JPH0268966A - Field effect type semiconductor - Google Patents

Field effect type semiconductor

Info

Publication number
JPH0268966A
JPH0268966A JP63221169A JP22116988A JPH0268966A JP H0268966 A JPH0268966 A JP H0268966A JP 63221169 A JP63221169 A JP 63221169A JP 22116988 A JP22116988 A JP 22116988A JP H0268966 A JPH0268966 A JP H0268966A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
semiconductor
semiconductor area
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63221169A
Other languages
Japanese (ja)
Other versions
JPH0783121B2 (en
Inventor
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63221169A priority Critical patent/JPH0783121B2/en
Publication of JPH0268966A publication Critical patent/JPH0268966A/en
Publication of JPH0783121B2 publication Critical patent/JPH0783121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Abstract

PURPOSE:To improve amount of breakdown resistance and a device which is hard to damage due to overload by providing a buffer layer which is formed between the bottom surface of a third semiconductor area and a second semiconductor area and reduces injection efficiency of a carrier between second and third semiconductor areas. CONSTITUTION:It has a first conductive type first semiconductor area 1, a second conductive type second semiconductor area 2 formed within the surface of the first semiconductor area 1, a first conductive type third semiconductor area 3 formed within the surface of the second semiconductor area 2, a buffer layer 10 which is formed between the bottom surface of the third semiconductor area 3 and the second semiconductor area 2 and reduces injection efficiency of a carrier between the second and third semiconductor areas 2 and 3, a gate insullation film 5 which is formed on the surface of the second semiconductor area 2 between the first semiconductor area 1 and the third semiconductor area 3, a gate electrode 6 formed on the gate insulation film 5, and an electrode 7 formed on the surface of the third semiconductor are 3 and on the surface of the second semiconductor area 2. For example, the above buffer layer 10 is the oxidation layer 10.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、電界効果を半導体装置に関するものであり
、特にその破壊耐量向上のための改良構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a field effect semiconductor device, and particularly to an improved structure for improving its breakdown resistance.

〔従来の技術] 第5図は従来のnチャネル形パワーMO8FETの多角
形に形成された複数の基本MOSユニットセルの表面を
示した平面図である。また第6図は第5図に示すI−I
線部の断面図である。
[Prior Art] FIG. 5 is a plan view showing the surface of a plurality of basic MOS unit cells formed in a polygonal shape of a conventional n-channel power MO8FET. In addition, Fig. 6 shows the I-I shown in Fig. 5.
It is a sectional view of a line part.

第6図においてn 形ドレイン領域1aの上にn−形ド
レイン領域1bが形成される。n−形ドレイン領域1b
の表面内に複数のp形半導体領域2が分離して選択的に
形成される。p形半導体領域2は、第5図に示す表面に
おいて一般に多角形状となっており、ここでは四角形状
となっている。
In FIG. 6, an n-type drain region 1b is formed on the n-type drain region 1a. n-type drain region 1b
A plurality of p-type semiconductor regions 2 are selectively formed separately within the surface of the semiconductor device. The p-type semiconductor region 2 generally has a polygonal shape on the surface shown in FIG. 5, and here it has a rectangular shape.

p形半導体領域2の表面内にその周囲に沿いかつ、n−
形ドレイン領域1bとほぼ一定の間隔をおいて選択的に
、n+形ソース領域3が環状に形成される。この環状の
n+形ソース領域3とn−形ドレイン領[1bの間のp
形半導体Jfj!2の表面付近をチャネル形成領域4と
する。また、ゲート絶縁膜5が各ブロック共通にチャネ
ル形成領域4上に形成される。その上にゲート電極6が
形成される。さらにソース電極7が、ρ形半導体領域2
の中央部表面とn+形ソース領域3の一部表面を短絡接
続するように、各ブロック共通して形成される。ゲート
電極6とソース電極7は層間絶縁膜8によって絶縁分離
される。またドレイン電極9がn+形トドレイン領域1
a裏面に形成される。
In the surface of the p-type semiconductor region 2 and along its periphery, an n-
An n+ type source region 3 is selectively formed in an annular shape at substantially constant intervals from the type drain region 1b. This annular n+ type source region 3 and n- type drain region [p between 1b
Shaped semiconductor Jfj! The vicinity of the surface of 2 is defined as a channel forming region 4. Further, a gate insulating film 5 is formed on the channel forming region 4 in common for each block. A gate electrode 6 is formed thereon. Furthermore, the source electrode 7 is connected to the ρ-type semiconductor region 2
It is formed in common in each block so that the central surface of the n+ type source region 3 and a part of the surface of the n+ type source region 3 are short-circuited. Gate electrode 6 and source electrode 7 are insulated and separated by interlayer insulating film 8 . In addition, the drain electrode 9 is an n+ type drain region 1.
a Formed on the back side.

次に動作について説明する。第5図に示す従来のパワー
MO8FETにおいて、ドレイン電極9とソース電極7
との間にドレイン電圧V。8を印加する。またゲート電
極6とソース電極7との間にゲート電圧vGSを印加す
ると、チャネル形成領域4にチャネルが形成され、この
チャネルを通じてドレイン電極9とソース電極7との間
にドレイン電流1 が流れ出す。このドレイン電流I。
Next, the operation will be explained. In the conventional power MO8FET shown in FIG.
and the drain voltage V. Apply 8. Further, when a gate voltage vGS is applied between the gate electrode 6 and the source electrode 7, a channel is formed in the channel forming region 4, and a drain current 1 flows between the drain electrode 9 and the source electrode 7 through this channel. This drain current I.

はゲ−ト電圧vGSによって制御される。なお、p形半
導体領域2の中央部表面とn+形ソース領域3の一部表
面とをソース電極7により短絡接続することによりチャ
ネル形成領域4の電位を定めている。
is controlled by the gate voltage vGS. Note that the potential of the channel forming region 4 is determined by short-circuiting the central surface of the p-type semiconductor region 2 and a partial surface of the n+-type source region 3 through a source electrode 7.

次にこのパワーMO3FETの破壊モードについて説明
する。第7図は第6図に示す複数個の基本MOSユニッ
トセルを相互に隣接配置して構成したパワーMO8FE
Tの出力特性を示したグラフである。横軸はドレイン電
圧V。8、縦軸はドレイン電流19、パラメーターはゲ
ート電圧■。、である。トレイン電圧V が降伏電圧V
。に達するS と、ドレイン電流I。が急激に増加しパワーMO8FE
Tu陣伏状態になる。パワーMO3FETに降伏電流J
。が流れると、この装置は瞬時に破壊する傾向を持つ。
Next, the destruction mode of this power MO3FET will be explained. Figure 7 shows a power MO8FE constructed by arranging a plurality of basic MOS unit cells shown in Figure 6 adjacent to each other.
It is a graph showing the output characteristics of T. The horizontal axis is the drain voltage V. 8. The vertical axis is the drain current 19, and the parameter is the gate voltage ■. , is. The train voltage V is the breakdown voltage V
. S reaches S and the drain current I. increases rapidly and the power MO8FE
Tu enters into camp. Breakdown current J in power MO3FET
. When exposed to water, this device has a tendency to destroy instantly.

第8図(a)、(b)は、基本MOSユニットセル部分
の概要構成の断面図およびその等何回路を示す接続図で
ある。第8図(a)に示すように、p形半導体領域2内
には、各n+形ソース領域3の深さ方向に沿った内部抵
抗R1および、各n+形ソース領域3の底面に沿った内
部抵抗R3が存在する。
FIGS. 8(a) and 8(b) are a cross-sectional view of a schematic configuration of a basic MOS unit cell portion and a connection diagram showing several circuits thereof. As shown in FIG. 8(a), in the p-type semiconductor region 2, there is an internal resistance R1 along the depth direction of each n+ type source region 3, and an internal resistance R1 along the bottom surface of each n+ type source region 3. A resistor R3 is present.

これらは第8図(b)に示すように、p形半導体領1j
12内において、n+形ソース領域3の深さ方向に沿っ
た合成内部抵抗R2および、それぞれのn+形ソース領
域3の底面に沿った内部抵抗R3として表される。この
内部抵抗R8は、n−形ソース領域1b、p形半導体領
[2およびn 形ソース領[3から成る奇生トランジス
タT、のベース抵抗となる。またn 形ドレイン領11
bとp形半導体領域2とでダイオードDを形成している
As shown in FIG. 8(b), these are p-type semiconductor regions 1j
12, it is expressed as a composite internal resistance R2 along the depth direction of the n+ type source region 3 and an internal resistance R3 along the bottom surface of each n+ type source region 3. This internal resistance R8 becomes the base resistance of the strange transistor T consisting of the n-type source region 1b, the p-type semiconductor region [2, and the n-type source region [3]. Also, n-type drain region 11
b and the p-type semiconductor region 2 form a diode D.

ソース電極7とドレイン電極9間に印加されているドレ
イン電圧VD8を増加させていき、n 形ドレイン領域
1bとp形半導体領域2とで形成されているダイオード
Dの降伏電圧に達すると、第8図(a)に矢印で示すよ
うに降伏電流がJ。流れる。降伏電流J。がn+形ソー
ス領域3の底面に流れ込むと、寄生トランジスタT、の
ベース電位が上昇する。この寄生トランジスタT が導
通と「 なる条件は、ベース、エミッタ間の電位差が0.6■よ
り大きくなることであるから次式(1)で与えられる。
The drain voltage VD8 applied between the source electrode 7 and the drain electrode 9 is increased, and when it reaches the breakdown voltage of the diode D formed by the n-type drain region 1b and the p-type semiconductor region 2, the drain voltage VD8 applied between the source electrode 7 and the drain electrode 9 is increased. As shown by the arrow in figure (a), the breakdown current is J. flows. Breakdown current J. flows into the bottom surface of the n+ type source region 3, the base potential of the parasitic transistor T increases. The condition for this parasitic transistor T to be conductive is that the potential difference between the base and emitter is greater than 0.6 .

JoXRa>  0.6  (V)       −・
・(1)なお、n+形ソース領域3の深さ方向に沿って
存在する合成内部抵抗R2は内部抵抗Raに比べて充分
小さいので、無視できるものとする。奇生トランジスタ
T、に、式(1)を満足するような降伏電流J。が流れ
込むと、寄生トランジスタT、が導通状態となる。
JoXRa> 0.6 (V) −・
(1) Note that the composite internal resistance R2 existing along the depth direction of the n+ type source region 3 is sufficiently smaller than the internal resistance Ra, and therefore can be ignored. A breakdown current J that satisfies Equation (1) in the strange transistor T. When the current flows in, the parasitic transistor T becomes conductive.

この時、寄生トランジスタT、に流れるコレクタ電流は
、ベース電流と寄生トランジスタT の直流電流増幅率
hFEの積となる。通常、直流電流増幅率”FEは非常
に大きい値であり、寄生トランジスタTrに流れるコレ
クタ電流は大電流となる。
At this time, the collector current flowing through the parasitic transistor T is the product of the base current and the DC current amplification factor hFE of the parasitic transistor T. Normally, the DC current amplification factor "FE" is a very large value, and the collector current flowing through the parasitic transistor Tr becomes a large current.

そのため短時間のうちに大電流が流れ、パワーMO3F
ETが破壊されてしまう。
Therefore, a large current flows in a short time, and the power MO3F
ET is destroyed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のパワーMO8FETなどの電界効果型半導体装置
は以上のように構成されているので、破壊耐量が小さく
、過負荷がかかると瞬時に破壊する傾向があった。
Since conventional field effect semiconductor devices such as power MO8FETs are configured as described above, they have a low breakdown resistance and tend to break down instantaneously when overload is applied.

この発明は上記のような問題点を解消するためになされ
たもので破壊耐量を向上し、過負荷ががかつても破壊し
にくい電界効果型半導体装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to improve the breakdown strength and to obtain a field effect semiconductor device which is less likely to be destroyed by overload.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電界効果型半導体装置は、第1導電型の
第1の半導体領域と、前記第1の半導体領域の表面内に
形成された第2導電型の第2の半導体領域と、前記第2
の半導体領域の表面内に形成された第1導電型の第3の
半導体領域と、前記第3の半導体領域の底面と前記第2
の半導体領域との間に形成され、前記第2および第3の
半導体領域間のキャリアの注入効率を低下させる緩衝層
と、前記第1の半導体領域と前記第3の半導体領域間の
前記第2の半導体領域表面上に形成されたゲート絶縁膜
と、前記ゲート絶縁膜上に形成されたゲート電極と、前
記第3の半導体領域の表面上および前記第2の半導体領
域の表面上に形成された電極とを備えたものである。
A field effect semiconductor device according to the present invention includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type formed within a surface of the first semiconductor region, and a second semiconductor region of a second conductivity type formed within a surface of the first semiconductor region. 2
a third semiconductor region of the first conductivity type formed within the surface of the semiconductor region; a bottom surface of the third semiconductor region and the second semiconductor region;
a buffer layer formed between the first semiconductor region and the third semiconductor region to reduce carrier injection efficiency between the second and third semiconductor regions; a gate insulating film formed on the surface of the semiconductor region; a gate electrode formed on the gate insulating film; and a gate electrode formed on the surface of the third semiconductor region and the surface of the second semiconductor region. It is equipped with an electrode.

(作用〕 この発明における緩衝層は、第3の半導体領域の底面と
第2の半導体領域との間に形成されているので、第2の
半導体¥A域と第3の半導体領域間のキャリアの注入効
率が低下する。
(Function) Since the buffer layer in this invention is formed between the bottom surface of the third semiconductor region and the second semiconductor region, carriers between the second semiconductor \A area and the third semiconductor region are Injection efficiency decreases.

(実施例) 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるnチャネル形パワーMO
8FETの基本MOSユニットセルの断面図である。n
 形ソース領域3の底面とp形半導体領域2との間に酸
化層10が形成されている。この酸化層10は、p形半
導体領域2とn+形ソース領域3との間のキャリアの注
入効率を低下させるためのものである。なお酸化層10
はチャネル形成領域4とは離れて形成されているので、
nチャネル形パワーMO8FETの本来の動作には影響
を与えない。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows an n-channel power MO according to an embodiment of the present invention.
It is a sectional view of a basic MOS unit cell of 8FET. n
An oxide layer 10 is formed between the bottom surface of the type source region 3 and the p-type semiconductor region 2. This oxide layer 10 is for reducing carrier injection efficiency between the p-type semiconductor region 2 and the n + -type source region 3. Note that the oxide layer 10
is formed apart from the channel forming region 4, so
This does not affect the original operation of the n-channel power MO8FET.

その他の構成は、前述した従来の複数個の基本MOSユ
ニットセルを相互に隣接配置して構成したパワーMO8
FETと同様である。またその動作も従来と同様である
The other configuration is a power MO8 constructed by arranging a plurality of conventional basic MOS unit cells adjacent to each other.
It is similar to FET. Moreover, its operation is also the same as the conventional one.

次に製造方法について説明する。第2図(a)〜(h)
はこの発明の一実施例によるnチャネル形パワーMO8
FETの製造方法の一例を示す工程断面図である。
Next, the manufacturing method will be explained. Figure 2 (a) to (h)
is an n-channel type power MO8 according to an embodiment of the present invention.
FIG. 3 is a process cross-sectional view showing an example of a method for manufacturing an FET.

第2図(a)において、n+形トドレイン領域1an 
形ドレイン領域1bおよびゲート絶縁膜5を順次積層す
る。n+形トドレイン領域1aよびn−形ドレイン領域
1bは、n+形シリコン基板上にn 形エピタキシャル
層が形成されたエピタキシャル基板を用いてもよい。第
2図(b)において、ポリシリコンなどから成るゲート
電極6を積層しレジスト11のパターンに応じてエツチ
ングを行う。第2図(C)において、p形不純物のイオ
ン注入を行い、レジスト11除去後拡散を施し、p形半
導体領域2を形成する。
In FIG. 2(a), the n+ type drain region 1an
A shaped drain region 1b and a gate insulating film 5 are sequentially laminated. For the n+ type drain region 1a and the n- type drain region 1b, an epitaxial substrate in which an n type epitaxial layer is formed on an n+ type silicon substrate may be used. In FIG. 2(b), a gate electrode 6 made of polysilicon or the like is laminated and etched according to the pattern of the resist 11. As shown in FIG. In FIG. 2C, p-type impurity ions are implanted, and after removing the resist 11, diffusion is performed to form a p-type semiconductor region 2.

第2図(d)において、全面にレジスト12を塗布し、
ゲート電極6上およびp形半導体領域2中央部上のゲー
ト絶縁膜5上にレジスト12が残るようにバターニング
する。そのパターンに応じて、p形半導体領域2上のゲ
ート絶縁膜5をエツチングで除去する。
In FIG. 2(d), resist 12 is applied to the entire surface,
Patterning is performed so that the resist 12 remains on the gate electrode 6 and the gate insulating film 5 on the central portion of the p-type semiconductor region 2. Gate insulating film 5 on p-type semiconductor region 2 is removed by etching according to the pattern.

第2図(e)において、開口部に酸素イオン13を充分
な深さにまで達するように高エネルギーでイオン注入す
る。さらにその上からn形不純物イオン14を、同一パ
ターンの開口部に対してイオン注入する。この時の注入
エネルギーは、先に注入した酸素イオン13よりも浅い
領域にn形不純物イオン14が打ち込まれる程度のもの
とする。
In FIG. 2(e), oxygen ions 13 are implanted into the opening with high energy so as to reach a sufficient depth. Furthermore, n-type impurity ions 14 are implanted into the openings of the same pattern from above. The implantation energy at this time is such that the n-type impurity ions 14 are implanted into a shallower region than the previously implanted oxygen ions 13.

第2図(「)において、レジスト12を除去し熱処理を
施す。酸素イオン13およびn形不純物イオン14は拡
散され、酸化層1oおよびn+形ソース領域3がそれぞ
れ形成される。
In FIG. 2(), resist 12 is removed and heat treatment is performed. Oxygen ions 13 and n-type impurity ions 14 are diffused to form an oxide layer 1o and an n+ type source region 3, respectively.

第2図(a)において、居間絶縁膜8を全面に積層し、
所定のパターンにエツチングする。イオン注入のマスク
として用いた中央部のゲート絶縁膜5も同時にエツチン
グされる。
In FIG. 2(a), a living room insulating film 8 is laminated on the entire surface,
Etch into a predetermined pattern. The central gate insulating film 5 used as a mask for ion implantation is also etched at the same time.

第2図(h)において、パターニングされた層間絶縁i
!!8上およびその開口部にソース電極7を、n+ドレ
イン領域1aの裏面にドレイン電極9を形成し、最終的
に図のような構造を得る。
In FIG. 2(h), the patterned interlayer insulation i
! ! A source electrode 7 is formed on 8 and its opening, and a drain electrode 9 is formed on the back surface of n+ drain region 1a, to finally obtain the structure shown in the figure.

次に第2図(e)に示す工程に用いられるシリコン基板
への酸素イオン注入処理により、所望の深さ位置に所望
の厚みの酸化層10が形成されることを第3図を用いて
説明する。
Next, it will be explained with reference to FIG. 3 that an oxide layer 10 of a desired thickness is formed at a desired depth by the oxygen ion implantation process into the silicon substrate used in the step shown in FIG. 2(e). do.

第3図は、シリコン基板への埋込みイオン注入による酸
素イオンの分布の一例を示すグラフである。第3図(a
)において、横軸はシリコン基板表面からの深さ(μm
)、縦軸は酸素/シリコンの組成比No/Jlsiであ
る。注入エネルギー150key/原子の酸素イオンO
+をシリコン3i(111)面に注入した時の分布が、
注入量(0/ci)をパラメータとして示されている。
FIG. 3 is a graph showing an example of the distribution of oxygen ions resulting from implantation of buried ions into a silicon substrate. Figure 3 (a
), the horizontal axis is the depth from the silicon substrate surface (μm
), and the vertical axis is the oxygen/silicon composition ratio No/Jlsi. Implantation energy 150key/atom oxygen ion O
The distribution when + is implanted into the silicon 3i (111) plane is
The injection volume (0/ci) is shown as a parameter.

また第3図(b)においては、注入エネルギー70 k
ey/原子の酸素イオン02+をシリコン3i(100
)面に注入した時の分布が示されている。
In addition, in FIG. 3(b), the implantation energy is 70 k
Oxygen ion 02+ of ey/atom is converted to silicon 3i (100
) shows the distribution when injected onto the surface.

上述の例より明らかなように、注入量を増加させると分
布は飽和して、ガウス分布から台形分布へと変化し、そ
の模は台形分布の幅が広がる。台形分布における組成比
のピーク値は、はぼ2となる。この比率はシリコン酸化
!!(Si02)内の酸素の比率に等しい。
As is clear from the above example, when the injection amount is increased, the distribution becomes saturated and changes from a Gaussian distribution to a trapezoidal distribution, and the width of the trapezoidal distribution becomes wider. The peak value of the composition ratio in the trapezoidal distribution is 2. This ratio is silicon oxidation! ! Equal to the proportion of oxygen in (Si02).

分布の中心の深さ位置は注入エネルギーに依存する。上
記の例では注入エネルギーが一定であるので、分布の中
心は特定の深さ位置に固定されているが、注入エネルギ
ーを変化させることにより、これを所望の深さ位置に移
動させることができる。
The depth position of the center of the distribution depends on the implantation energy. In the above example, since the implantation energy is constant, the center of the distribution is fixed at a specific depth position, but by changing the implantation energy, it can be moved to a desired depth position.

これらのことにより、注入量および注入エネルギーを適
当に制御することによって、シリコン基板(p形半導体
領域2)の所望の深さ位置に所望の厚みの酸化層10が
容易に形成されることが理解されよう。
From these facts, it is understood that by appropriately controlling the implantation amount and implantation energy, the oxide layer 10 with a desired thickness can be easily formed at a desired depth position in the silicon substrate (p-type semiconductor region 2). It will be.

次にこのパワーMO8FETの破壊モードについて説明
する。第1図に示すこの発明の一実施例によるパワーM
O8FETにおいては、n+形ソース領域3とp形半導
体領域2との境界領域に酸化層10を形成しているので
、チャネル形成領域4の近傍を残して寄生トランジスタ
T、のベース・エミッタ間のキャリアの注入効率は著し
く低下する。そのため寄生トランジスタT、の直流N流
増幅率hFEも小さくなり、寄生トランジスタT。
Next, the destruction mode of this power MO8FET will be explained. Power M according to an embodiment of the invention shown in FIG.
In the O8FET, since the oxide layer 10 is formed in the boundary region between the n+ type source region 3 and the p-type semiconductor region 2, carriers between the base and emitter of the parasitic transistor T are left in the vicinity of the channel forming region 4. injection efficiency is significantly reduced. Therefore, the DC N current amplification factor hFE of the parasitic transistor T becomes smaller, and the parasitic transistor T.

は能動化しにくく、また能動化してもそのコレクタ電流
は充分小さくなる。すなわち、過負荷がかかってもこの
実施例のパワーMO8FETには大電流が流れず、瞬時
には破壊しにくく、破壊耐量の向上を実現した構造とな
っている。
is difficult to activate, and even if activated, its collector current will be sufficiently small. That is, even if an overload is applied, a large current will not flow through the power MO8FET of this embodiment, making it difficult to break down instantaneously, resulting in a structure that achieves improved breakdown resistance.

第4図は、この発明の他の実施例である酸化層10を設
けたnチャネ)Lt I G B T (In5ula
ted Gate Bipolar Transist
or ;絶縁ゲート型バイポーラトランジスタ)の基本
ユニットセルの断面図である。ドレイン電極9に接して
p影領域15が設けられている。その他の構造は第1図
に示すパワーMO8FETと同様である。IGBI−の
場合、寄生サイリスタが存在するが、前述したMOS 
FETの例と同様に、過負荷がかかつても能動化しにく
く、また能動化してもその電流値は充分小さいので、I
GBTの破壊耐量は向上している。
FIG. 4 shows an n-channel (In5ula) provided with an oxide layer 10 which is another embodiment of the present invention.
ted Gate Bipolar Transist
FIG. 2 is a cross-sectional view of a basic unit cell of an insulated gate bipolar transistor. A p shadow region 15 is provided in contact with the drain electrode 9 . The rest of the structure is similar to the power MO8FET shown in FIG. In the case of IGBI-, there is a parasitic thyristor, but the above-mentioned MOS
As with the FET example, even if an overload occurs, it is difficult to activate, and even if it is activated, the current value is sufficiently small, so I
The destruction resistance of GBT is improving.

さらにIGBTの場合、その飽和電流値がラッチアップ
電流以下となるように電流容量を抑制した構造(ノンラ
ッチアップ構造)となっていることが多いが、この実施
例によるIGBTの場合、ラッチアップが起きにくいの
で飽和電流値を増大させることもできる。
Furthermore, IGBTs often have a structure in which the current capacity is suppressed (non-latch-up structure) so that the saturation current value is below the latch-up current, but in the case of the IGBT according to this embodiment, latch-up does not occur. Since this is less likely to occur, the saturation current value can also be increased.

また−上記実施例では緩II層として酸化1l110を
設けたが、この酸化層10のかわりに窒化層などの他の
絶縁層を設けてもよい。例えば窒化層の場合、窒素イオ
ンの注入により形成されるが、窒素イオンの打ち込み深
さおよび密度も酸素イオンの注入同様、制御可能である
。さらに絶縁層以外の!l衝層として、p形半導体領域
2とn+形ソース領域3との間に局所的に格子欠陥を有
するダメージ層を設けてもよい。このダメージ層は、他
のイオンやプロトン照射により形成される。例えばプロ
トン照射による場合、ダメージ層が形成される深さは正
確に制御可能であることが知られている。
Further, in the above embodiment, oxide 1l110 was provided as the loose II layer, but instead of this oxide layer 10, another insulating layer such as a nitride layer may be provided. For example, in the case of a nitride layer, it is formed by implanting nitrogen ions, and the implantation depth and density of nitrogen ions can be controlled as well as the implantation of oxygen ions. In addition to the insulation layer! A damaged layer having local lattice defects may be provided between the p-type semiconductor region 2 and the n + -type source region 3 as the 1-layer. This damaged layer is formed by irradiation with other ions or protons. For example, in the case of proton irradiation, it is known that the depth at which a damaged layer is formed can be accurately controlled.

ダメージ層は格子欠陥を有するので、キャリアをトラッ
プしやすく、p形半導体領w<2とn+形ソース領域3
との間のキャリアの注入効率は著しく低下する。その結
果、前述した絶縁層を設けた例と同様の効果を奏する。
Since the damaged layer has lattice defects, it easily traps carriers, and the p-type semiconductor region w<2 and the n+-type source region 3
The injection efficiency of carriers between the two is significantly reduced. As a result, the same effect as in the example in which an insulating layer is provided as described above can be achieved.

なお上記実施例では、基本ユニットセルが四角形状のパ
ワーMO8FETおよびIGBTについて述べたが、他
の形状のものについてもこの発明は同様に適用できる。
In the above embodiments, power MO8FETs and IGBTs whose basic unit cells have a rectangular shape have been described, but the present invention can be similarly applied to those having other shapes.

さらに他の導電型のpチャネルMO8FET、pチャネ
ルI GBTあるいは他のタイプの電界効果型半導体装
置についても、この発明は同様に適用できる。
Furthermore, the present invention is similarly applicable to p-channel MO8FETs of other conductivity types, p-channel IGBTs, and other types of field-effect semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、緩衝層は第3の半導体
領域の底面と第2の半導体領域との間に形成されている
ので、第2の半導体領域と第3の半導体領域との間での
キャリアの注入効率が低下する。そのため、破壊耐量を
向上し、過負荷がかかつても破壊しにくい電界効果型半
導体装置を得ることができる。
As described above, according to the present invention, since the buffer layer is formed between the bottom surface of the third semiconductor region and the second semiconductor region, the buffer layer is formed between the bottom surface of the third semiconductor region and the second semiconductor region. carrier injection efficiency decreases. Therefore, it is possible to obtain a field-effect semiconductor device that has improved breakdown resistance and is difficult to break down even when overloaded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるパワーMO8FET
の断面図、第2図は第1図に示すパワーMO3FETの
製造工程断面図、第3図はシリコン基板への注入酸素イ
オンの分布の一例を示すグラフ、第4図はこの発明の他
の実施例によるIGBTの断面図、第5図および第6図
はそれぞれ従来のパワーMO8FETの平面図および断
面図、第7図は従来のパワーMO8FETの特性を示す
グラフ、第8図(a)、 (b)はそれぞれMOSユニ
ットセルの構成図およびその等価回路の接続図である。 図において、1aはn+形トドレイン領域1bはn 形
ドレイン領域、2はp形半導体領域、3はn+形ソース
(a域、4はチャネル形成領域、5はゲート絶縁膜、6
はゲート電極、7はソース電極、8は層間絶縁膜、9は
ドレイン電極、1oは酸化層である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 shows a power MO8FET according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the manufacturing process of the power MO3FET shown in FIG. 1, FIG. 3 is a graph showing an example of the distribution of oxygen ions implanted into a silicon substrate, and FIG. A cross-sectional view of an example IGBT, FIGS. 5 and 6 are a plan view and a cross-sectional view of a conventional power MO8FET, respectively, FIG. 7 is a graph showing the characteristics of a conventional power MO8FET, and FIGS. ) are a configuration diagram of a MOS unit cell and a connection diagram of its equivalent circuit. In the figure, 1a is an n + type drain region, 1b is an n type drain region, 2 is a p type semiconductor region, 3 is an n + type source (a region, 4 is a channel forming region, 5 is a gate insulating film, 6 is a
7 is a gate electrode, 7 is a source electrode, 8 is an interlayer insulating film, 9 is a drain electrode, and 1o is an oxide layer. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の第1の半導体領域と、 前記第1の半導体領域の表面内に形成された第2導電型
の第2の半導体領域と、 前記第2の半導体領域の表面内に形成された第1導電型
の第3の半導体領域と、 前記第3の半導体領域の底面と前記第2の半導体領域と
の間に形成され、前記第2および第3の半導体領域間の
キャリアの注入効率を低下させる緩衝層と、 前記第1の半導体領域と前記第3の半導体領域間の前記
第2の半導体領域表面上に形成されたゲート絶縁膜と、 前記ゲート絶縁膜上に形成されたゲート電極と前記第3
の半導体領域の表面上および前記第2の半導体領域の表
面上に形成された電極とを備えた電界効果型半導体装置
(1) a first semiconductor region of a first conductivity type; a second semiconductor region of a second conductivity type formed within a surface of the first semiconductor region; and a second semiconductor region of a second conductivity type formed within a surface of the second semiconductor region. a third semiconductor region of the first conductivity type formed; and a third semiconductor region formed between the bottom surface of the third semiconductor region and the second semiconductor region, and a carrier carrier between the second and third semiconductor regions. a buffer layer that reduces injection efficiency; a gate insulating film formed on the surface of the second semiconductor region between the first semiconductor region and the third semiconductor region; and a gate insulating film formed on the gate insulating film. the gate electrode and the third
and an electrode formed on the surface of the semiconductor region and the surface of the second semiconductor region.
JP63221169A 1988-09-02 1988-09-02 Field effect semiconductor device Expired - Lifetime JPH0783121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221169A JPH0783121B2 (en) 1988-09-02 1988-09-02 Field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221169A JPH0783121B2 (en) 1988-09-02 1988-09-02 Field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPH0268966A true JPH0268966A (en) 1990-03-08
JPH0783121B2 JPH0783121B2 (en) 1995-09-06

Family

ID=16762554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221169A Expired - Lifetime JPH0783121B2 (en) 1988-09-02 1988-09-02 Field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH0783121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858613A (en) * 1996-01-23 1999-01-12 Tdk Corporation Optical recording medium
JP2009099920A (en) * 2007-10-18 2009-05-07 Fumihiko Hirose Electronic switch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645074A (en) * 1979-09-20 1981-04-24 Nippon Telegr & Teleph Corp <Ntt> High-pressure-resistance mos type semiconductor device
JPS5673460A (en) * 1979-11-19 1981-06-18 Semiconductor Res Found Semiconductor integrated circuit
JPS58153368A (en) * 1982-03-09 1983-09-12 Toshiba Corp Insulated gate field effect transistor
JPS58175872A (en) * 1982-04-08 1983-10-15 Toshiba Corp Insulated gate field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645074A (en) * 1979-09-20 1981-04-24 Nippon Telegr & Teleph Corp <Ntt> High-pressure-resistance mos type semiconductor device
JPS5673460A (en) * 1979-11-19 1981-06-18 Semiconductor Res Found Semiconductor integrated circuit
JPS58153368A (en) * 1982-03-09 1983-09-12 Toshiba Corp Insulated gate field effect transistor
JPS58175872A (en) * 1982-04-08 1983-10-15 Toshiba Corp Insulated gate field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858613A (en) * 1996-01-23 1999-01-12 Tdk Corporation Optical recording medium
JP2009099920A (en) * 2007-10-18 2009-05-07 Fumihiko Hirose Electronic switch

Also Published As

Publication number Publication date
JPH0783121B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6392275B1 (en) Semiconductor device with DMOS, BJT and CMOS structures
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
JPH06244430A (en) Semiconductor device
JPH0715011A (en) Insulated gate bipolar transistor with self-aligning cathode pattern and preparation thereof
JP3863926B2 (en) Three-terminal power insulated gate transistor and manufacturing method thereof
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
JPH0786580A (en) High-voltage semiconductor device
JPH07101737B2 (en) Method for manufacturing semiconductor device
JP3240896B2 (en) MOS type semiconductor device
JP3063278B2 (en) Vertical field-effect transistor
JP3333299B2 (en) Power semiconductor device
JPH09153609A (en) Vertical insulated gate field-effect transistor
JPH0268966A (en) Field effect type semiconductor
JP2536122B2 (en) p-channel insulated gate bipolar transistor
JP2561963B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JPH01132167A (en) Semiconductor device
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP3489426B2 (en) Semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP3027939B2 (en) Vertical field effect transistor and method of manufacturing the same
KR940011477B1 (en) Method of manufacturing semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH1098183A (en) Semiconductor device and manufacture thereof
JP2917945B2 (en) Vertical field-effect transistor
JP2003332577A (en) Semiconductor device and its manufacturing method