JPH026226B2 - - Google Patents

Info

Publication number
JPH026226B2
JPH026226B2 JP56192051A JP19205181A JPH026226B2 JP H026226 B2 JPH026226 B2 JP H026226B2 JP 56192051 A JP56192051 A JP 56192051A JP 19205181 A JP19205181 A JP 19205181A JP H026226 B2 JPH026226 B2 JP H026226B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
electrode
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56192051A
Other languages
Japanese (ja)
Other versions
JPS5893291A (en
Inventor
Hisao Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19205181A priority Critical patent/JPS5893291A/en
Publication of JPS5893291A publication Critical patent/JPS5893291A/en
Publication of JPH026226B2 publication Critical patent/JPH026226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Description

【発明の詳細な説明】 本発明は寄生効果の少なく高耐圧のバイポーラ
集積回路用ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diode for bipolar integrated circuits with few parasitic effects and high breakdown voltage.

バイポーラ集積回路はその構造上、回路の構成
部品とシリコン基板との間に種々の寄生素子が構
成されるために、さまざまな寄生効果が存在する
ことが知られている。集積回路の構成部品の一つ
である高耐圧ダイオードにおいても同様である。
例えば、第1図に示したP形シリコン基板1の上
にN+埋込層2とP+分離領域3によつて基板1お
よび図示されない隣接する他の構成部品と分離さ
れたN層4内に拡散法によりPアノード領域5と
N+カソード領域6を設けることによつてつくら
れた高耐圧ダイオード素子は、第2図に示すよう
な等価回路で表され、ダイオードを順方向動作さ
せた場合、アノード電極7からカソード電極8へ
流れる順電流IFがPアノード領域5、N層4およ
びP型基板1で形成された寄生PNPトランジス
タのベース電流となり、寄生トランジスタがオン
状態になつて基板1へ向けてIs=hFE(S)×IFなる
寄生効果電流が流れる。ここでhFE(S)は寄生
PNPトランジスタ直流電流増幅率であり、通常
1〜10程度の値を有するのでこの寄生効果電流は
回路設計上無視できない。
Due to the structure of bipolar integrated circuits, various parasitic elements are formed between the circuit components and the silicon substrate, and it is known that various parasitic effects exist. The same applies to high voltage diodes, which are one of the components of integrated circuits.
For example, an N layer 4 on a P type silicon substrate 1 shown in FIG. 1 is separated from the substrate 1 and other adjacent components not shown by an N + buried layer 2 and a P + isolation region 3. The P anode region 5 and
A high voltage diode element made by providing the N + cathode region 6 is represented by an equivalent circuit as shown in FIG. The flowing forward current I F becomes the base current of the parasitic PNP transistor formed by the P anode region 5, the N layer 4, and the P type substrate 1, and the parasitic transistor turns on and flows toward the substrate 1 as I s = h FE ( A parasitic effect current of S)×I F flows. Here h FE (S) is parasitic
This is the DC current amplification factor of a PNP transistor and usually has a value of about 1 to 10, so this parasitic effect current cannot be ignored in circuit design.

このような寄生トランジスタの電流増幅率を下
げて寄生効果を減ずるために共通の部分に第1図
と同一の符号を付した第3図に示すように、Pア
ノード領域5とN+カード領域6とを囲むP領域
9をアノード領域5と同時に拡散法により形成
し、このP領域9カソード電極8に接続する構造
が公知である。この結果Pエミツタ領域5、Nベ
ース領域4、Pコレクタ領域9よりなる横形
PNPトランジスタのベース領域4とコレクタ領
域9が直結され、エミツタ領域5に接続された電
極7をアノードとし、ベース領域9に接続された
電極8をカソードとするPNPトランジスタ形の
ダイオードが形成される。
In order to reduce the parasitic effect by lowering the current amplification factor of such a parasitic transistor, as shown in FIG. 3, in which common parts are given the same reference numerals as in FIG . A structure is known in which a P region 9 surrounding the anode region 5 is formed simultaneously with the anode region 5 by a diffusion method, and this P region 9 is connected to the cathode electrode 8. As a result, a horizontal shape consisting of a P emitter region 5, an N base region 4, and a P collector region 9 is formed.
A PNP transistor type diode is formed in which the base region 4 and collector region 9 of the PNP transistor are directly connected, the electrode 7 connected to the emitter region 5 serves as an anode, and the electrode 8 connected to the base region 9 serves as a cathode.

