JPH0269385A - Production of thin single crystal film - Google Patents

Production of thin single crystal film

Info

Publication number
JPH0269385A
JPH0269385A JP22064588A JP22064588A JPH0269385A JP H0269385 A JPH0269385 A JP H0269385A JP 22064588 A JP22064588 A JP 22064588A JP 22064588 A JP22064588 A JP 22064588A JP H0269385 A JPH0269385 A JP H0269385A
Authority
JP
Japan
Prior art keywords
single crystal
film
thin film
substrate
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22064588A
Other languages
Japanese (ja)
Inventor
Koichiro Otori
紘一郎 鳳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22064588A priority Critical patent/JPH0269385A/en
Publication of JPH0269385A publication Critical patent/JPH0269385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin single crystal film of a material useful for industry such as electronics on a substrate on which the direct growth of a single crystal is not possible by effective solid phase epitaxial growth in a vertical direction by using a specific method. CONSTITUTION:The following method is adopted in order to form the thin single crystal film of a desired material on the substrate on which the growth of the single crystal of this material is not possible: The thin amorphous film 3 of the above-mentioned material (e.g.: Si) is first formed on the surface of the above-mentioned substrate (e.g., a silicon single crystal 1 is used as a base and has the structure coated with a thermally oxidized SiO2 film 2 over the entire surface thereof), then a seed crystal face (e.g.; silicon single crystal) 4 is brought into tight contact with the surface of the thin amorphous film 3 and the substrate is heated 5 to about the temp. at which the two materials do not fuse to each other to epitaxially grow the above-mentioned material 3 which is amorphous to the single crystal. The single crystal film is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エレクトロニクス等の工業上に有用な物質の
単結晶薄膜を、直接には単結晶成長させることのできな
い基板上に形成する方法に閏するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a single crystal thin film of a substance useful in industries such as electronics on a substrate on which single crystal growth cannot be directly performed. It is something to leap into.

[従来の技術] このような技術は、特に近年、現在の二次元的な集積回
路の限界を打ち破る三次元集積回路の枢要な41成要素
であるS01(Semiconductor onIn
sulator、絶縁体上の半導体)構造を製作するの
に必須のものとなり、工業的に有効な手法の開発が強く
要請されている。以下、半導体としてシリコン(Si)
の単結晶薄膜を、絶縁体であるアモルファス二酸化シリ
コン(SiO2)の上に形成する場合を例にとフで説明
する。
[Prior Art] Such technology has been developed particularly in recent years by the S01 (Semiconductor on In
It has become essential for manufacturing sulator (semiconductor on insulator) structures, and there is a strong demand for the development of an industrially effective method. Below, silicon (Si) is used as a semiconductor.
A case in which a single crystal thin film is formed on amorphous silicon dioxide (SiO2), which is an insulator, will be explained below as an example.

5i02がアモルファスであるためもあって、その上に
気相反応などでSiを堆積させても、そのSiはアモル
ファスあるいは多結晶となるに過ぎない。
Partly because 5i02 is amorphous, even if Si is deposited thereon by a gas phase reaction, the Si will only become amorphous or polycrystalline.

