JPH0260584B2 - - Google Patents

Info

Publication number
JPH0260584B2
JPH0260584B2 JP54018562A JP1856279A JPH0260584B2 JP H0260584 B2 JPH0260584 B2 JP H0260584B2 JP 54018562 A JP54018562 A JP 54018562A JP 1856279 A JP1856279 A JP 1856279A JP H0260584 B2 JPH0260584 B2 JP H0260584B2
Authority
JP
Japan
Prior art keywords
bottle
shell
polished
liquid
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54018562A
Other languages
Japanese (ja)
Other versions
JPS54128821A (en
Inventor
Deyuui Kunaibu Junia Jooji
Shumiizu Jooji
Henrii Andaason Maabin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of JPS54128821A publication Critical patent/JPS54128821A/en
Publication of JPH0260584B2 publication Critical patent/JPH0260584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0509"Dewar" vessels

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液化ガスのためのデユーアびんと、そ
の製造方法に関するもので、より詳細には硝酸と
フツ化水素酸との腐食剤により化学処理した結
果、清浄で、滑らかで、梨地であり、よごれがな
く、かつ変色としみがないエツチングされた外観
を有する放射率の低い表面をもつ液体包含用デユ
ーアびんに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a deur bottle for liquefied gas and a method for manufacturing the same, and more particularly relates to a chemical treatment using corrosive agents of nitric acid and hydrofluoric acid. The result is a liquid-containing dual bottle with a low emissivity surface that is clean, smooth, matte, stain-free, and has an etched appearance that is free of discoloration and stains.

〔発明の背景〕[Background of the invention]

窒素またはヘリウムを液状低温状態に維持する
ための容器またはデユーアびんは通常金属缶とし
て形成され、その中に低温液体が装入される。こ
の缶は通常殻体により取り囲まれる。缶と殻体の
間に空間は、殻体の外側から缶の内側への熱伝導
を減少させるため排気される。それに加え、殻体
の外側から缶の内表面への輻射エネルギーの伝達
を最小にすることが通常望まれる。
Containers or bottles for keeping nitrogen or helium in a liquid cryogenic state are usually formed as metal cans into which the cryogenic liquid is charged. The can is usually surrounded by a shell. The space between the can and the shell is evacuated to reduce heat transfer from the outside of the shell to the inside of the can. In addition, it is usually desirable to minimize the transfer of radiant energy from the outside of the shell to the inside surface of the can.

従来技術においては、缶と殻体の双方を高純度
の(たとえば99%)アルミニウム合金で形成する
ことにより殻体と缶の外側との間に比較的小量の
輻射が伝えられるようになつていた。殻体の内側
と缶の外側とは通常光沢ある高度のつやにまで機
械研磨されていたが、この操作はこれら部品の機
械加工中に与えられた工具きずを実質的に除去す
るものである。缶と殻体とは機械研磨されたあ
と、やすり屑、ほこり、その他の異物を缶と殻体
の表面から除去するため蒸気脱脂されるので、こ
れらは表面は液体窒素の温度(77〓)において約
0.024という比較的低い輻射エネルギー放射率と
なつていた。輻射エネルギー放射率とは通常の方
法で、すなわち或る表面により発せられる放射
と、同じ温度において完全黒体により発せられる
放射との比として定義できる。
In the prior art, a relatively small amount of radiation is transmitted between the shell and the outside of the can by forming both the can and the shell from high-purity (e.g., 99%) aluminum alloy. Ta. The inside of the shell and the outside of the can were usually machine polished to a high gloss polish, a process that substantially removed tool marks inflicted during machining of these parts. After the cans and shells are mechanically polished, they are steam degreased to remove filings, dust, and other foreign matter from the surfaces of the cans and shells, so that the surfaces are heated at liquid nitrogen temperatures (77°). about
It had a relatively low radiant energy emissivity of 0.024. Radiant Energy Emissivity can be defined in the usual way, ie as the ratio of the radiation emitted by a surface to the radiation emitted by a perfect black body at the same temperature.

殻体と缶の放射率を減少させるため従来技術の
技法はある目的にとつて満足すべきものではある
が、他の目的にとつては放射率が十分減少されて
はいなかつた。特に、窒素を長期間(たとえば3
ケ月間)液状に保とうとするときは、従来技術の
缶と殻体の放射率は、アルミニウムを研磨しただ
けでは、高すぎるものであつた。
While prior art techniques for reducing shell and can emissivity have been satisfactory for some purposes, emissivity has not been sufficiently reduced for other purposes. In particular, use nitrogen for long periods of time (e.g.
The emissivity of prior art cans and shells was too high for just polished aluminum when trying to maintain a liquid state (for several months).

