方が幅の狭い
方より薄くなるよう調整し、その後上記付着層を構成す
る物質を導波路基板中に拡散せしめ、仮導波層に沿って
導波層を形成することを特徴とする導波路の製造方法。
(2) A diffusion path is formed by diffusing a substance that increases the refractive index in a certain width on the waveguide substrate, and then one of the diffusion paths is widened and the other narrowed, and the width between them is A substance that lowers the refractive index is deposited on the waveguide substrate so that the refractive index changes continuously to form an adhesive layer, and a portion along the diffusion path where the substance that lowers the refractive index is not attached is used as a temporary waveguide layer. ,
Next, the adhesion layer is adjusted so that the wider side of the temporary waveguide layer is thinner than the narrower side of the temporary waveguide layer, and then the substance constituting the adhesion layer is diffused into the waveguide substrate and spread along the temporary waveguide layer. A method for manufacturing a waveguide, the method comprising forming a waveguide layer.
(3)導波路基板上に一対の三次元導波層を形成し、こ
れら三次元導波層をそれぞれ両端となる直線部とこれら
直線部の間に配置される湾曲部とから構成し、これら湾
曲部に該湾曲部が互いに狭隙を介して隣合う隣合部を設
け、この隣合部に電圧を印加するための電極を該隣合部
近傍あるいは隣合部上に設け、上記直線部の湾曲部と反
対側の端部をそれぞれ光ファイバ結合部とする光スイッ
チであって、 上記三次元導波層をなす直線部とその周辺を構成する導
波路基板にそれぞれ請求項1に記載した導波路を用い、
かつ該導波路の幅広部側を光ファイバ結合部とし、幅狭
側を湾曲部側との結合部としたことを特徴とする光スイ
ッチ。
(3) A pair of three-dimensional waveguide layers are formed on a waveguide substrate, and each of these three-dimensional waveguide layers is composed of a straight part serving as both ends and a curved part disposed between these straight parts, and The curved portion is provided with adjacent portions where the curved portions are adjacent to each other through a narrow gap, and an electrode for applying a voltage to the adjacent portion is provided near or on the adjacent portion, and the straight portion is provided with an electrode for applying a voltage to the adjacent portion. An optical switch having an end opposite to the curved part as an optical fiber coupling part, wherein the straight part forming the three-dimensional waveguide layer and the waveguide substrate forming the periphery of the straight part forming the three-dimensional waveguide layer are each provided with the waveguide substrate described in claim 1. Using a waveguide,
An optical switch characterized in that the wide side of the waveguide is an optical fiber coupling part, and the narrow side is a coupling part with a curved part.
JP63222937A 1988-09-06 1988-09-06 Waveguide and its manufacture, and optical switch Pending JPH0269702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222937A JPH0269702A (en) 1988-09-06 1988-09-06 Waveguide and its manufacture, and optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222937A JPH0269702A (en) 1988-09-06 1988-09-06 Waveguide and its manufacture, and optical switch

Publications (1)

Publication Number Publication Date
JPH0269702A true JPH0269702A (en) 1990-03-08

Family

ID=16790207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222937A Pending JPH0269702A (en) 1988-09-06 1988-09-06 Waveguide and its manufacture, and optical switch

Country Status (1)

Country Link
JP (1) JPH0269702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293605A (en) * 1988-09-30 1990-04-04 Hikari Gijutsu Kenkyu Kaihatsu Kk Production of waveguide
WO2003023500A1 (en) * 2001-09-05 2003-03-20 Ngk Insulators, Ltd. Optical device
JP2005070557A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Spot size converter and its manufacturing method
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293605A (en) * 1988-09-30 1990-04-04 Hikari Gijutsu Kenkyu Kaihatsu Kk Production of waveguide
WO2003023500A1 (en) * 2001-09-05 2003-03-20 Ngk Insulators, Ltd. Optical device
JP2005070557A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Spot size converter and its manufacturing method
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member

Similar Documents

Publication Publication Date Title
US6853760B2 (en) Optical functional device and optical integrated device
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
US7292739B2 (en) Optical modulator
US4711514A (en) Product of and process for forming tapered waveguides
US7664344B2 (en) Electro-optic modulator
US4136439A (en) Method for the production of a light conductor structure with interlying electrodes
JP2004077665A (en) Planar optical waveguide
JPH0269702A (en) Waveguide and its manufacture, and optical switch
US5185842A (en) Optical waveguide type wavelength filter
JP2848144B2 (en) Tunable optical filter
JPH05303022A (en) Single mode optical device
JPS6223847B2 (en)
JPH09258116A (en) Variable wavelength filter
JP2004054181A (en) Wavelength filter, variable wavelength filter, and optical element
JPH0293605A (en) Production of waveguide
JPS59176731A (en) Optical switch
JP2641238B2 (en) Polarizer
JPS5944607B2 (en) thin film optical switch array
JPH0667131A (en) Optical filter
JPH05119287A (en) Waveguige type optical device
JPH05313032A (en) Manufacture of optical waveguide
JPS63221306A (en) Light guide type optical control device
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same
JP3275888B2 (en) Optical waveguide device
JPH05165068A (en) Optical switch