このSl膜を単結晶化させるために従来試みられてきた
方法の一つはビーム溶融再結晶法である。これは第6図
に示すように、多結晶として堆積させたSl膜6にレー
ザーまたは電子ビーム7を当てて局部的に溶かしつつこ
のビームを掃引し、Siが再凝固する際に結晶粒が大き
くなることを期待する方法である。特に同図に示すよう
にsiU#結晶1を基底として用い、その上の5i02
膜2の一部に窓を開けておいて、多結晶Si膜6がこの
部分1aで基底のSi単結晶1に接触している構造にす
ると、ここを種結晶としてエピタキシャルに多結晶5i
liiの再結晶化が行なわれ、単結晶領域6bが得られ
る。しかしその場合でも、種結晶部1aから遠くへ掃引
するに従って結晶方位が徐々にずれるなどの欠陥が現わ
れるので、単結晶領域6bの寸法は掃引方向に100μ
m程度にしかならない。また、下層に熱損傷を与えない
ために堆積Si膜6だけを溶かすようにビーム出力と掃
引速度を制御する必要があるが、これには堆積5ill
i6の厚さだけでな(5i02膜2の厚さや下層の構造
も影響を与えるので、極めて複雑な制御が必要となり、
またスルーブツトにも制約が加わる。
One of the methods that have been tried in the past to make this Sl film into a single crystal is the beam melting recrystallization method. As shown in FIG. 6, this is achieved by applying a laser or electron beam 7 to the polycrystalline deposited Sl film 6, melting it locally, and sweeping the beam. When the Si resolidifies, the crystal grains become larger. This is a method of hoping that it will happen. In particular, as shown in the same figure, siU# crystal 1 is used as a base, and 5i02 on top of it is
If a window is opened in a part of the film 2 and a structure is created in which the polycrystalline Si film 6 is in contact with the base Si single crystal 1 at this part 1a, the polycrystalline 5i is epitaxially grown using this part as a seed crystal.
lii is recrystallized to obtain a single crystal region 6b. However, even in that case, defects such as a gradual shift in crystal orientation appear as the sweep is made farther from the seed crystal portion 1a, so the dimension of the single crystal region 6b is 100 μm in the sweep direction.
It will only be about m. In addition, it is necessary to control the beam output and sweep speed so as to melt only the deposited Si film 6 in order to prevent thermal damage to the underlying layer.
Not only the thickness of i6 (the thickness of 5i02 film 2 and the structure of the underlying layer also have an influence, so extremely complicated control is required.
There are also restrictions on the throughput.

もう一つの方法は横方向固相エピタキシャル成長法であ
る。これは第7図に示すように、単結晶Si基底1の上
の5i02膜2に窓を開けた構造の上にアモルファスS
i膜3を堆積させ、これを600℃程度に加熱して、S
iを溶融させることなく、窓部分から同相エピタキシャ
ル成長を開始させ、生じたSi単結晶領域3aをさらに
横方向にSiO□膜2上のSi膜部分にも伸ばす方法で
ある。しかしながら横方向固相成長の進行は例えば60
0℃では8時間かかって25μm程度と遅く、しかもこ
れ以上加熱すると多結晶核が発生するため単結晶領域は
伸ばせない。
Another method is lateral solid phase epitaxial growth. As shown in FIG.
Deposit the i film 3, heat it to about 600°C, and
This is a method in which in-phase epitaxial growth is started from the window portion without melting i, and the resulting Si single crystal region 3a is further extended laterally to the Si film portion on the SiO□ film 2. However, the progress of lateral solid phase growth is e.g.
At 0.degree. C., it takes 8 hours to reach a thickness of about 25 .mu.m, which is slow, and furthermore, if heated beyond this point, polycrystalline nuclei will be generated, so the single crystal region cannot be stretched.

さらに、種結晶を用いた方法が特公昭37−9875号
公報および昭和38年春の第1θ回応用物理学連合講演
会(予稿集p、238)に発表されている。その内容は
第8図に示すように、微小種結晶8を治具9上の半導体
層(薄膜または粉末成型) 10の一部のみに接触させ
ており、しかも電子ビーム等のビーム7を用いて半導体
層10を溶融・再凝固させつつこのビーム7を横方向に
掃引する方法をとっており、先に述べたビーム溶融再結
晶法に分類されるべきものである。従ってさきに述べた
同法の有する欠点をまぬがれることはできない。
Furthermore, a method using seed crystals was announced in Japanese Patent Publication No. 37-9875 and at the 10th Union of Applied Physics Lectures held in the spring of 1960 (Proceedings p. 238). As shown in Fig. 8, the micro seed crystal 8 is brought into contact with only a part of the semiconductor layer (thin film or powder molded) 10 on the jig 9, and a beam 7 such as an electron beam is used. This method involves sweeping the beam 7 in the lateral direction while melting and resolidifying the semiconductor layer 10, and should be classified as the beam melting recrystallization method described above. Therefore, it is impossible to avoid the drawbacks of this law mentioned earlier.