〔発明の概要〕[Summary of the invention]

本発明によれば、液体窒素用のデユーアびんに
利用するアルミニウム合金シート製のへら絞り
(スピニング加工)缶および殻体の放射率が実質
的に減少される。この放射率の減少は、殻体内表
面と缶外表面とが、研磨したあと硝酸とフツ化水
素酸とで化学処理されることの結果、清浄で
(clean)、滑らかで(smooth)、梨地で(matte)
あり、よごれがなく(smutfree)、つ変色
(dicoloration)としみ(stains)がないエツチン
グした外観を有するから、得られるのである。こ
こで「清浄」(clean)とは、アルミニウム表面上
に汚物、付着物または不純物がない状態をいう。
「滑らか」(smooth)とは、アルミニウム表面が
不規則ではなく、粗くなくかつ突起物がない状態
(金属仕上げされたこと)をいう。「梨地」
(matte)とは、光を反射するが光沢が鈍く、結
像する程には鏡状ではない程度に白色または灰白
色に一様に仕上げられた滑らかな表面をいう。
「よごれがなく」(smut free)とは、アルミニウ
ム表面に酸洗い後反応生成物が残つていないこと
をいい、すなわち、その表面が灰色または黒色で
ないことをいう。「変色」(discoloration)とは
アルミニウム表面の正常な色彩が全体的に損なわ
れることをいい、「しみ」(stain)とはアルミニ
ウム表面の色彩が部分的に変化することをいう。
「エツチングした外観」とは、アルミニウム表面
を腐食させた外観をいう。これら表面は、所望の
外観が達成されるまで(通常は0.0254mmを食刻し
たとき生ずる)15秒から45秒の間腐食剤により化
学処理される。表面が適当時間以下しか処理され
ないと、清浄化、梨地仕上げ、またはよごれ取り
は十分にはなされず、変色したり、しみになつた
りすることがある。もし表面が過剰に長時間処理
されると、巨視的な凹みができ、滑らかでなくな
る。いずれの場合も、表面の放射率は適切処理時
間の場合の放射率に比して増大する。本発明に従
つて作られた表面を有するデユーアびんについて
行なつた試験は、従来技術に比して放射率が約35
%減少したことを示す。
According to the present invention, the emissivity of spun cans and shells made of aluminum alloy sheet utilized in deur bottles for liquid nitrogen is substantially reduced. This reduction in emissivity is due to the fact that the inner shell surface and the outer surface of the can are polished and then chemically treated with nitric acid and hydrofluoric acid, resulting in a clean, smooth, satin finish. (matte)
It has an etched appearance that is smooth, smut-free, and free of dicoloration and stains. Here, "clean" refers to the absence of dirt, deposits, or impurities on the aluminum surface.
"Smooth" refers to the aluminum surface being free of irregularities, roughness, and protrusions (metallic finish). "Nashiji"
(matte) refers to a smooth surface that reflects light but has a dull luster and is not mirror-like enough to form an image, with a uniformly white or grayish white finish.
"Smut free" refers to the absence of reaction products remaining on the aluminum surface after pickling, ie, the surface is not gray or black. "Discoloration" refers to the general loss of the normal color of the aluminum surface, and "stain" refers to the local change in color of the aluminum surface.
"Etched appearance" refers to the appearance of corroded aluminum surfaces. These surfaces are chemically treated with an caustic agent for 15 to 45 seconds (typically occurs when etching 0.0254 mm) until the desired appearance is achieved. If a surface is treated for less than a reasonable amount of time, it will not be fully cleaned, satined, or soiled and may become discolored or stained. If the surface is treated for too long, it will develop macroscopic depressions and will no longer be smooth. In either case, the emissivity of the surface increases relative to the emissivity for a suitable treatment time. Tests conducted on deur bottles having surfaces made in accordance with the present invention have shown that the emissivity is approximately 35% compared to the prior art.
% decrease.

アルミニウムシートは機械的、電気化学的また
は化学のいずれかにより研磨されうる。機械的手
段を用いるときは、手続は従来技術と同じであ
る。電気化学的、すなわち電解研磨はフツ化ホウ
素酸(2.5%重量)の29.4℃浴内で、0.011〜0.22
アンペア/平方フイートの電流密度および15〜30
ボルトの電圧において5〜10分間実行される(米
国特許第2108603号)。化学的研磨を用いるとき
は、米国特許第2729551号に記載のようにリン酸
と硝酸の水溶浴で、または米国特許第2650157号
に記載のようにリン酸、酢酸および硝酸の浴で研
磨される。
Aluminum sheets can be polished either mechanically, electrochemically or chemically. When using mechanical means, the procedure is the same as in the prior art. Electrochemical, i.e., electropolishing in a 29.4 °C bath of fluoroboric acid (2.5% by weight), 0.011–0.22
Current density in amps/sq ft and 15 to 30
It is carried out for 5-10 minutes at a voltage of volts (US Pat. No. 2,108,603). When chemical polishing is used, it is polished with an aqueous bath of phosphoric and nitric acid as described in U.S. Pat. No. 2,729,551 or with a bath of phosphoric, acetic and nitric acids as described in U.S. Pat. .

アルミニウム表面が従来も機械研磨のあと硝酸
とフツ化水素酸の腐食剤で処理されていたことは
認められるが、従来技術の技法は一般に真空装置
の製造に関したものであつて、そこでは放射率は
問題ではなかつた。本発明は従来技術の技法を輻
射エネルギー放射率の減少という予期されなかつ
た結果の実現のため利用して、低温デユーアびん
を液体窒素温度に維持するのを助けようとするも
のである。
While it is recognized that aluminum surfaces have traditionally been treated with nitric and hydrofluoric acid caustics after mechanical polishing, prior art techniques generally relate to the manufacture of vacuum equipment, where emissivity was not a problem. The present invention seeks to utilize prior art techniques to achieve the unexpected result of reduced radiant energy emissivity to assist in maintaining cryogenic dua bottles at liquid nitrogen temperatures.

本発明の他の態様によれば、液体窒素用の缶と
デユーアびんの外殻との間の真空空間には、殻体
の内表面および缶の外表面と同じ低い放射率特性
を備えた両面を有するへら絞りアルミニウム合金
製の第2殻体が含まれる。このため第2殻体の外
表面は第1殻体の内表面から発する小比率の輻射
を吸収し、第2殻体の内表面は缶の方向へ少量の
輻射エネルギーを発する。
According to another aspect of the invention, the vacuum space between the can for liquid nitrogen and the outer shell of the duer bottle has two surfaces with the same low emissivity properties as the inner surface of the shell and the outer surface of the can. A second shell made of a spatula-drawn aluminum alloy is included. The outer surface of the second shell thus absorbs a small proportion of the radiation emanating from the inner surface of the first shell, and the inner surface of the second shell emits a small proportion of radiant energy in the direction of the can.

〔発明の目的〕[Purpose of the invention]

従つて本発明の目的は新規改良に係る液体包含
用デユーアびんとその製造方法を提供することで
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a new and improved dual-use bottle for containing liquids and a method of manufacturing the same.

本発明の他の目的は輻射エネルギー放射率を減
少させた液体包含用デユーアびんとその製造方法
を提供することである。
Another object of the present invention is to provide a dual-use bottle for containing liquids with reduced radiant energy emissivity and a method for manufacturing the same.

本発明の他の目的は、例えば液体窒素をきわめ
て長期間、たとえば90日間貯蔵することのできる
新規改良に係る液体包含用デユーアびんと、かよ
うなデユーアびんの製造方法を提供することであ
る。
Another object of the invention is to provide a new and improved deur bottle for containing liquids, which is capable of storing, for example, liquid nitrogen for a very long period of time, for example 90 days, and a method for manufacturing such a deur bottle.

以上の目的およびその他の目的、特徴ならびに
利点は、以下図面を参照しつつ本発明の好適実施
態様について説明するところから明らかとなるで
あろう。
The above objects and other objects, features, and advantages will become apparent from the following description of preferred embodiments of the present invention with reference to the drawings.

〔実施例の説明〕[Explanation of Examples]

図面を参照すると、デユーアびん10が核磁気
共鳴(NMR)分光計に利用されるものとして図
示されている。この分光計は、超伝導ソレノイド
コイル11を含む。このコイル11は、ガラスび
ん13内に位置する試料12を通つてコイル縦軸
線方向に比較的高い強度の磁界H0を与える。試
料12は、rfパルス源15によりコイル14に与
えられるrfエネルギーにより核磁気共鳴状態に励
起される。コイル14はその軸線が磁界H0に直
角になるように巻かれる。試料12に近接配置さ
れたピツクアツプコイル16は、試料12から輻
射されるエネルギーに応答するもので、適当な信
号をrf受信器17に与える。コイル16は、その
軸線がコイル14の軸線に、および磁界H0の方
向にともに直角をなすように配置される。受信器
17はX−Y記録器18へ送られる出力を導くた
め適当なフーリエ分析器を包含してもよく、この
記録器は発信器(パルス源)15の異なる周波数
に対する試料13のスペクトルレスポンスを図表
化する。電力は最初DC電源19によりコイル1
1に供給され、コイルが持続的な超伝導モードで
動作しだすと電源はコイルから切離される。
Referring to the drawings, a dual bottle 10 is illustrated as being utilized in a nuclear magnetic resonance (NMR) spectrometer. The spectrometer includes a superconducting solenoid coil 11. This coil 11 provides a relatively high strength magnetic field H 0 through the sample 12 located within the vial 13 in the direction of the longitudinal axis of the coil. Sample 12 is excited into a nuclear magnetic resonance state by rf energy applied to coil 14 by rf pulse source 15 . The coil 14 is wound so that its axis is perpendicular to the magnetic field H 0 . A pickup coil 16 located close to the sample 12 is responsive to the energy radiated from the sample 12 and provides an appropriate signal to an RF receiver 17. The coil 16 is arranged such that its axis is perpendicular to both the axis of the coil 14 and to the direction of the magnetic field H 0 . Receiver 17 may include a suitable Fourier analyzer to direct the output to an X-Y recorder 18, which records the spectral response of sample 13 to different frequencies of transmitter (pulse source) 15. Diagram. Power is initially supplied to coil 1 by DC power supply 19.
1 and the power is disconnected from the coil when the coil begins to operate in a sustained superconducting mode.