このようなダイオード素子は第4図に示すよう
な等価回路で表わされる。アノード電極7とカソ
ード電極8の間を順バイアスした場合、ダイオー
ドの順電流IFは横形PNPトランジスタにおけるベ
ース電流IB′とコレクタ電流IC′の和となり、 IF=〔1+hFE(H)〕×IB′ で表わされる。ここでhFE(H)は横形PNPトランジ
スタの直流電流増幅率で IB′=IF/1+hFE(H) となり、第1、第2図の場合と同様に形成される
Pエミツタ領域5、N層4およびP形基板1から
なる寄生PNPトランジスタのコレクタ電流IS′は IS′=hFE(S)×IB′=IF×(hFE(S)/1+hFE(H)) となつて第1、第2図の場合の1/hFE(H)に減少
する。
Such a diode element is represented by an equivalent circuit as shown in FIG. When the anode electrode 7 and the cathode electrode 8 are forward biased, the forward current I F of the diode is the sum of the base current I B ' and collector current I C ' in the lateral PNP transistor, and I F = [1+h FE (H) ]×I B ′. Here, h FE (H) is the DC current amplification factor of the lateral PNP transistor, I B ′=I F /1+h FE (H), and the P emitter region 5, which is formed in the same way as in the cases of FIGS. 1 and 2, The collector current I S ′ of the parasitic PNP transistor consisting of the N layer 4 and the P-type substrate 1 is I S ′=h FE(S) ×I B ′=I F ×(h FE(S) /1+h FE (H)) Therefore, it decreases to 1/h FE (H) in the case of Figures 1 and 2.

しかしこの構造においては、アノード電極7か
らシリコン配線導体71はP層9を越えなければ
ならない。従つて、ダイオードの逆バイアス時に
配線導体71の下にN形エピタキシヤル層4の酸
化膜10の直下にできるP形反転層11によりア
ノード側のP層5とカソード電極8に接続された
P層9が短絡されるので、ダイオードの逆耐圧が
低下し、高耐圧のダイオードが得られない。
However, in this structure, the silicon wiring conductor 71 from the anode electrode 7 must go beyond the P layer 9. Therefore, when the diode is reverse biased, the P layer connected to the P layer 5 on the anode side and the cathode electrode 8 by the P type inversion layer 11 formed directly under the oxide film 10 of the N type epitaxial layer 4 under the wiring conductor 71. 9 is short-circuited, the reverse breakdown voltage of the diode decreases, making it impossible to obtain a diode with high breakdown voltage.

本発明はこのような集積回路内に形成されるト
ランジスタ形のダイオードのチヤネル効果による
耐圧低下を防止できる構造を提供することを目的
とする。
An object of the present invention is to provide a structure that can prevent a decrease in breakdown voltage due to the channel effect of a transistor-type diode formed in such an integrated circuit.

この目的は一導電形の半導体基板上に設けられ
た逆導電形の領域の表面から当該半導体基板に達
する一導電形の分離領域に囲まれた当該逆導電形
の領域内に二つの一導電形領域を受けると共に、
そのうちの一方と他方との間に当該一方を挟む位
置で当該逆導電形の領域に接続して一方の電極と
するための当該逆導電形の領域上に設けられた一
方の導体と、前記二つの一導電形領域のうちの他
方を他方の電極とするために当該逆導電形の領域
上に、当該逆導電形の領域の表面に沿つて当該逆
導電形の領域上外にまで設けられた他方の導体と
を設け、前記二つの一導電形領域のうちの前記一
方は前記他方を前記他方の導体の直下に達しない
範囲で囲んで設けられていることによつて達成さ
れる。
The purpose of this is to create two one-conductivity types within a region of one conductivity type surrounded by a separation region of one conductivity type that extends from the surface of a region of one conductivity type provided on a semiconductor substrate of one conductivity type to the semiconductor substrate. Along with receiving the area,
one conductor provided on the region of the opposite conductivity type to connect to the region of the opposite conductivity type to form one electrode at a position sandwiching the one conductor between one of the conductors and the other; In order to use the other of the two conductivity type regions as the other electrode, it is provided on the region of the opposite conductivity type, along the surface of the region of the opposite conductivity type, even above and outside the region of the opposite conductivity type. This is achieved by providing the other conductor, and the one of the two one-conductivity-type regions is provided so as to surround the other conductor in a range that does not reach directly under the other conductor.

以下図を引用して本発明の実施例について説明
する。第5図および第6図において、第1図、第
3図と共通の部分には同一の符号が付されてい
る。P形シリコン基板1の上にエピタキシヤル法
で設けられたN層4の内部に拡散法によりP領域
5、N+領域6のほかにP領域9が形成されてい
る。P領域9はP領域5とN+領域6の間に介在
し、N+領域6は囲まないでP領域5を囲み、か
つN+領域6と反対の側が開いている。P領域9
とN+領域6は電極8により接続されている。こ
の結果第3図の場合と同様に、Pエミツタ領域
5、Nベース領域4、Pコレクタ領域9よりなる
横形PNPトランジスタが形成され、エミツタ領
域5に接続された電極7をアノードとし、電極8
をカソードとするPNPトランジスタ形の寄生効
果の少ないダイオードが形成される。この場合、
Pコレクタ領域9はエミツタ領域6を等間隔で3
方で囲むので、全領域が一様にコレクタとして働
き、より有効なトランジスタ効果が得られる。ま
た電極7はP領域9の開いた部分の上に延びてい
るので、P領域5とP領域9との間にP形反転層
の生ずるおそれがなく耐圧の低下がない。
Embodiments of the present invention will be described below with reference to the drawings. In FIGS. 5 and 6, parts common to those in FIGS. 1 and 3 are given the same reference numerals. In addition to a P region 5 and an N + region 6, a P region 9 is formed by a diffusion method inside an N layer 4 provided on a P type silicon substrate 1 by an epitaxial method. P region 9 is interposed between P region 5 and N + region 6, surrounds P region 5 without surrounding N + region 6, and is open on the side opposite to N + region 6. P area 9
and N + region 6 are connected by electrode 8. As a result, as in the case of FIG. 3, a lateral PNP transistor is formed, which consists of a P emitter region 5, an N base region 4, and a P collector region 9. The electrode 7 connected to the emitter region 5 is used as an anode, and the electrode 8
A PNP transistor-type diode with less parasitic effects is formed with the cathode. in this case,
The P collector region 9 connects the emitter region 6 with three equal intervals.
Since the transistor is surrounded by a double layer, the entire region uniformly acts as a collector, and a more effective transistor effect can be obtained. Further, since the electrode 7 extends over the open portion of the P region 9, there is no risk of a P-type inversion layer being formed between the P region 5 and the P region 9, and there is no drop in breakdown voltage.

本発明の原理による寄生効果の低減は、第7図
に示すようにN形エピタキシヤル層4内に拡散法
によりP領域15を設け、その中にさらに拡散法
によつてN領域16を形成し、N層4内に設けた
N+領域17とP領域15とを接続する電極18
をアノードとし、N領域16に接続する電極19
をカソードにしたNPNトランジスタ形のダイオ
ードにおいても得られる。すなわち、この場合は
P層1、N層4、P領域15、N領域16形成さ
れる寄生サイリスタの第2層4と第3層15が短
絡されるので、寄生サイリスタのサイリスタ動作
が阻止される。しかし第7図の構造ではアノード
端子18とカソード端子19が逆バイアスされた
場合の耐圧は、P領域15とN領域16の間の
PN接合で決まるが、P領域15はエピタキシヤ
ル層4内に拡散によつて形成されているので、高
い耐圧を得ることができない。これに対し本発明
による第5図の構造では逆耐圧はN形エピタキシ
ヤル層4とP領域5の間のPN接合で決まり、N
層4の抵抗を高くすることにより高い逆耐圧を得
ることができる。
In order to reduce the parasitic effect according to the principle of the present invention, as shown in FIG. 7, a P region 15 is provided in the N-type epitaxial layer 4 by a diffusion method, and an N region 16 is further formed therein by a diffusion method. , provided in N layer 4
Electrode 18 connecting N + region 17 and P region 15
is an anode, and an electrode 19 connected to the N region 16
It can also be obtained in an NPN transistor type diode with a cathode of That is, in this case, the second layer 4 and third layer 15 of the parasitic thyristor formed by the P layer 1, N layer 4, P region 15, and N region 16 are short-circuited, so that the thyristor operation of the parasitic thyristor is prevented. . However, in the structure shown in FIG. 7, when the anode terminal 18 and the cathode terminal 19 are reverse biased, the withstand voltage between the P region 15 and the N region 16 is
Although it is determined by a PN junction, since the P region 15 is formed in the epitaxial layer 4 by diffusion, a high breakdown voltage cannot be obtained. On the other hand, in the structure shown in FIG. 5 according to the present invention, the reverse breakdown voltage is determined by the PN junction between the N type epitaxial layer 4 and the P region 5;
By increasing the resistance of layer 4, a high reverse breakdown voltage can be obtained.

以上述べるように本発明はバイポーラ集積回路
用のダイオードをコレクタ領域かエミツタ領域を
囲む横形トランジスタのベース、エミツタ接合を
利用してダイオードを構成することにより寄生効
果電流を低減せしめ、さらにコレクタ領域の一方
を開いておいてアノードに接続される導体をその
上側で引き出すことにより反転層による耐圧低下
を防いで高耐圧化可能にしたもので、100V〜
200Vクラスの電圧で直接システム制御を行うよ
うな高耐圧大容量集積回路において極めて有効に
適用できる。
As described above, the present invention reduces parasitic effect current by configuring a diode for bipolar integrated circuits using the base and emitter junctions of lateral transistors surrounding either the collector region or the emitter region, and By leaving the conductor open and pulling out the conductor connected to the anode above it, a drop in withstand voltage due to the inversion layer is prevented, making it possible to increase the withstand voltage from 100V to
It can be extremely effectively applied to high-voltage, large-capacity integrated circuits that directly control systems with voltages in the 200V class.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は集積回路用ダイオードの従来例の断面
図、第2図はその等価回路図、第3図は別の例の
断面図、第4図はその等価回路図、第5図は本発
明の一実施例の断面図、第6図はその平面図、第
7図は本発明の効果を説明するために別の横形ト
ランジスタ形ダイオードを示す断面図である。 1……P形基板、2……P形分離領域、4……
N形エピタキシヤル層(ベース領域)、5……P
エミツタ領域、7……アノード電極、8……カソ
ード電極、9……Pコレクタ領域。
Fig. 1 is a sectional view of a conventional example of a diode for integrated circuits, Fig. 2 is its equivalent circuit diagram, Fig. 3 is a sectional view of another example, Fig. 4 is its equivalent circuit diagram, and Fig. 5 is the invention of the present invention. 6 is a plan view thereof, and FIG. 7 is a sectional view showing another lateral transistor type diode for explaining the effects of the present invention. 1... P-type substrate, 2... P-type isolation region, 4...
N-type epitaxial layer (base region), 5...P
Emitter region, 7... Anode electrode, 8... Cathode electrode, 9... P collector region.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電形の半導体基板上に設けられた逆導電
形の領域の表面から当該半導体基板に達する一導
電形の分離領域に囲まれた当該逆導電形の領域内
に二つの一導電形領域を設けると共に、そのうち
の一方を他方との間に当該一方を挟む位置で当該
逆導電形の領域に接続して一方の電極とするため
の当該逆導電形の領域上に設けられた一方の導体
と、前記二つの一導電形領域のうちの他方を他方
の電極とするために当該逆導電形の領域上に、当
該逆導電形の領域の表面に沿つて当該逆導電形の
領域上外にまで設けられた他方の導体とを設け、
前記二つの一導電形領域のうちの前記一方は前記
他方を前記他方の導体の直下に達しない範囲で囲
んで設けられていることを特徴とする集積回路用
ダイオード。
1 Two regions of one conductivity type are provided in a region of one conductivity type that is surrounded by a separation region of one conductivity type that extends from the surface of a region of opposite conductivity type provided on a semiconductor substrate of one conductivity type to the semiconductor substrate. and one conductor provided on the region of the opposite conductivity type to connect one of the conductors to the region of the opposite conductivity type at a position sandwiching the one between the conductor and the other to form one electrode. , on the region of the opposite conductivity type, along the surface of the region of the opposite conductivity type, to the outside of the region of the opposite conductivity type, in order to use the other of the two regions of one conductivity type as the other electrode. and the other conductor provided,
A diode for an integrated circuit, characterized in that the one of the two one-conductivity type regions is provided so as to surround the other in a range that does not reach directly under the other conductor.
JP19205181A 1981-11-30 1981-11-30 Diode for integrated circuit Granted JPS5893291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19205181A JPS5893291A (en) 1981-11-30 1981-11-30 Diode for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19205181A JPS5893291A (en) 1981-11-30 1981-11-30 Diode for integrated circuit

Publications (2)

Publication Number Publication Date
JPS5893291A JPS5893291A (en) 1983-06-02
JPH026226B2 true JPH026226B2 (en) 1990-02-08

Family

ID=16284793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19205181A Granted JPS5893291A (en) 1981-11-30 1981-11-30 Diode for integrated circuit

Country Status (1)

Country Link
JP (1) JPS5893291A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548958A (en) * 1978-10-02 1980-04-08 Nec Corp Semiconductor device
JPS55158663A (en) * 1979-05-29 1980-12-10 Sanyo Electric Co Ltd Transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548958A (en) * 1978-10-02 1980-04-08 Nec Corp Semiconductor device
JPS55158663A (en) * 1979-05-29 1980-12-10 Sanyo Electric Co Ltd Transistor

Also Published As

Publication number Publication date
JPS5893291A (en) 1983-06-02

Similar Documents

Publication Publication Date Title
US4117507A (en) Diode formed in integrated-circuit structure
US4409606A (en) High breakdown voltage semiconductor device
US5994740A (en) Semiconductor device
JPH0324791B2 (en)
US3590345A (en) Double wall pn junction isolation for monolithic integrated circuit components
JPH0230588B2 (en)
US20010040266A1 (en) Integrated circuit with highly efficient junction insulation
JP3302275B2 (en) Semiconductor devices
US3702955A (en) Multiple emitter transistor apparatus
JPH025532A (en) P-m-p vertical isolated collector transistor
JPH049378B2 (en)
KR100867572B1 (en) High voltage integrated circuits including bipolar transistor within high voltage island area
US4814852A (en) Controlled voltage drop diode
US4131806A (en) I.I.L. with injector base resistor and schottky clamp
JPH026226B2 (en)
JPH0236558A (en) Semiconductor device
JPH055373B2 (en)
JPH0715010A (en) Protective circuit of semiconductor device
JPS6359262B2 (en)
US4303932A (en) Lateral transistor free of parisitics
JP2901275B2 (en) Semiconductor integrated circuit device
KR930005948B1 (en) Lateral type semiconductor device
JPS62104068A (en) Semiconductor integrated circuit device
JPH0474478A (en) Diode
JPS6223466B2 (en)