にまず物質のアモルファス薄膜を形成し、次にアモルフ
ァス薄膜の表面に種結晶面を密着させ両者が融着しない
程度の温度で加熱して、アモルファスであった物質をエ
ピタキシャルに単結晶化させ単結晶膜とすることを特徴
とする。
First, an amorphous thin film of the substance is formed, and then the seed crystal plane is brought into close contact with the surface of the amorphous thin film, and heated at a temperature that does not allow the two to fuse together.The amorphous substance is then epitaxially made into a single crystal. It is characterized by being a membrane.

[発明が解決しようとする課題] 従来の方法によつ・て得られる単結晶領域3aもしくは
6bの結晶面方位は基底結晶1の方位で決定され、これ
と異なる選択はできない、かつ、種結晶部分1aおよび
微小種結晶9はSOI構造としては利用できない。
[Problems to be Solved by the Invention] The crystal plane orientation of the single crystal region 3a or 6b obtained by the conventional method is determined by the orientation of the base crystal 1, and a selection different from this cannot be made. Portion 1a and minute seed crystal 9 cannot be used as an SOI structure.

本発明は、上記の従来法とは原理的に異なる手法を用い
て、従来法の欠点を解消させた新しい方法を提起するも
のである。
The present invention proposes a new method that eliminates the drawbacks of the conventional method by using a technique that is fundamentally different from the conventional method described above.

[課題を解決するための手段] このような目的を達成するために、本発明は、所望の物
質が単結晶では成長できない基板の上に物質の単結晶薄
膜を形成するために、基板の表面[作 用] 本発明は、上記の従来法の欠点を回避するために、種結
晶を基底側からでなくアモルファス薄膜の表面側から、
かつ局所でなく必要とする面積の全面にわたって同時に
供給する手段を講じている。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a method for forming a single crystal thin film of a substance on a substrate on which a desired substance cannot be grown as a single crystal. [Function] In order to avoid the drawbacks of the above-mentioned conventional method, the present invention introduces a seed crystal not from the base side but from the surface side of the amorphous thin film.
In addition, measures are taken to simultaneously supply it over the entire required area, rather than locally.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

具体的には、第1図に例示するように、加工しようとす
る試料とは別個のSiの単結晶面4をアモルファスSi
薄膜3の上側から、必要とする面積の全面を覆うように
その表面に密着させ、この結晶面を種として、融点には
達しない程度の加熱によりアモルファスSi薄@3の表
面から底部に向って縦方向固相エピタキシャル成長を進
行させるものである。加熱の熱エネルギー5は、第1図
(b)のように種結晶4の側から与えてもよいし、反対
に基底Si単結晶1の側から与えてもよい。またそのや
り方は、輻射によフてもよいし、ヒータを接触させて加
熱してもよい。
Specifically, as illustrated in FIG.
From the top of the thin film 3, it is brought into close contact with the surface so as to cover the entire required area, and using this crystal plane as a seed, the amorphous Si thin film is heated to an extent that does not reach its melting point from the surface to the bottom. This is to advance vertical solid-phase epitaxial growth. Thermal energy 5 for heating may be applied from the side of the seed crystal 4 as shown in FIG. 1(b), or on the contrary, may be applied from the side of the base Si single crystal 1. Further, this may be done by radiation or by contacting with a heater.

一例として、第1図(a) に示すようにSii結晶1
を基底としてその全面を厚さ1μmの熱酸化5in2膜
2で覆った構造を基板として用い、 500℃でモノシ
ランSiH4の熱分解により厚さ1μmのアモルファス
Si膜3をSin、の表面全面に堆積させた。次に図(
b)に示すように、その表面に別のSi単結晶4の(1
00)面を密着させて600℃で加熱したところ、アモ
ルファスSi膜3の単結晶4との界面に固相成長部分3
aが育ち、55分でアモルファスSi膜を表面から底部
まで完全に[1003方位で単結晶化させることができ
た。従って縦方向固相エピタキシャル成長の速度は60
0℃で3 x 10−’cm/秒と見積もられ、これは
Siの[100]方向についての既報の値(古用静二部
編著r S01構造形成技術」、産業図書1987.p
、107)と一致している。
As an example, as shown in Fig. 1(a), Sii crystal 1
A structure in which the entire surface was covered with a thermally oxidized 5in2 film 2 with a thickness of 1 μm was used as a substrate, and an amorphous Si film 3 with a thickness of 1 μm was deposited on the entire surface of the Si by thermal decomposition of monosilane SiH4 at 500°C. Ta. Next figure (
As shown in b), another Si single crystal 4 (1
00) When the surfaces were brought into close contact and heated at 600°C, a solid phase growth portion 3 was formed at the interface between the amorphous Si film 3 and the single crystal 4.
a was grown, and in 55 minutes the amorphous Si film could be completely single-crystalized from the surface to the bottom in the [1003 direction. Therefore, the rate of vertical solid-phase epitaxial growth is 60
It is estimated to be 3 x 10-'cm/sec at 0°C, which is the previously reported value for the [100] direction of Si (edited by Seiji Furuyo, "S01 Structure Formation Technology", Sangyo Tosho 1987.p.
, 107).

このようにして成長させた単結晶膜の表面に5in2膜
を設け、上述した工程を繰返して絶縁膜と単結晶膜とを
複数層積層することもできる。
It is also possible to provide a 5in2 film on the surface of the single crystal film grown in this manner and repeat the above steps to laminate a plurality of insulating films and single crystal films.

本方法では、種結晶面が試料表面とよく密着しているこ
とが必要であるが、この点は、バネ機構を備えた治具等
によって種結晶面を試料に圧着すれば、高温でSi結晶
の弾性定数が小さくなっていることも手伝って容易に達
成で鮒る。また試料表面がデバイス作製プロセス等を経
て段差をもっている場合には、集積回路プロセス技術で
常用される平坦化プロセスによってアモルファスSi膜
の表面が単一平面を成すように加工しておけばよい。
In this method, it is necessary that the seed crystal surface be in close contact with the sample surface, but this point can be solved by pressing the seed crystal surface onto the sample using a jig equipped with a spring mechanism, etc. This can be easily achieved thanks in part to the fact that the elastic constant is small. Further, if the sample surface has a step difference due to a device manufacturing process, etc., the surface of the amorphous Si film may be processed to form a single plane by a planarization process commonly used in integrated circuit process technology.

長時間の加熱中、あるいは加熱後の冷却期間中に種結晶
面と試料とを密着させたままで置いたのでは種結晶面と
試料とが固着してしまうおそれがある場合は、第2図に
示すように固相成長の初期においてのみ種結晶面4と試
料とを密着させておき(同図(a))、アモルファスS
i膜表面から固相成長がある程度内部へ進行した時点て
種結晶面4を雌して、以後試才4のみ加熱を継続する(
同図(b))方法をとっても、アモルファスS1膜3全
体を結晶化させるのに差し支えはない。
If the seed crystal surface and the sample are left in close contact with each other during long-term heating or during the cooling period after heating, if there is a risk that the seed crystal surface and the sample will stick together, please refer to Figure 2. As shown in FIG.
When the solid phase growth has progressed to some extent from the surface of the film, the seed crystal surface 4 is removed and heating is continued only for the sample 4 (
There is no problem in crystallizing the entire amorphous S1 film 3 even if the method shown in FIG. 3(b) is used.

また、本方法の実施にとってもう一つ重要なのは、試料
のアモルファスSi膜表面と種結晶面かともに清浄であ
ることであるが、この点を完全に行なうには、密着加熱
に先立フて両表面をアルゴン・イオンによるスパッタリ
ング等で清浄化しておく方法がある。あるいは第3図(
a)に示すように、Siを堆積させる装置に試料だけで
なく種結晶の基板となるSi単結晶板4をもヒータとと
もに装着しておき、両者を列した状態で同時にSi反応
ガス11にさらして、下地がアモルファス5i02であ
る試料上にはアモルファスSi 3を、また加熱されて
いる単結晶板4の表面にはエピタキシャル成長した単結
晶Si層4′を形成し、堆積終了と同時に雰囲気を超高
真空に切り変えて、図(b)に示すように直ちに両者を
密着させ、加熱するという方法をとってもよい。またこ
の両方を組み合わせた方法も有効である。
Another important point for implementing this method is that both the surface of the amorphous Si film of the sample and the seed crystal surface are clean. There is a method of cleaning the surface by sputtering or the like using argon ions. Or Figure 3 (
As shown in a), not only the sample but also the Si single-crystal plate 4, which will serve as a seed crystal substrate, is attached to the apparatus for depositing Si together with a heater, and both are placed in a line and exposed to the Si reaction gas 11 at the same time. Then, amorphous Si 3 is formed on the sample whose base is amorphous 5i02, and an epitaxially grown single-crystal Si layer 4' is formed on the surface of the heated single-crystal plate 4, and at the same time as the deposition is completed, the atmosphere is raised to an extremely high temperature. It is also possible to switch to vacuum, immediately bring the two into close contact with each other, and heat them as shown in Figure (b). A method that combines both is also effective.

本方法の特徴の一つは、種結晶面の面方位を任意に選ん
で、それと同じ面方位のSi単結晶膜を備えたSol構
造を作れること、すなわち、・SOT構造の基底部分を
なすSiの結晶面方位には拘束されず5i02上のSi
層を結晶化させるときは種結晶面に(100)面を用い
ることによって、この54層3aをNチャネルMO5ト
ランジスタに通した(100)面方位にする、もしくは
その逆の組合わせを実現して、それぞれの層に適したデ
バイスを配置する、といった事が可能である。あるいは
第4図(b) に示すように、基底Si単結晶1はPチ
ャネルMO5トランジスタに適した(110)面、上の
54層3aはNチャネルMO5トランジスタに適した(
100)面、もしくはその逆の組合わせとして、上下層
を使って0M05回路を構成することもできる。これら
は基底5i41i結晶を種結晶として用いているビーム
溶融再結晶法や横方向固相エピタキシャル成長法ではと
うていなし得ないところである。
One of the features of this method is that it is possible to arbitrarily select the plane orientation of the seed crystal plane and create a Sol structure with a Si single crystal film with the same plane orientation. Si on 5i02 is not constrained by the crystal plane orientation of
When crystallizing the layer, by using the (100) plane as the seed crystal plane, this 54 layer 3a can be made to have the (100) plane orientation passed through the N-channel MO5 transistor, or vice versa. , it is possible to arrange devices suitable for each layer. Alternatively, as shown in FIG. 4(b), the base Si single crystal 1 has a (110) plane suitable for a P-channel MO5 transistor, and the upper layer 3a has a (110) plane suitable for an N-channel MO5 transistor.
100) planes or vice versa, it is also possible to construct a 0M05 circuit using upper and lower layers. These problems cannot be achieved by the beam melting recrystallization method or the lateral solid phase epitaxial growth method using the base 5i41i crystal as a seed crystal.

次に本方法を、所要時間の点で従来法と比較してみる。Next, let's compare this method with the conventional method in terms of time required.

仮にlocmx 10cmの面積に厚さ1μmの一回の
掃引時間は2秒であるが、ビームの幅が20μm程度に
限定されるので、その面積全体を走査するには第5図(
a) に示すようにストライプに分けて5000回の掃
引が必要であり、総時間は170分を要する。
For example, the time required for one sweep of 1 μm thick in an area of locm x 10 cm is 2 seconds, but since the width of the beam is limited to about 20 μm, it would be necessary to scan the entire area as shown in Figure 5 (
As shown in a), 5000 sweeps are required divided into stripes, and the total time is 170 minutes.

横方向固相エピタキシャル法では、仮に種結晶部1aを
第5図(b)  に示すようにその面積の横幅いっばい
にとれたとすれば横方向成長は一回で済むが、その進行
速度は上記程度のSi膜厚の場合膜厚にはあまり依らな
いとはいえ、前述のごとくたかだか3μm/時であるの
で、10cmの距ユを進むには、30,000時間を要
する。試料面上復数個所に種結晶部を設ければ時間は短
縮できるが、異なる種結晶部から成長してきた結晶層が
ぶつかるところに多かれ少なかれ結晶粒界が生じる。ま
た上記両方法とも、種結晶部分1aの面積がSol構造
としては無駄になる。
In the lateral solid-phase epitaxial method, if the seed crystal portion 1a were to have the same width across its area as shown in Figure 5(b), lateral growth would be required only once, but the growth rate would be as low as the above-mentioned rate. Although it does not depend much on the Si film thickness, as mentioned above, the speed is at most 3 μm/hour, so it takes 30,000 hours to cover a distance of 10 cm. Although the time can be shortened by providing seed crystal portions at multiple locations on the sample surface, grain boundaries occur more or less where crystal layers grown from different seed crystal portions collide. Furthermore, in both of the above methods, the area of the seed crystal portion 1a is wasted as a Sol structure.

これに対し本方法では、第5図(C)に示すようにIQ
cmx 10cmの種結晶面4を密着させ・て加熱すれ
ば、前述のように55分で厚さ1μmのSi膜を全体に
わたって単結晶化できる。しかも面積が増大しても、そ
れに見合う種結晶面4さλ得られれば所要時間は変らな
い。かつ、前記従来法と違って全面を501構造となし
得、種結晶領域を設けるための無駄がない。
On the other hand, in this method, as shown in FIG. 5(C), the IQ
By heating the seed crystal planes 4 of cm x 10 cm in close contact with each other, the entire 1 μm thick Si film can be made into a single crystal in 55 minutes as described above. Moreover, even if the area increases, the required time will not change as long as the seed crystal surface 4 λ corresponding to the increase in area can be obtained. Moreover, unlike the conventional method, the entire surface can be formed into a 501 structure, and there is no waste in providing a seed crystal region.

[発明の効果] 以上述べてきたように、本発明はここに例示したSol
構造の作製に適用するときは、従来法のなし得ない高効
率で、かつ基底の半導体と結晶方位の異なフた単結晶層
が得られるといった自由度の多い構造の形成を実現させ
るものである。さらに、例示したSin、上のSiの場
合に限らず、任意の半導体を組合わせ、また複数の層数
を持たせたSol積層構造、あるいは半導体同士のへテ
ロ接合構造、さらには金属、半導体、絶縁体を任意に組
合わせた積層構造の形成に広く通用可能であり、工業上
重要な価値を有するものである。
[Effects of the Invention] As described above, the present invention provides the Sol
When applied to the fabrication of structures, it enables the formation of structures with a high degree of freedom that is not possible using conventional methods, and allows the formation of single-crystal layers with different crystal orientations from the underlying semiconductor. . Furthermore, it is not limited to the case of the exemplified Sin and the above Si, but also a combination of arbitrary semiconductors, a Sol stacked structure with a plurality of layers, a heterojunction structure between semiconductors, and furthermore, metals, semiconductors, It can be widely used to form laminated structures made of arbitrary combinations of insulators, and has important industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示すプロセス概念図、第2図お
よび第3図は本発明の他の実施法を示す概念図、 第4図は末法によって作製されるsor構造の例を示す
図、 第5図はスループットに着目して末法と従来法を比較し
た図、 第6図は従来のビーム溶融再結晶法の概念図、第7図は
従来法の横方向固相エピタキシャル成長法の概念図、 第8図は種結晶の接触を用いる従来の提案を示す図であ
る。 l・・・基底を成すシリコン単結晶、 2・・・シリコン酸化膜、 3・・・アモルファス・シリコン膜、 3a・・・同相エピタキシャル成長した部分、4・・・
大面積の種結晶、 5・・・加熱のための熱エネルギー 6・・・多結晶シリコン膜、 6a、6b・・・その溶融部分と再結晶部分、7・・・
レーザーまたは電子ビーム、 8・・・微小種結晶、 9・・・治具、 lO・・・多結晶半導体層、 11・・・シリコン膜を堆積させる反応ガス。 第1図 第3図 第4図
FIG. 1 is a conceptual process diagram showing the method of the present invention, FIGS. 2 and 3 are conceptual diagrams showing other implementation methods of the present invention, and FIG. 4 is a diagram showing an example of a SOR structure produced by the final method. , Figure 5 is a diagram comparing the final method and the conventional method focusing on throughput, Figure 6 is a conceptual diagram of the conventional beam melting recrystallization method, and Figure 7 is a conceptual diagram of the conventional lateral solid phase epitaxial growth method. , FIG. 8 is a diagram showing a conventional proposal using seed crystal contact. l...Silicon single crystal forming the base, 2...Silicon oxide film, 3...Amorphous silicon film, 3a...In-phase epitaxially grown part, 4...
Large-area seed crystal, 5... Thermal energy for heating 6... Polycrystalline silicon film, 6a, 6b... Melted portion and recrystallized portion thereof, 7...
Laser or electron beam, 8... Microscopic seed crystal, 9... Jig, lO... Polycrystalline semiconductor layer, 11... Reactive gas for depositing a silicon film. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)所望の物質が単結晶では成長できない基板の上に該
物質の単結晶薄膜を形成するために、前記基板の表面に
まず該物質のアモルファス薄膜を形成し、次に該アモル
ファス薄膜の表面に種結晶面を密着させ両者が融着しな
い程度の温度で加熱して、アモルファスであった該物質
をエピタキシャルに単結晶化させ単結晶膜とすることを
特徴とする単結晶薄膜の製造方法。 2)前記種結晶面は前記所望の物質と同一の物質から成
り、該物質のアモルファス膜を堆積させて作成すると同
一の装置内で、別に設けた単結晶基板上にエピタキシャ
ル成長させて得られたものを用いることを特徴とする請
求項1に記載の単結晶薄膜の製造方法。 3)前記種結晶面は加熱中の一部時間のみアモルファス
薄膜の表面に密着させられており、該種結晶面を離した
状態でアモルファス薄膜の加熱が継続されることを特徴
とする請求項1に記載の単結晶薄膜の製造方法。 4)前記基板は、最下層の基底として半導体単結晶を用
い、その表面を絶縁膜で覆ったものであり、該絶縁膜の
表面に前記基底の半導体とは異なる種類の半導体の単結
晶膜を形成する工程と、該単結晶膜上に絶縁膜を形成す
る工程とを繰り返して、絶縁膜をはさんで2種類以上の
半導体単結晶薄膜を所望の層数積層することを特徴とす
る請求項1に記載の単結晶薄膜の製造方法。 5)前記基板は、基底をなす半導体単結晶の表面を絶縁
膜で覆ったものであり、該絶縁膜の表面に前記基底の半
導体単結晶の結晶方位とは異なる結晶方位の半導体単結
晶膜を形成することを特徴とする請求項1に記載の単結
晶薄膜の製造方法。
[Claims] 1) In order to form a single crystal thin film of a desired substance on a substrate on which the substance cannot be grown as a single crystal, an amorphous thin film of the substance is first formed on the surface of the substrate, and then an amorphous thin film of the substance is formed on the surface of the substrate. A single crystal characterized in that the seed crystal plane is brought into close contact with the surface of the amorphous thin film and heated at a temperature that does not allow the two to fuse, thereby epitaxially crystallizing the amorphous substance into a single crystal film. Method for manufacturing thin films. 2) The seed crystal surface is made of the same material as the desired material, and is obtained by depositing an amorphous film of the material and epitaxially growing it on a separate single crystal substrate in the same device. 2. The method for producing a single crystal thin film according to claim 1, wherein the method uses: 3) The seed crystal plane is brought into close contact with the surface of the amorphous thin film for only a part of the time during heating, and the heating of the amorphous thin film is continued with the seed crystal plane separated. The method for producing a single crystal thin film described in . 4) The substrate uses a semiconductor single crystal as the base of the lowermost layer, and the surface thereof is covered with an insulating film, and a single crystal film of a semiconductor of a type different from the semiconductor of the base is formed on the surface of the insulating film. A claim characterized in that a desired number of layers of two or more types of semiconductor single crystal thin films are stacked with the insulating film in between by repeating the steps of forming the single crystal film and forming the insulating film on the single crystal film. 1. The method for producing a single crystal thin film according to 1. 5) The substrate has a surface of a semiconductor single crystal forming a base covered with an insulating film, and a semiconductor single crystal film having a crystal orientation different from that of the base semiconductor single crystal on the surface of the insulating film. 2. The method of manufacturing a single crystal thin film according to claim 1, further comprising: forming a single crystal thin film.
JP22064588A 1988-09-02 1988-09-02 Production of thin single crystal film Pending JPH0269385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22064588A JPH0269385A (en) 1988-09-02 1988-09-02 Production of thin single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22064588A JPH0269385A (en) 1988-09-02 1988-09-02 Production of thin single crystal film

Publications (1)

Publication Number Publication Date
JPH0269385A true JPH0269385A (en) 1990-03-08

Family

ID=16754215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22064588A Pending JPH0269385A (en) 1988-09-02 1988-09-02 Production of thin single crystal film

Country Status (1)

Country Link
JP (1) JPH0269385A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227982A (en) * 1985-04-01 1986-10-11 Ricoh Co Ltd Process for forming single crystal thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227982A (en) * 1985-04-01 1986-10-11 Ricoh Co Ltd Process for forming single crystal thin film

Similar Documents

Publication Publication Date Title
FR2517123A1 (en) METHOD FOR FORMING A SINGLE-CRYSTAL SEMICONDUCTOR FILM ON AN INSULATOR
JPH0297485A (en) Epitaxial growth method of two-dimensional material onto three-dimensional material
US4576676A (en) Thick crystalline films on foreign substrates
JPS5918196A (en) Preparation of thin film of single crystal
JPH0269385A (en) Production of thin single crystal film
JPH0680624B2 (en) Method for manufacturing bonded wafer
JPH04298020A (en) Manufacture of silicon thin film crystal
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
JP2737152B2 (en) SOI forming method
JPS58212123A (en) Manufacture of single crystal thin film
JPH0722315A (en) Method for manufacturing semiconductor film
JP2692138B2 (en) Manufacturing method of single crystal thin film
JPS61179523A (en) Formation of single crystal thin film
JPS5860697A (en) Forming method of silicon single crystal film
JP2532252B2 (en) Method for manufacturing SOI substrate
JP3664368B2 (en) Method for forming InSb film and method for manufacturing Hall element using InSb film
JPS61201414A (en) Manufacture of semiconductor single crystal layer
JPH029127A (en) Forming method for soi substrate
JPH03228324A (en) Growth of thin polycrystalline si film
JPS61203630A (en) Structure of material
JPS61270294A (en) Method for forming si single crystal film
JPH01132117A (en) Crystal growth method
JPH03293720A (en) Manufacture of crystalline semiconductor thin film
JPS6236381B2 (en)
JPH01320291A (en) Production of single crystal thin film