コイル11は、缶24内に含まれる液体ヘリウ
ム貯槽23に取り巻かれた円筒21内に配置され
ているので、液体ヘリウムの温度(4.2〓)で超
伝導状態に維持されている。缶24は缶25によ
り形成される液体窒素貯槽の下にある。缶24と
25はデユーアびんの外側を形成する殻体26の
内側にある。缶24の外面と殻体26の内面との
間は、缶25が位置している所を除いて、真空部
である。真空部内には熱シールド27,28,2
9がある。シールド27は缶24の外表面とシー
ルド28の内表面との間、ならびに缶25の床3
1と缶24の外表面との間に位置している。シー
ルド29はシールド28の外壁と殻体26の内壁
との間、ならびに缶25の側壁32および屋根3
3と殻体26の内壁との間に位置している。
The coil 11 is placed in a cylinder 21 surrounded by a liquid helium reservoir 23 contained within a can 24, so that it is maintained in a superconducting state at the temperature of liquid helium (4.2〓). Can 24 is below the liquid nitrogen reservoir formed by can 25. Cans 24 and 25 are inside a shell 26 that forms the outside of the deur bottle. There is a vacuum between the outer surface of the can 24 and the inner surface of the shell 26, except where the can 25 is located. There are heat shields 27, 28, 2 in the vacuum section.
There are 9. The shield 27 is located between the outer surface of the can 24 and the inner surface of the shield 28 as well as the floor 3 of the can 25.
1 and the outer surface of the can 24. The shield 29 is located between the outer wall of the shield 28 and the inner wall of the shell 26, as well as the side wall 32 of the can 25 and the roof 3.
3 and the inner wall of the shell 26.

缶24および25、ならびに殻体26およびシ
ールド27,28,29の各々は、アルミニウム
の百分比が非常に高いアルミニウム合金のシート
からへら絞り加工(スピニング加工)によつて形
成された実質的等温表面である。好適には、アル
ミニウム合金はAAnumber(Aluminium
Association number)1100−0で特定されるも
ので(JISの合金番号としても表され、特定され
るものであり、以下これを高純度アルミニウム合
金という)、これはレイノルズ、アルコアなどの
多くのメーカーから容易に入手しうる合金であ
る。この合金のアルミニウム含有量は最低99%、
鉄とケイ素は最高1%、銅は最高0.2%、マンガ
ンは最高0.05%、亜鉛の最高は0.1%以下である。
Cans 24 and 25, as well as shell 26 and shields 27, 28, 29, each have a substantially isothermal surface formed by spinning from a sheet of aluminum alloy with a very high percentage of aluminum. be. Preferably, the aluminum alloy is AAnumber (Aluminum
Association number) 1100-0 (it is also expressed and specified as the JIS alloy number, hereinafter referred to as high-purity aluminum alloy), and is manufactured by many manufacturers such as Reynolds and Alcoa. It is an easily available alloy. The aluminum content of this alloy is at least 99%,
Iron and silicon have a maximum of 1%, copper a maximum of 0.2%, manganese a maximum of 0.05%, and zinc a maximum of 0.1% or less.

殻体26の内表面と缶25の外表面との間で輻
射エネルギーの移動を最小にするため、殻体の内
表面、缶の外表面、およびシールド29の両表面
は、清浄で、凹みがなく、滑らかで、梨地であ
り、よごれ(smut)がなく、かつ変色としみの
エツチングした外観をもつように特殊な処理をさ
れているから、低い熱放射率をもつ。ここで、
「梨地」とは、光を反射はするが像をつくる程に
は鏡状ではない程度に、白色または灰白色に一様
に仕上げられた滑らかな表面を意味する。これら
表面のすべては、所望結果を実現するよう同じ方
法で処理される。
To minimize the transfer of radiant energy between the interior surface of the shell 26 and the exterior surface of the can 25, the interior surface of the shell, the exterior surface of the can, and both surfaces of the shield 29 are clean and pitted. It has a low thermal emissivity because it is smooth, matte, smut-free, and specially treated to have an etched appearance with no discoloration or stains. here,
"Nashiji" means a smooth surface with a uniform white or gray-white finish that reflects light but is not mirror-like enough to form an image. All of these surfaces are treated in the same way to achieve the desired results.

缶25、殻体26およびシールド29をへら絞
り加工したあと、これらは機械的、電解的または
化学的のいずれかにより研磨される。機械的研磨
は従来技術と同じで、当該表面が光沢のある高度
のつやをもつよう通常のバフ磨き操作がなされ、
その結果へら絞り加工によるすべての工具きずは
実質的に除去される。電解的研磨の場合は、29.4
℃のフツ化ホウ素酸(2.5%重量)の浴内に、
0.011〜0.022アンペア/cm2の電流密度および15〜
30ボルトの電圧において5〜10分間浸漬して研磨
がなされる。化学研磨の場合は、リン酸と硝酸の
水溶浴、またはリン酸、酢酸および硝酸の浴に浸
漬して、研磨がなされる。電解研磨または化学研
磨は、遥かに安価で従つて機械研磨より望ましい
ものであり、前述のように実施しうる。表面を研
磨したのち、部品はほこり、やすり屑、その他の
異物を除去するため、蒸気を発する液体トリクロ
ロエチレン浴内で蒸気脱脂される。ついで部品は
オーカイト(Oakite:商標、これはオーカイ
ト・オプロダクツ・インコーポレイテツド,
NY,NYから入手可能である。)27などのよう
な洗剤で清浄にされ、これは熱水すすぎにより部
品から除去される。
After the can 25, shell 26 and shield 29 are drawn, they are either mechanically, electrolytically or chemically polished. Mechanical polishing is the same as in the prior art, in which a normal buffing operation is carried out so that the surface has a high gloss luster;
As a result, all tool flaws due to the spatula drawing process are virtually eliminated. For electrolytic polishing, 29.4
in a bath of fluoroboric acid (2.5% by weight) at °C.
Current density from 0.011 to 0.022 ampere/ cm2 and from 15 to
Polishing is done by soaking for 5-10 minutes at a voltage of 30 volts. In the case of chemical polishing, polishing is performed by immersion in an aqueous bath of phosphoric acid and nitric acid, or a bath of phosphoric acid, acetic acid, and nitric acid. Electropolishing or chemical polishing is much cheaper and therefore more desirable than mechanical polishing, and may be performed as described above. After the surface has been polished, the parts are vapor degreased in a steaming liquid trichlorethylene bath to remove dust, shavings, and other foreign matter. Next, the parts are Oakite (trademark), which is manufactured by Oakite Products, Inc.
Available from New York, NY. ) 27 or the like, which is removed from the parts by hot water rinsing.

つぎに、当該表面は、規定濃度は従来の真空装
置の製造に関する場合と同じであるが体積の割合
が約20%(体積)の硝酸、4%(体積)のフツ化
水素酸、および残余の脱イオン水から成る食刻溶
液で、室温のもと化処理される。腐食剤は15〜45
秒間表面を侵食し、その結果約0.0254mmが除去さ
れるので、化学研磨中に表面に付着したかもしれ
ないリン酸塩またはクロム酸塩は除去され、表面
は所望の滑らかで、梨地であり、よごれがなく、
エツチングした外観となり、これは変色もしみも
ない。最初、食刻浴は前記の比率をもつ。しばら
く使用したあと、比率はいくらか変化する。酸含
量は比重と化学分析の定期的試験に応じて調節さ
れる。もし試験で酸百分率の著しい変化、たとえ
ば百分率で約4分の1の減少を示したなら、追加
量の酸を加えるか、または浴を入れてあるタンク
をきれいにし、新しい混合物を使用する。
The surface is then coated with nitric acid of approximately 20% (by volume), hydrofluoric acid of 4% (by volume), and the remainder of The etching solution consists of deionized water at room temperature. Corrosives are 15-45
erodes the surface for seconds, resulting in removal of approximately 0.0254mm, so any phosphates or chromates that may have adhered to the surface during chemical polishing are removed and the surface is as smooth and matte as desired. No dirt,
It has an etched appearance with no discoloration or staining. Initially, the etching bath has the above proportions. After using it for a while, the ratio will change somewhat. Acid content is adjusted according to periodic tests of specific gravity and chemical analysis. If the test shows a significant change in the acid percentage, such as a decrease in percentage by a factor of about 4, add additional amounts of acid or clean the tank containing the bath and use a new mixture.

部品はついで冷たい流し水ですすがれ、ついで
脱イオン水で2度すすがれる。2度目の脱イオン
水すすぎに続いて、部品は適当なトンネル内で乾
燥され、冷却され、ついで保護の目的のためポリ
エチレン袋へ入れられる。
The parts are then rinsed under cold running water and then rinsed twice with deionized water. Following a second deionized water rinse, the parts are dried in a suitable tunnel, cooled, and then placed in a polyethylene bag for protection.

デユーアびんは種々の部品を図示のように一体
に適宜結合することにより組立てられる。つい
で、殻体26の孔35を通じてデユーアびん10
全体を真空吸引すると、種々の缶とシールドの間
のすべての領域は約10-5トールに排気される。つ
いで孔36から缶25に液体窒素を満たすと、缶
23は最終的に液体窒素の温度に下げられる。つ
いで缶23に孔(図示せず)を通じて液体ヘリウ
ムを満たして、超伝導ソレノイド11の温度を液
体ヘリウムの温度、4.2〓に下げる。
The duer bottle is assembled by suitably joining the various parts together as shown. Then, the duer bottle 10 is inserted through the hole 35 of the shell 26.
Vacuuming the entire area evacuates all areas between the various cans and shields to approximately 10 -5 Torr. The can 25 is then filled with liquid nitrogen through the hole 36, and the can 23 is finally lowered to the temperature of liquid nitrogen. The can 23 is then filled with liquid helium through a hole (not shown) to lower the temperature of the superconducting solenoid 11 to the temperature of the liquid helium, 4.2㎓.

本発明に従つて調整された殻体26、缶25お
よびシールド29の表面は従来技術のものより輻
射エネルギー放射率が著しく低いという効果を奏
することが認められた。缶25、殻体26および
シールド29を製作するのに使用されたのと同じ
合金から製作された従来技術のへら絞りアルミニ
ウム表面は、機械的、電気化学的または化学的研
磨をし、しかし硝酸およびフツ化水素酸混合物で
食刻はしないと一般に77〓で約0.024の輻射エネ
ルギー放射率をもつ。これに対し、硝酸およびフ
ツ化水素酸腐食剤で化学処理した本発明の表面
は、77〓で約0.016の輻射エネルギー放射率をも
つ。その輻射エネルギー放射率は次のように測定
されたものである。標準デユーアびんと、モニタ
ーされるべき新たな材料で、標準デユーアびんと
同じ形状に作つたデユーアびんとを用意し、それ
らに冷媒を供給して、単位時間当たりの冷媒の蒸
発率をモニターする。それらを比較したのであ
る。以上から、本発明の硝酸およびフツ化水素酸
浴で処理した非常に純度の高い1100〜0へら絞り
シート・アルミニウム合金部品の放射率特性は約
35%改良されることがわかつた。
It has been found that the surfaces of shell 26, can 25 and shield 29 prepared in accordance with the present invention provide a significantly lower radiant energy emissivity than those of the prior art. Prior art spatula-drawn aluminum surfaces made from the same alloys used to fabricate can 25, shell 26 and shield 29 have been mechanically, electrochemically or chemically polished, but with nitric acid and If not etched with a hydrofluoric acid mixture, it generally has a radiant energy emissivity of about 0.024 at 77〓. In contrast, the surfaces of the present invention chemically treated with nitric acid and hydrofluoric acid etchants have a radiant energy emissivity of about 0.016 at 77〓. The radiant energy emissivity was measured as follows. A standard duer bottle and a duer bottle made of a new material to be monitored in the same shape as the standard duer bottle are prepared, refrigerant is supplied to them, and the evaporation rate of the refrigerant per unit time is monitored. I compared them. From the above, the emissivity characteristics of the extremely pure 1100~0 Hera drawn sheet aluminum alloy parts treated with the nitric acid and hydrofluoric acid baths of the present invention are approximately
It was found that the improvement was 35%.

従つて、本発明によるデユーアびんは、放射率
が小さく熱の移動が小さいので、よく低温を保持
する。そのため、液体窒素の蒸発を遅くすること
ができ、液体窒素を長期間、すなわち90日間保存
することができ、低温技術において貢献するとこ
ろ大である。
Therefore, the duer bottle according to the present invention has a low emissivity and low heat transfer, so it retains a low temperature well. Therefore, the evaporation of liquid nitrogen can be slowed down, and liquid nitrogen can be stored for a long period of time, that is, 90 days, making it a great contribution to low-temperature technology.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に従い製作されたデユーアびんの断
面図である。 10……デユーアびん、23……液体ヘリウム
貯槽、24……へら絞り加工した缶、25……缶
(液体窒素貯槽)、26……殻体、27,28,2
9……熱シールド。
The figure is a cross-sectional view of a durable bottle made in accordance with the present invention. 10... Duur bottle, 23... Liquid helium storage tank, 24... Spatula-drawn can, 25... Can (liquid nitrogen storage tank), 26... Shell body, 27, 28, 2
9...Heat shield.

Claims (1)

【特許請求の範囲】 1 液体包含用の高純度アルミニウム合金製のへ
ら絞り缶と、 この缶を取り巻く高純度アルミニウム合金製の
へら絞り殻体と、 から成り、 この殻体は缶の外表面に面する内表面を有し、
これら表面間には真空が維持され、 前記表面のすべてが研磨され、ついで硝酸とフ
ツ化水素酸の液状腐食剤で処理されることで、こ
れら表面が清浄で、滑らかで、梨地であり、よご
れがなく、かつ変色としみがないエツチングした
外観を有して77〓で0.016を越えない輻射エネル
ギー放射率をもち、 そのため内表面から外表面に向かつて輻射され
るエネルギーが実質的に減少され、かつ外表面に
より吸収される熱が減少され、その缶を通つて液
体へ伝導される熱が減少された、 ことを特徴とする、液体を低温に維持するデユ
ーアびん。 2 特許請求の範囲第1項記載のデユーアびんで
あつて、 へら絞り高純度アルミニウム合金が実質的にす
べての工具きずを除去するため光沢のある高度の
つやにまで機械研磨されている、ところのデユー
アびん。 3 特許請求の範囲第1項記載のデユーアびんで
あつて、 へら絞り高純度アルミニウムが実質的にすべて
の工具きずを除去するため光沢のある高度のつや
にまで化学研磨され、腐食剤が化学研磨により表
面に付着したすべての化学剤を除去する、ところ
のデユーアびん。 4 高純度のアルミニウム合金のへら絞りシート
製の缶と、高純度のアルミニウム合金のへら絞り
シート製の殻体とから低温液デユーアびんを製造
する方法であつて、 実質的にすべての工具のきずを除くために缶の
外表面を光沢のある高度のつやにまで研磨する工
程と、 実質的にすべての工具のきずを除くために殻体
の内表面を光沢のある高度のつやにまで研磨する
工程と、 缶の外表面を滑らかで、梨地であり、よごれが
なく、かつ変色としみのないエツチングされた外
観を有して77〓で0.016を越えない輻射エネルギ
ー放射率をもつまで硝酸とフツ化水素酸の液状腐
食剤で化学処理する工程と、 殻体の内表面を滑らかで、梨地であり、よごれ
がなく、かつ変色としみのないエツチングされた
外観を有し77〓で0.016を越えない輻射エネルギ
ー放射率をもつまで硝酸とフツ化水素酸の液状腐
食剤で化学処理する工程と、 前記化学処理工程を停止する工程と、 殻体が缶を取り囲むようにデユーアびんを組み
立てる工程と、 殻体と缶との間を排気する工程と から成る方法。 5 特許請求の範囲第4項記載の方法であつて、
表面が機械研磨される、ところの方法。 6 特許請求の範囲第4項記載の方法であつて、 表面が化学研磨され、腐食剤が化学研磨により
表面に付着した化学剤を除去する、ところの方
法。 7 特許請求の範囲第4項記載の方法であつて、 表面が電気化学的に研磨される、ところの方
法。 8 特許請求の範囲第4項記載の方法であつて、 腐食剤が約4%(体積)のフツ化水素酸と20%
(体積)の硝酸とである、ところの方法。 9 特許請求の範囲第4項記載の方法であつて、 表面が腐食剤により15秒から45秒間処理され
る、ところの方法。
[Scope of Claims] 1. Consists of a spatula-drawn can made of a high-purity aluminum alloy for containing liquid, and a spatula-drawn shell made of a high-purity aluminum alloy surrounding this can, and this shell body is attached to the outer surface of the can. having an inner surface facing;
A vacuum is maintained between these surfaces, and all of the surfaces are polished and then treated with liquid etchants of nitric and hydrofluoric acids to ensure that these surfaces are clean, smooth, matte, and free from dirt. and has an etched appearance free from discoloration and blotches, and has a radiant energy emissivity of not more than 0.016 at 77〓, so that the energy radiated from the inner surface toward the outer surface is substantially reduced, and CLAIMS 1. A detour bottle for maintaining a liquid at a low temperature, characterized in that the heat absorbed by the outer surface is reduced and the heat conducted through the can to the liquid is reduced. 2. A dua bottle according to claim 1, wherein the high purity aluminum alloy is machine polished to a high gloss luster to remove substantially all tool marks. Dua bottle. 3. A duer bottle as claimed in claim 1, wherein the high-purity, spatula-drawn aluminum is chemically polished to a high gloss polish to remove substantially all tool marks, and the corrosive agent is chemically polished to remove substantially all tool marks. The deur bottle removes all chemical agents that have adhered to the surface. 4. A method for producing a low-temperature liquid dua bottle from a can made of a high-purity aluminum alloy sheet and a shell made of a high-purity aluminum alloy sheet, which eliminates substantially all tool flaws. polishing the outer surface of the can to a high gloss polish to remove any tool marks; and polishing the inner surface of the shell to a high gloss polish to remove substantially all tooling scratches. Process and fluoride with nitric acid until the outer surface of the can is smooth, matte, free from dirt, has an etched appearance free from discoloration and staining, and has a radiant energy emissivity not exceeding 0.016 at 77㎓. A process of chemical treatment with a liquid caustic agent of hydrogen acid and a radiation radiation not exceeding 0.016 at 77〓, giving the inner surface of the shell a smooth, matte, stain-free, etched appearance without discoloration or staining. chemically treating with a liquid caustic agent of nitric acid and hydrofluoric acid until it has an energy emissivity; stopping the chemical treatment; assembling a de-ure bottle so that the shell surrounds the can; and the step of evacuating the space between the can and the can. 5. The method according to claim 4, comprising:
A method in which the surface is mechanically polished. 6. The method according to claim 4, wherein the surface is chemically polished and a corrosive agent is used to remove the chemical agent attached to the surface by chemical polishing. 7. The method according to claim 4, wherein the surface is electrochemically polished. 8. The method according to claim 4, wherein the caustic agent is about 4% (by volume) of hydrofluoric acid and 20% (by volume) of hydrofluoric acid.
(volume) of nitric acid. 9. The method of claim 4, wherein the surface is treated with a corrosive agent for 15 to 45 seconds.
JP1856279A 1978-02-21 1979-02-21 Dewar vessel and method of manufacturing same Granted JPS54128821A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87929078A 1978-02-21 1978-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63329579A Division JPH01251677A (en) 1978-02-21 1988-12-28 Dewer bottle and its manufacture

Publications (2)

Publication Number Publication Date
JPS54128821A JPS54128821A (en) 1979-10-05
JPH0260584B2 true JPH0260584B2 (en) 1990-12-17

Family

ID=25373827

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1856279A Granted JPS54128821A (en) 1978-02-21 1979-02-21 Dewar vessel and method of manufacturing same
JP63329579A Granted JPH01251677A (en) 1978-02-21 1988-12-28 Dewer bottle and its manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP63329579A Granted JPH01251677A (en) 1978-02-21 1988-12-28 Dewer bottle and its manufacture

Country Status (6)

Country Link
JP (2) JPS54128821A (en)
CA (1) CA1116107A (en)
CH (1) CH639744A5 (en)
DE (1) DE2906075A1 (en)
FR (1) FR2417719A1 (en)
GB (1) GB2015720B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350017A (en) * 1980-11-10 1982-09-21 Varian Associates, Inc. Cryostat structure
GB2129117B (en) * 1982-08-25 1985-12-18 Zojirushi Vacuum Bottle Co Stainless steel vacuum bottle and its production
US5417819A (en) * 1994-01-21 1995-05-23 Aluminum Company Of America Method for desmutting aluminum alloys having a highly reflective surface
JP2003068520A (en) * 2001-08-23 2003-03-07 Sumitomo Heavy Ind Ltd Freezer cooling type of superconductive magnet device
CN106939964A (en) * 2017-03-04 2017-07-11 杭州医学院 A kind of thermos bottle type liquid nitrogen container and inner bag replacement method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB814207A (en) * 1956-08-03 1959-06-03 Aro Equipment Corp Vacuum insulated vessels
US2541083A (en) * 1945-08-25 1951-02-13 Sperry Corp Electroplating on aluminum
US2643022A (en) * 1947-08-15 1953-06-23 Union Carbide & Carbon Corp Radiation shield supports in vacuum insulated containers
FR1029818A (en) * 1949-08-08 1953-06-08 Vaw Ver Aluminium Werke Ag Chemical process for obtaining high gloss surfaces on aluminum and aluminum alloys
US2719781A (en) * 1952-04-09 1955-10-04 Kaiser Aluminium Chem Corp Composition and method for treating aluminum and aluminum alloys
US2729551A (en) * 1954-01-18 1956-01-03 Samuel L Cohn Surface treatment of aluminum and its alloys
US2776069A (en) * 1955-06-30 1957-01-01 Little Inc A Container for liquefied gas
FR2036463A5 (en) * 1969-03-14 1970-12-24 Air Liquide Insulating cryogenic fluid containers

Also Published As

Publication number Publication date
FR2417719B1 (en) 1984-01-20
FR2417719A1 (en) 1979-09-14
JPH01251677A (en) 1989-10-06
GB2015720B (en) 1982-10-13
GB2015720A (en) 1979-09-12
DE2906075C2 (en) 1987-03-12
CA1116107A (en) 1982-01-12
JPS54128821A (en) 1979-10-05
DE2906075A1 (en) 1979-08-30
CH639744A5 (en) 1983-11-30
JPH0432555B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
US2708655A (en) Electrolytic polishing of aluminum
US5039388A (en) Plasma forming electrode and method of using the same
US4177325A (en) Aluminium or copper substrate panel for selective absorption of solar energy
TW201416494A (en) Surface treatment method for aluminum alloy and aluminum articles thereof
CN105908242A (en) Surface treatment method for magnesium alloy
CN110219031A (en) Anodic oxidation electrolyte and method, the aluminum or aluminum alloy with anode oxide film
CN105908239A (en) Processing method capable of improving surface strength of aluminum and aluminum alloy
JPH0260584B2 (en)
US5063651A (en) Method of manufacturing a low emissivity liquid nitrogen dewar
US4104134A (en) Method for making an aluminum or copper substrate panel for selective absorption of solar energy
US4442829A (en) Material for selective absorption of solar energy and production thereof
Kelly et al. Surface processing for bulk niobium superconducting radio frequency cavities
JP3917966B2 (en) Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof
US6849138B1 (en) Method for surface treatment of aluminum alloy high-temperature processed articles
JP5833151B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
KR101652969B1 (en) Manufactur ing method of hot-dip aluminized heating coil for tanker
JPH09184094A (en) Surface treated aluminum material and its production
US3519779A (en) Method of making non-porous weld beads
JP3737876B2 (en) High purity isopropyl alcohol storage container
US2607722A (en) Electrolytic polishing of stainless steel
US5462634A (en) Surface-treated aluminum material and method for its surface treatment
CN111800933B (en) Medium-temperature annealing method for superconducting cavity
US4898651A (en) Anodic coatings on aluminum for circuit packaging
CA1310890C (en) Method for the production of seamless titanium alloy tubing and the like
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor