JP2009099920A - Electronic switch - Google Patents

Electronic switch Download PDF

Info

Publication number
JP2009099920A
JP2009099920A JP2007294913A JP2007294913A JP2009099920A JP 2009099920 A JP2009099920 A JP 2009099920A JP 2007294913 A JP2007294913 A JP 2007294913A JP 2007294913 A JP2007294913 A JP 2007294913A JP 2009099920 A JP2009099920 A JP 2009099920A
Authority
JP
Japan
Prior art keywords
film
type semiconductor
layer
electronic switch
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007294913A
Other languages
Japanese (ja)
Other versions
JP5435189B2 (en
Inventor
Fumihiko Hirose
文彦 廣瀬
Shokou Ro
紹▲コウ▼ 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PREC SILICON CORP
PRECISION SILICON CORP
Original Assignee
PREC SILICON CORP
PRECISION SILICON CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PREC SILICON CORP, PRECISION SILICON CORP filed Critical PREC SILICON CORP
Priority to JP2007294913A priority Critical patent/JP5435189B2/en
Publication of JP2009099920A publication Critical patent/JP2009099920A/en
Application granted granted Critical
Publication of JP5435189B2 publication Critical patent/JP5435189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thyristors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic switch having a high speed and low resistance. <P>SOLUTION: A p-type semiconductor substrate or a film is used as an A film; a n-type or an i-type semiconductor film is formed on it to use the film as a B film; a p-type semiconductor film is formed on it to use the film as a C film; a n-type semiconductor film is formed on part of the C film to use it as a D film; and an insulating material film is formed so as to come into contact with the C film and the D film, and a conductive film is formed on the insulating material layer to use the conductive film as a gate electrode. The conductive film is brought into contact with the A film to use it as a collector electrode. The conductive film is brought into contact with the D film to use it as an emitter electrode. In the electronic switch, a potential difference between the emitter electrode and the gate electrode is fluctuated to change impedance between the collector electrode and the emitter electrode. The lifetime of a minority carrier in part of the region of the A film having a distance of ≥10 nm as a distance from the bonded faces of the A film and the B film is set to ≤1/100, or ≤50 ns in comparison with the B film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電流のスイッチ機能を持つ半導体装置に関する。  The present invention relates to a semiconductor device having a current switching function.

従来、電力変換用インバーターやスイッチング式電源には、Insulated Gate Bipolar Transisor(IGBT)が電子スイッチとして用いられている。近年、これら電子回路の小型化のために、スイッチ周波数を高めて、回路内のリアクトルやキャパシタンスを小さくし、小型化が図られている。しかし、IGBTにおいて、現在スイッチ時間はONになるときで100ns程度、OFFにするのに1μsの時間を要する。したがって、スィッチ時間が最大動作周波数を制限しており、これら電子スイッチを用いたスイッチ回路は、従来100kHzを上限として使用されていた。  Conventionally, Insulated Gate Bipolar Transistor (IGBT) is used as an electronic switch for an inverter for power conversion and a switching power source. In recent years, in order to reduce the size of these electronic circuits, the switch frequency is increased to reduce the reactors and capacitances in the circuits, thereby reducing the size. However, in the IGBT, the current switch time is about 100 ns when it is turned on, and 1 μs is required to turn it off. Accordingly, the switch time limits the maximum operating frequency, and switch circuits using these electronic switches have been conventionally used with an upper limit of 100 kHz.

さらなる小型化のためには、スイッチ時間をONおよびOFF動作の両方で100ns以下に抑えることが望まれているが、OFF動作時のスイッチ時間はIGBTのON動作時に同素子内に蓄積する電荷を引き出す時間で決まり、そのための構造工夫がこれまでになされてきた。図2に従来技術としてIGBTの断面図を示す。  For further miniaturization, it is desired to keep the switch time to 100 ns or less in both the ON and OFF operations. However, the switch time during the OFF operation is the charge accumulated in the element during the ON operation of the IGBT. It has been determined by the time to pull it out, and the structure has been devised so far. FIG. 2 shows a sectional view of an IGBT as a conventional technique.

IGBTをON動作させるには、図3に示されるようにコレクタをエミッタに対して正電位に設定し、ゲートを正電位に設定することでなされる。このとき同図のように電子がエミッタからi型半導体層に注入され、同時にコレクタに近いp型半導体層からホールがi型半導体層に注入されることでコレクタとエミッタ間に電流が流れる。このときi型半導体層には電子とホールの蓄積が起こり、OFF動作させたときにこの蓄積電荷を取り除くのに一定時間を必要とし、これがスイッチ時間の主成分となっている。  In order to turn on the IGBT, as shown in FIG. 3, the collector is set to a positive potential with respect to the emitter, and the gate is set to a positive potential. At this time, as shown in the figure, electrons are injected from the emitter into the i-type semiconductor layer, and at the same time, holes are injected from the p-type semiconductor layer close to the collector into the i-type semiconductor layer, whereby a current flows between the collector and the emitter. At this time, accumulation of electrons and holes occurs in the i-type semiconductor layer, and a certain time is required to remove the accumulated charge when the OFF operation is performed, and this is the main component of the switch time.

従来、スイッチ時間の短縮を狙って電荷の蓄積を抑制するために、i型半導体層の全体あるいはその一部にライフタイムキラーを導入して、同層のキャリアのライフタイムを抑制する方法がとられている。ライフタイムキラーを導入する方法としては、金原子拡散やプロトン照射、電子線照射が行われてきた。この方法で同層のキャリアのライフタイムを抑制することにより、ON動作時に蓄積する電荷を積極的に再結合させ、蓄積電荷量を抑制するものである。この方法ではスイッチ時間の短縮に効果があるものの、ON動作時のIGBT自体の抵抗(ON抵抗)が増加してしまう好ましくない問題が生じていた。これはi型半導体層の電導度変調が同層のライフタイムの抑制により消失するからである。  Conventionally, in order to suppress the accumulation of electric charges with the aim of shortening the switch time, a method for suppressing the lifetime of carriers in the same layer by introducing a lifetime killer into the whole or part of the i-type semiconductor layer It has been. As a method for introducing a lifetime killer, gold atom diffusion, proton irradiation, and electron beam irradiation have been performed. By suppressing the lifetime of the carriers in the same layer by this method, the charges accumulated during the ON operation are positively recombined to suppress the accumulated charge amount. Although this method is effective in shortening the switch time, there has been an undesirable problem that the resistance (ON resistance) of the IGBT itself during the ON operation increases. This is because the conductivity modulation of the i-type semiconductor layer disappears by suppressing the lifetime of the same layer.

別の試みとしてAsanoらによりコレクタ電極層に近接するp型半導体電極層にSiに代わりSiGe層を用いることで、i型半導体層と同層間にエネルギー障壁を形成することで、ON動作時にi型半導体層に蓄積しているホールを高速に除去することで高速化を図る報告が、非特許文献1に掲載されている。しかし、スイッチ時間が短縮されても、価電子帯にバンド不連続が生じ、ON抵抗が増加してしまう好ましくない問題が生じている。  As another attempt, by using an SiGe layer instead of Si for the p-type semiconductor electrode layer adjacent to the collector electrode layer by Asano et al., An energy barrier is formed between the same layer as the i-type semiconductor layer. A non-patent document 1 discloses a report of speeding up by removing holes accumulated in a semiconductor layer at high speed. However, even if the switch time is shortened, band discontinuity occurs in the valence band, and an undesired problem that the ON resistance increases occurs.

以上のように、IGBTのスイッチ時間とON抵抗は二律背反の関係にあり、両者を同時に満足させる技術の開拓が望まれている。  As described above, the IGBT switching time and the ON resistance are in a trade-off relationship, and it is desired to develop a technology that satisfies both at the same time.

「Solid−State Electronics」誌、2005年、49巻、p2006−2010“Solid-State Electronics”, 2005, 49, p2006-2010

発明の表示Indication of invention

発明が解決しようとする課題Problems to be solved by the invention

本発明は上記事情を考慮してなされたもので、IGBTのON抵抗を劣化させることなくスイッチ時間の短縮を可能にする技術を提供することを目的とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique that can shorten the switch time without deteriorating the ON resistance of the IGBT.

課題を解決するための手段Means for solving the problem

本発明は、IGBTのコレクタ電極に近いp型半導体層の一部の領域を空間選択的にライフタイムを抑制することで、IGBTのON動作時の蓄積電荷を抑制する。
課題を解決するための手段を、図2の従来技術に関わる電子スイッチの概略的な説明図と図3の従来技術に関わる電子スイッチのON動作時の電荷蓄積の機構を説明する概略図をもちいて説明する。
The present invention suppresses the accumulated charge during the ON operation of the IGBT by spatially suppressing the lifetime of a part of the p-type semiconductor layer close to the collector electrode of the IGBT.
As a means for solving the problem, the schematic explanatory diagram of the electronic switch related to the prior art in FIG. 2 and the schematic diagram explaining the mechanism of charge accumulation during the ON operation of the electronic switch related to the prior art in FIG. I will explain.

IGBTのON動作時の電流は、図3に示されるような流れをする。このとき、i型半導体層2に蓄積されているホールと電子の電荷密度は、大電流動作のときに電荷中性条件から、それぞれほぼ等しい値となって、i型半導体層2に均一に分布することが知られている。このときのホールと電子の電荷密度をΔNとおく。このとき電子電流I
=qAΔND/L
であらわされる。このときのqは素電荷、AはIGBTの動作領域の面積、Dはp型半導体層1の電子の拡散係数、Lはp型半導体層1の電子の拡散長を表す。また、ホール電流I
=qAΔND/L
であらわされる。このときDはn型半導体層4のホールの拡散係数、Lはn型半導体層4のホールの拡散長を表す。IGBTの全電流Iは
I=qAΔN{D/L+D/L
であらわされる。さらにLpとLnは次の式で表される。
=(Dτ1/2
=(Dτ1/2
ここでτとτは、それぞれn型半導体層4のホールのライフタイム、p型半導体層1の電子のライフタイムである。すなわち、コレクタに近いp型半導体層1あるいはn型半導体層4のキャリアのライフタイムが小さくなれば、Iを一定としたときにΔN、すなわちi層に蓄積される電荷密度を抑制することができる。
The current during the ON operation of the IGBT flows as shown in FIG. At this time, the charge densities of the holes and electrons accumulated in the i-type semiconductor layer 2 are substantially equal to each other due to the charge neutral condition during a large current operation, and are uniformly distributed in the i-type semiconductor layer 2. It is known to do. At this time, the charge density of holes and electrons is set to ΔN. At this time, the electron current I e is I e = qAΔND n / L n
It is expressed. In this case, q is an elementary charge, A is an area of the IGBT operating region, D n is an electron diffusion coefficient of the p-type semiconductor layer 1, and L n is an electron diffusion length of the p-type semiconductor layer 1. In addition, the Hall current I h is I h = qAΔND p / L p
It is expressed. At this time, D p represents the diffusion coefficient of holes in the n-type semiconductor layer 4, and L n represents the diffusion length of holes in the n-type semiconductor layer 4. The total current I of the IGBT is I = qAΔN {D n / L n + D p / L p }
It is expressed. Further, Lp and Ln are expressed by the following equations.
L p = (D p τ p ) 1/2
L n = (D n τ n ) 1/2
Here, τ p and τ n are the lifetime of holes in the n-type semiconductor layer 4 and the lifetime of electrons in the p-type semiconductor layer 1, respectively. That is, if the carrier lifetime of the p-type semiconductor layer 1 or the n-type semiconductor layer 4 close to the collector is reduced, ΔN, that is, the charge density accumulated in the i layer can be suppressed when I is constant. .

本発明では、i型半導体層にライフタイムキラーを導入しないため、ON動作時の電導度変調効果は失われずON抵抗の劣化は回避できる。  In the present invention, since no lifetime killer is introduced into the i-type semiconductor layer, the conductivity modulation effect during the ON operation is not lost, and deterioration of the ON resistance can be avoided.

たとえばコレクタに近いp型半導体層1の全域にわたってライフタイムを抑制する必要はない。仮に全域でライフタイムを抑制すると、OFF動作時にそこで漏れ電流が発生し好ましくはない。デバイスシミュレーションによれば、コレクタに近いp型の半導体層1とi型半導体層2の界面から10nm以上の領域にライフタイムを抑制する領域を設置することで、漏れ電流の発生を抑制することができる。n型半導体層4においても同様であり、n型半導体層4とp型半導体層3の界面からライフタイムを抑制した領域を10nm以上の遠い位置に設定することで、漏れ電流を抑制することができる。  For example, it is not necessary to suppress the lifetime over the entire area of the p-type semiconductor layer 1 close to the collector. If the lifetime is suppressed in the entire area, a leakage current is generated in the OFF operation, which is not preferable. According to the device simulation, it is possible to suppress the occurrence of leakage current by installing a region for suppressing the lifetime in a region of 10 nm or more from the interface between the p-type semiconductor layer 1 and the i-type semiconductor layer 2 close to the collector. it can. The same applies to the n-type semiconductor layer 4, and the leakage current can be suppressed by setting the region where the lifetime is suppressed from the interface between the n-type semiconductor layer 4 and the p-type semiconductor layer 3 to a position farther than 10 nm. it can.

以上のライフタイムの抑制であるが、抑制された領域の周りの領域に対して1/100に設定されるか、あるいは数値として50ns以下に設定することで、IGBTの蓄積電荷を半分より少なくできることがデバイスシミュレーションによる計算から明らかにされている。  Although the above lifetime is suppressed, the accumulated charge of the IGBT can be reduced to less than half by setting it to 1/100 with respect to the area around the suppressed area or by setting it to 50 ns or less as a numerical value. Is clarified from the calculation by device simulation.

上記の用途のために空間選択的にライフタイムを抑制するには、半導体層の中に点欠陥、転位、積層欠陥などの欠陥を10/cm以上設けることで目的を達成できる。上記欠陥は半導体の禁制帯の中央付近に再結合中心を発生させ、それを介して少数キャリアの間接再結合が起こり、ライフタイムの縮小をもたらす。In order to suppress the lifetime in a space-selective manner for the above applications, the object can be achieved by providing defects such as point defects, dislocations, and stacking faults in the semiconductor layer at 10 5 / cm 2 or more. The defect generates a recombination center near the center of the semiconductor forbidden band, through which minority carrier indirect recombination occurs, leading to a reduction in lifetime.

上記の空間選択的なライフタイムの抑制方法として、周りの半導体をSiで構成し、空間選択的にライフタイムを抑制したい領域をSiGeで構成するとその目的を達成することができる。その際、SiGeを層状とし膜の厚みを0.1μm以上としGeの濃度を4%以上とすることで、ライフタイムを上記濃度で形成できることが、多数の実験から経験的に明らかにされている。欠陥はSiGeと接触しているSiとの間に格子不整合によりSiGeの膜に歪ができ、これが欠陥の原因となっている。  As the above-described spatially selective lifetime suppressing method, the object can be achieved if the surrounding semiconductor is composed of Si and the region where the lifetime is to be spatially suppressed is composed of SiGe. At that time, it has been empirically clarified from a number of experiments that the lifetime can be formed at the above-mentioned concentration by making SiGe into a layer, the film thickness to be 0.1 μm or more, and the Ge concentration to be 4% or more. . Defects can cause distortion in the SiGe film due to lattice mismatch with Si in contact with SiGe, which causes the defects.

SiGeを用いた場合、価電子帯のバンド不連続によりON抵抗の増加が懸念されるが、SiGeとSiの接合面をp型半導体層1の中に形成し、p型半導体層が適度なドープ濃度を保つことで、トンネル効果により接合面で発生する抵抗を抑制することができ、ON抵抗の増加をさけることができる。  When SiGe is used, there is a concern that the ON resistance may increase due to band discontinuity in the valence band. However, a junction surface between SiGe and Si is formed in the p-type semiconductor layer 1, and the p-type semiconductor layer is moderately doped. By maintaining the concentration, it is possible to suppress the resistance generated at the joint surface due to the tunnel effect, and to avoid an increase in the ON resistance.

上記工夫に加えて、i型半導体層2に適度のライフタイムキラーをいれることによって、IGBTがON動作時に同層で間接再結合を促進し、蓄積電荷量を低減させることで、より高速なスイッチ動作を期待することができる。その際、シミュレーション計算からライフタイムを10nsを下回ると、ON抵抗が顕著に増加し、発熱という好ましくはない問題が生じる。また100ns以上になると、顕著な蓄積電荷の低減効果は得られない。  In addition to the above devices, by adding an appropriate lifetime killer to the i-type semiconductor layer 2, the IGBT accelerates indirect recombination in the same layer when the ON operation is performed, and reduces the amount of stored charge, thereby enabling a faster switch Expect to work. At that time, if the lifetime is less than 10 ns from the simulation calculation, the ON resistance is remarkably increased, and an undesirable problem of heat generation occurs. On the other hand, if it is 100 ns or more, a significant effect of reducing accumulated charge cannot be obtained.

上記の工夫は、コレクタ層に近いp型半導体層1に限って説明してきたが、最上層のn型半導体層4においても、コレクタに近いp型半導体層1と同様の工夫をすることで、ON動作時の蓄積電荷を減らし高速動作の実現に効果をもたらすことができる。さらに、ゲート電極が直接C層と絶縁膜を介さず接触した場合はゲートターンオフサイリスタと呼ばれるスイッチ素子となる。この場合でも上記に述べた理由と同じでON動作時の蓄積電荷を減らし高速スイッチの実現の効果をもたらす。  The above device has been described only for the p-type semiconductor layer 1 close to the collector layer. However, in the uppermost n-type semiconductor layer 4, the same device as the p-type semiconductor layer 1 close to the collector can be used. The accumulated charge during the ON operation can be reduced, and an effect can be brought about in realizing a high-speed operation. Further, when the gate electrode is in direct contact with the C layer without an insulating film, a switching element called a gate turn-off thyristor is obtained. Even in this case, the accumulated charge during the ON operation is reduced for the same reason as described above, and the effect of realizing a high-speed switch is brought about.

発明の効果The invention's effect

本発明を用いることでIGBTやサイリスタなどの電子スイッチについてON抵抗を犠牲にすることなく高速動作を可能とせしめ、これを用いたスイッチ回路において高周波化による回路の小型化という利便性をもたらす。  By using the present invention, an electronic switch such as an IGBT or a thyristor can be operated at high speed without sacrificing the ON resistance, and the switch circuit using the switch can be conveniently reduced in size by increasing the frequency.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

図1は、本発明の一実施例に係る電子スイッチの断面の概略的な説明図を示す。  FIG. 1 is a schematic explanatory view of a cross section of an electronic switch according to an embodiment of the present invention.

本発明の電子スイッチはp型の半導体基板あるいは膜があり、これをp型半導体層1とし、この上に、n型あるいはi型の半導体膜を形成し、これをi型半導体膜2とし、この上にp型半導体膜3を形成し、p型半導体膜3の一部にn型半導体膜4を形成し、p型半導体膜3とn型半導体膜4に接するようにゲート絶縁層5を形成し、絶縁体膜上に導電膜を形成し、この導電膜をゲート電極層9とする。またp型半導体層1に導電膜を接触させて、これをコレクタ電極層7とする。またn型半導体膜4に導電膜を接触させてこれをエミッタ電極層6とする。これエミッタ電極8極とゲート電極11の電位差を変動させることで、コレクタ電極10とエミッタ電極8の間のインピーダンスが変化することを特徴としており、p型半導体層1とi型半導体層2の接合面から距離として10nm以上の距離のp型半導体層1の領域の一部について少数キャリアのライフタイムをi型半導体層2に対して、100分の1以下に設定し、あるいは50ns以下とし、その領域をライフタイムを抑制されたp型半導体層12とする。  The electronic switch of the present invention has a p-type semiconductor substrate or film, which is used as a p-type semiconductor layer 1, an n-type or i-type semiconductor film is formed thereon, and this is used as an i-type semiconductor film 2. A p-type semiconductor film 3 is formed thereon, an n-type semiconductor film 4 is formed on a part of the p-type semiconductor film 3, and a gate insulating layer 5 is formed so as to be in contact with the p-type semiconductor film 3 and the n-type semiconductor film 4. Then, a conductive film is formed over the insulator film, and this conductive film is used as the gate electrode layer 9. Further, a conductive film is brought into contact with the p-type semiconductor layer 1 to form a collector electrode layer 7. Further, a conductive film is brought into contact with the n-type semiconductor film 4 to form an emitter electrode layer 6. The impedance between the collector electrode 10 and the emitter electrode 8 is changed by changing the potential difference between the emitter electrode 8 and the gate electrode 11, and the junction between the p-type semiconductor layer 1 and the i-type semiconductor layer 2 is characterized. The lifetime of minority carriers is set to 1/100 or less with respect to the i-type semiconductor layer 2 for a part of the region of the p-type semiconductor layer 1 having a distance of 10 nm or more as a distance from the surface, or 50 ns or less, The region is a p-type semiconductor layer 12 whose lifetime is suppressed.

上記の特徴を持つ電子スイッチで、ライフタイムを抑制されたp型半導体層12以外はSi単結晶で構成する。p型半導体層1のドーピング濃度で1×1018〜1×1020/cmとし、厚みは0.1から2μmとした。i型半導体層2のドーピング濃度は1×1014/cmとし、厚みは20μmとした。p型半導体層3のドーピング濃度は1×1016/cmとし、厚みは0.2μmとした。n型半導体層4のドーピング濃度は1×1018〜1×1019/cmとし、厚みは0.2μmとする。ゲート絶縁層の材質はSiOとし、厚みは0.2μmとする。エミッタ電極、ゲート電極、コレクタ電極は、高濃度ポリシリコンを用いた。上記半導体各層のライフタイムは10μsとした。In the electronic switch having the above characteristics, except for the p-type semiconductor layer 12 whose lifetime is suppressed, it is made of Si single crystal. The doping concentration of the p-type semiconductor layer 1 was 1 × 10 18 to 1 × 10 20 / cm 3 and the thickness was 0.1 to 2 μm. The doping concentration of the i-type semiconductor layer 2 was 1 × 10 14 / cm 3 and the thickness was 20 μm. The doping concentration of the p-type semiconductor layer 3 was 1 × 10 16 / cm 3 and the thickness was 0.2 μm. The doping concentration of the n-type semiconductor layer 4 is 1 × 10 18 to 1 × 10 19 / cm 3 and the thickness is 0.2 μm. The material of the gate insulating layer is SiO 2 and the thickness is 0.2 μm. High-density polysilicon was used for the emitter electrode, gate electrode, and collector electrode. The lifetime of each semiconductor layer was 10 μs.

この形の電子スイッチをON動作させるには、エミッタ電極8に対してゲート電極9に10V程度の電圧をかけると同時に、コレクタ電極10の電位をエミッタ電極8に対して正電位に設定することによって行う。  In order to turn on this type of electronic switch, a voltage of about 10 V is applied to the gate electrode 9 with respect to the emitter electrode 8, and at the same time, the potential of the collector electrode 10 is set to a positive potential with respect to the emitter electrode 8. Do.

この電子スイッチの動作を確認するために、デバイスシミュレーションを行った。このシミュレーションは半導体の各層について、ポアソン式と電荷連続の式を矛盾なく解くことで実施した。  In order to confirm the operation of this electronic switch, a device simulation was performed. This simulation was performed by solving the Poisson equation and the charge continuity equation consistently for each semiconductor layer.

この電子スイッチをON状態にして、電流密度として100A/cm流れているときの、i形半導体層の蓄積電荷密度ΔNを求めた。まず本発明の主要素であるライフタイムを抑制されたp型半導体層12を設けない場合、ΔNは1.5×1017/cmとなった。これに対して、ライフタイムを抑制されたp型半導体層12をp型半導体層1とi型半導体層2の界面から10nm以上の領域に設けた。このときのp型半導体層12のライフタイムは50nsにしたところ、ΔNは10%減少し、さらに1nsにしたところ80%減少した。ΔNが減少することで、スイッチONからOFFに移る時間が低減でき、ライフタイム1nsで5分の1に減少できることがあきらかになった。The stored charge density ΔN of the i-type semiconductor layer when the electronic switch was turned on and the current density was flowing at 100 A / cm 2 was determined. First, ΔN was 1.5 × 10 17 / cm 3 when the p-type semiconductor layer 12 whose lifetime was suppressed, which is the main element of the present invention, was not provided. In contrast, the p-type semiconductor layer 12 whose lifetime is suppressed is provided in a region of 10 nm or more from the interface between the p-type semiconductor layer 1 and the i-type semiconductor layer 2. At this time, when the lifetime of the p-type semiconductor layer 12 was 50 ns, ΔN was reduced by 10%, and when it was further 1 ns, it was reduced by 80%. It became clear that the time required to switch from ON to OFF can be reduced by reducing ΔN, and that it can be reduced to 1/5 with a lifetime of 1 ns.

同様に上記の工夫に加え、エミッタのn型半導体層4にライフタイムを抑制された領域を設けることで、それがないときに比べ10%程度ΔNが減少し、スイッチONからOFFに移る時間が低減できる。  Similarly, in addition to the above-described device, by providing a region with a suppressed lifetime in the n-type semiconductor layer 4 of the emitter, ΔN is reduced by about 10% compared to the case without it, and the time for switching from ON to OFF is reduced. Can be reduced.

ライフタイムを抑制されたp型半導体層12の作製方法として、周囲の半導体層をSiとして、ライフタイムを抑制されたp型半導体層12をSiGeで構成することが効果的である。SiGeの濃度として4%以上の濃度で、厚みを0.1μm以上とすることで、同層に転位を10/cm以上で発生させることができる。同層のライフタイムは実測の結果、1〜10nsであることが確認され、上記の効果を得るのに効果的であることがわかった。As a manufacturing method of the p-type semiconductor layer 12 with a suppressed lifetime, it is effective to configure the surrounding semiconductor layer as Si and the p-type semiconductor layer 12 with a suppressed lifetime as SiGe. When the SiGe concentration is 4% or more and the thickness is 0.1 μm or more, dislocations can be generated in the same layer at 10 5 / cm 2 or more. As a result of actual measurement, it was confirmed that the lifetime of the same layer was 1 to 10 ns, which proved effective in obtaining the above effect.

上記の構造で、ゲート電極層5が直接p型半導体層3と絶縁膜を介さず接触した場合はゲートターンオフサイリスタと呼ばれるスイッチ素子となる。この場合でも上記と同等の効果が得られていることをデバイスシミュレーションでも確認することができた。  With the above structure, when the gate electrode layer 5 is in direct contact with the p-type semiconductor layer 3 without an insulating film, a switching element called a gate turn-off thyristor is obtained. Even in this case, it was confirmed by device simulation that the same effect as described above was obtained.

本発明の一実施例に係る電子スイッチの概略的な説明図  Schematic explanatory diagram of an electronic switch according to an embodiment of the present invention 従来技術に関わる電子スイッチの概略的な説明図  Schematic explanatory diagram of electronic switches related to the prior art 従来技術に関わる電子スイッチのON動作時の電荷蓄積の機構を説明する概略図  Schematic explaining the mechanism of charge accumulation during ON operation of electronic switches related to the prior art

符号の説明Explanation of symbols

1…p型半導体層、2…i型半導体層、
3…p型半導体層、4…n型半導体層、
5…ゲート絶縁層、6…エミッタ電極層、
7…コレクタ電極層、8…エミッタ電極、
9…ゲート電極層、10…コレクタ電極、
11…ゲート電極、
12…ライフタイムを抑制されたp型半導体層、
13…ON動作時の電子の流れ、
14…ON動作時のホールの流れ
1 ... p-type semiconductor layer, 2 ... i-type semiconductor layer,
3 ... p-type semiconductor layer, 4 ... n-type semiconductor layer,
5 ... Gate insulating layer, 6 ... Emitter electrode layer,
7 ... Collector electrode layer, 8 ... Emitter electrode,
9 ... Gate electrode layer, 10 ... Collector electrode,
11: Gate electrode,
12 ... p-type semiconductor layer with suppressed lifetime,
13 ... Electron flow during ON operation
14 ... Hall flow during ON operation

Claims (6)

p型の半導体基板あるいは膜があり、これをA膜とし、この上に、n型あるいはi型の半導体膜を形成し、これをB膜とし、この上にp型の半導体膜を形成し、これをC膜とし、C膜上の一部にn型半導体膜を形成し、これをD膜として、C膜とD膜に接するように絶縁体膜を形成し、絶縁体膜上に導電膜を形成し、この導電膜をゲート電極とする。またA膜に導電膜を接触させて、これをコレクタ電極とする。またD膜に導電膜を接触させてこれをエミッタ電極とする。エミッタ電極とゲート電極間の電位差を変動させることで、コレクタ電極とエミッタ電極間のインピーダンスを変化することを特徴とし、A膜とB膜の接合面から距離として10nm以上の距離のA膜の領域の一部の少数キャリアのライフタイムをB層に対して、100分の1以下に設定し、あるいは50ns以下とすることを特徴とした電子スイッチ。  There is a p-type semiconductor substrate or film, this is used as an A film, an n-type or i-type semiconductor film is formed thereon, this is used as a B film, and a p-type semiconductor film is formed thereon. This is used as a C film, an n-type semiconductor film is formed on a part of the C film, this is used as a D film, an insulator film is formed in contact with the C film and the D film, and a conductive film is formed on the insulator film. The conductive film is used as a gate electrode. Also, a conductive film is brought into contact with the A film, and this is used as a collector electrode. In addition, a conductive film is brought into contact with the D film to form an emitter electrode. By changing the potential difference between the emitter electrode and the gate electrode, the impedance between the collector electrode and the emitter electrode is changed, and the region of the A film having a distance of 10 nm or more from the junction surface of the A film and the B film An electronic switch characterized in that the lifetime of some minority carriers is set to 1/100 or less of the B layer, or 50 ns or less. 請求項1の電子スイッチにおいて、E層の領域において、D層とE層の接合面から少なくとも10nmより遠い領域において、少数キャリアのライフタイムをB層に対して、100分の1以下に設定し、かつ50ns以下とすることを特徴する電子スイッチ。  2. The electronic switch according to claim 1, wherein, in the region of the E layer, the lifetime of minority carriers is set to 1/100 or less of the B layer in a region at least more than 10 nm from the interface between the D layer and the E layer. And an electronic switch characterized by being 50 ns or less. 請求項1と2の電子スイッチにおいて、B層の一部もしくは全部をライフタイムを10〜100nsの範囲に設定することを特徴とする電子スイッチ。  3. The electronic switch according to claim 1, wherein a lifetime of part or all of the B layer is set in a range of 10 to 100 ns. 請求項1、2、3の電子スイッチにおいて、ライフタイムを抑制するために、半導体層に転位などの欠陥を導入することを特徴とし、転位の密度は10/cm以上とすることを特徴とした電子スイッチ。4. The electronic switch according to claim 1, wherein defects such as dislocations are introduced into the semiconductor layer in order to suppress a lifetime, and the density of dislocations is 10 5 / cm 2 or more. Electronic switch. 請求項4の電子スイッチにおいて、転位を導入するために、BとC層をSi半導体として、A層だけあるいはE層だけ、もしくはA層とE層の両方ともにGeを含有させたSiとすることを特徴とし、Geを含有させたSiの領域のGe濃度を4%以上とし、その厚みを0.1μm以上とすることを特徴とした電子スイッチ。  5. The electronic switch according to claim 4, wherein in order to introduce dislocations, the B and C layers are Si semiconductors, and only the A layer, only the E layer, or both the A layer and the E layer are Si containing Ge. An electronic switch characterized in that the Ge concentration in the Si region containing Ge is 4% or more and the thickness thereof is 0.1 μm or more. 請求項1、2、3、4、5の構造においてゲート電極が直接C層と絶縁膜を介さず接触していることを特徴とした電子スイッチ。  6. The electronic switch according to claim 1, wherein the gate electrode is in direct contact with the C layer without an insulating film interposed therebetween.
JP2007294913A 2007-10-18 2007-10-18 Electronic switch Expired - Fee Related JP5435189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294913A JP5435189B2 (en) 2007-10-18 2007-10-18 Electronic switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294913A JP5435189B2 (en) 2007-10-18 2007-10-18 Electronic switch

Publications (2)

Publication Number Publication Date
JP2009099920A true JP2009099920A (en) 2009-05-07
JP5435189B2 JP5435189B2 (en) 2014-03-05

Family

ID=40702601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294913A Expired - Fee Related JP5435189B2 (en) 2007-10-18 2007-10-18 Electronic switch

Country Status (1)

Country Link
JP (1) JP5435189B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162368A (en) * 1987-12-18 1989-06-26 Matsushita Electric Works Ltd Semiconductor device
JPH01272157A (en) * 1988-04-23 1989-10-31 Matsushita Electric Works Ltd Semiconductor device
JPH0268966A (en) * 1988-09-02 1990-03-08 Mitsubishi Electric Corp Field effect type semiconductor
JPH0397268A (en) * 1989-09-11 1991-04-23 Toshiba Corp Power semiconductor device
JPH03171777A (en) * 1989-11-30 1991-07-25 Toshiba Corp Semiconductor device
JPH04214674A (en) * 1990-12-12 1992-08-05 Mitsubishi Electric Corp Insulated gate bipolar transistor and manufacture thereof
JPH04269874A (en) * 1991-02-26 1992-09-25 Toshiba Corp Semiconductor device
JPH04313242A (en) * 1991-04-10 1992-11-05 Sony Corp Manufacture of thin-film semiconductor device
JPH07335887A (en) * 1994-06-07 1995-12-22 Sony Corp Thin film field-effect transistor and its manufacture
JPH0982955A (en) * 1995-09-14 1997-03-28 Hitachi Ltd Manufacture of semiconductor device
JPH1074959A (en) * 1996-07-03 1998-03-17 Toshiba Corp Semiconductor device for electric power
JP2001024194A (en) * 1999-05-06 2001-01-26 Toshiba Corp Semiconductor device and manufacture thereof
JP2001102392A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Semiconductor device and power conversion device using the same
JP2002222951A (en) * 2000-12-16 2002-08-09 Koshun Kagi Kofun Yugenkoshi Method for controlling switching speed of insulated gate bipolar transistor(igbt) element, its structure and manufacturing method
JP2004039893A (en) * 2002-07-04 2004-02-05 Toyota Central Res & Dev Lab Inc Semiconductor device using different material
JP2007258363A (en) * 2006-03-22 2007-10-04 Denso Corp Semiconductor device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162368A (en) * 1987-12-18 1989-06-26 Matsushita Electric Works Ltd Semiconductor device
JPH01272157A (en) * 1988-04-23 1989-10-31 Matsushita Electric Works Ltd Semiconductor device
JPH0268966A (en) * 1988-09-02 1990-03-08 Mitsubishi Electric Corp Field effect type semiconductor
JPH0397268A (en) * 1989-09-11 1991-04-23 Toshiba Corp Power semiconductor device
JPH03171777A (en) * 1989-11-30 1991-07-25 Toshiba Corp Semiconductor device
JPH04214674A (en) * 1990-12-12 1992-08-05 Mitsubishi Electric Corp Insulated gate bipolar transistor and manufacture thereof
JPH04269874A (en) * 1991-02-26 1992-09-25 Toshiba Corp Semiconductor device
JPH04313242A (en) * 1991-04-10 1992-11-05 Sony Corp Manufacture of thin-film semiconductor device
JPH07335887A (en) * 1994-06-07 1995-12-22 Sony Corp Thin film field-effect transistor and its manufacture
JPH0982955A (en) * 1995-09-14 1997-03-28 Hitachi Ltd Manufacture of semiconductor device
JPH1074959A (en) * 1996-07-03 1998-03-17 Toshiba Corp Semiconductor device for electric power
JP2001024194A (en) * 1999-05-06 2001-01-26 Toshiba Corp Semiconductor device and manufacture thereof
JP2001102392A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Semiconductor device and power conversion device using the same
JP2002222951A (en) * 2000-12-16 2002-08-09 Koshun Kagi Kofun Yugenkoshi Method for controlling switching speed of insulated gate bipolar transistor(igbt) element, its structure and manufacturing method
JP2004039893A (en) * 2002-07-04 2004-02-05 Toyota Central Res & Dev Lab Inc Semiconductor device using different material
JP2007258363A (en) * 2006-03-22 2007-10-04 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JP5435189B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CN107949916B (en) Semiconductor device with a plurality of semiconductor chips
JP4893609B2 (en) Semiconductor device and method for driving power supply device including the semiconductor device
JP5194273B2 (en) Semiconductor device
JP5865618B2 (en) Semiconductor device
JP6820287B2 (en) Semiconductor devices and power converters
JP4653273B2 (en) Semiconductor device and manufacturing method thereof
JP2014220407A (en) Nitride semiconductor element
JP2019129250A (en) Semiconductor device and method for manufacturing the same
JP2018125500A (en) Semiconductor device and method for manufacturing the same
JP2015179720A (en) semiconductor device
WO2018135224A1 (en) Semiconductor device and electric power conversion device using same
JP4947230B2 (en) Semiconductor device
JP5366521B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2020150043A (en) Semiconductor device and manufacturing method thereof
JP5003598B2 (en) Semiconductor device
JP2007150121A (en) Semiconductor device for power and power-conversion device using the same
WO2000016408A1 (en) Semiconductor device and its manufacturing method
JP5435189B2 (en) Electronic switch
JP5696815B2 (en) Semiconductor device
JP6806213B2 (en) Semiconductor element
JPWO2019049251A1 (en) Semiconductor device
WO2019224913A1 (en) Semiconductor device
WO2023112571A1 (en) Semiconductor device and power conversion device
JP2002016265A (en) High withstand voltage diode
JP5871050B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees