JPH0260224B2 - - Google Patents

Info

Publication number
JPH0260224B2
JPH0260224B2 JP61254180A JP25418086A JPH0260224B2 JP H0260224 B2 JPH0260224 B2 JP H0260224B2 JP 61254180 A JP61254180 A JP 61254180A JP 25418086 A JP25418086 A JP 25418086A JP H0260224 B2 JPH0260224 B2 JP H0260224B2
Authority
JP
Japan
Prior art keywords
layer
type
inp
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61254180A
Other languages
Japanese (ja)
Other versions
JPS63107172A (en
Inventor
Goro Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61254180A priority Critical patent/JPS63107172A/en
Priority to EP87115444A priority patent/EP0264932A1/en
Priority to CA000550121A priority patent/CA1261977A/en
Priority to KR1019870011772A priority patent/KR900008154B1/en
Publication of JPS63107172A publication Critical patent/JPS63107172A/en
Publication of JPH0260224B2 publication Critical patent/JPH0260224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高周波増幅回路、高速集積回路、光
電子集積回路等に応用される電界効果トランジス
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor applied to high frequency amplifier circuits, high speed integrated circuits, optoelectronic integrated circuits, and the like.

[従来の技術] ヘテロ接合界面に形成される2次元電子を用い
たトランジスタとしては、従来から、いくつかの
ものが提案されている。たとえば、特公昭59−
53714、特開昭56−45079およびジヤパニーズ・ジ
ヤーナル・オブ・アプライド・フイジツクス
(Japanese Journal of Applied Physics)第19
巻、1980年、L225頁などに記載されており、基
板としてはガリウム・砒素が用いられている。基
板としてガリウム・砒素を用いた場合、室温での
2次元電子の移動度は8000cm2/V・sec程度であ
る。これに対して、インジウム・リン(以下InP
と記す)を基板として用いた場合には、室温での
2次元電子の移動度は12000cm2/V・secとなり、
高周波特性や増幅率の優れた電界効果トランジス
タが実現できる。InPを基板とする2次元電子ト
ランジスタとしては、IEEE・エレクトロン・デ
バイス・レターズ(Electron Device Letters)
C・Y・Chen等、EGL−3巻、1982年、152頁に
記載されたものが知られている。
[Prior Art] Several transistors have been proposed in the past that use two-dimensional electrons formed at a heterojunction interface. For example, the
53714, Japanese Patent Publication No. 56-45079 and Japanese Journal of Applied Physics No. 19
Vol., 1980, page L225, etc., and gallium arsenic is used as the substrate. When gallium/arsenic is used as the substrate, the two-dimensional electron mobility at room temperature is about 8000 cm 2 /V·sec. In contrast, indium phosphide (hereinafter referred to as InP)
) is used as a substrate, the two-dimensional electron mobility at room temperature is 12000cm 2 /V・sec,
A field effect transistor with excellent high frequency characteristics and amplification factor can be realized. For two-dimensional electronic transistors using InP as a substrate, see IEEE Electron Device Letters.
The one described in C. Y. Chen et al., EGL-3, 1982, p. 152 is known.

第2図に、InPを基板とした従来の2次元電子
トランジスタの構成を断面図で示す。第2図にお
いて、InP基板21上には、不純物無添加のアル
ミニウム・インジウム・砒素混晶半導体層(以下
AlInAs層と記す)22、ガリウム・インジウ
ム・砒素混晶半導体層(以下GaInAs層と記す)
23、n型不純物が添加されたAlInAs層24が
順次形成されている。AlInAs層24上には、制
御電極26が設けられており、該制御電極26の
両側にはソース電極27およびドレイン電極28
が設けられている。GaInAs層23とn型の
AlInAs層24の界面には、2次元電子層25が
形成されており、この2次元電子層25を用いて
電界効果トランジスタが構成されている。
FIG. 2 shows a cross-sectional view of the structure of a conventional two-dimensional electronic transistor using InP as a substrate. In FIG. 2, an impurity-free aluminum-indium-arsenic mixed crystal semiconductor layer (hereinafter referred to as
22, gallium-indium-arsenic mixed crystal semiconductor layer (hereinafter referred to as GaInAs layer)
23. AlInAs layers 24 doped with n-type impurities are successively formed. A control electrode 26 is provided on the AlInAs layer 24, and a source electrode 27 and a drain electrode 28 are provided on both sides of the control electrode 26.
is provided. GaInAs layer 23 and n-type
A two-dimensional electronic layer 25 is formed at the interface of the AlInAs layer 24, and a field effect transistor is constructed using this two-dimensional electronic layer 25.

[発明が解決しようとする問題点] しかしながら、以上説明した従来の電界効果ト
ランジスタでは、InP基板21中の不純物が
AlInAs層22中に拡散し、このため電界効果ト
ランジスタの特性として、良好なピンチオフ特性
が得られにくいという問題点があつた。また、電
界効果トランジスタの特性が、基板による影響を
受けやすく、基板のロツトによるばらつきを生じ
やすいという問題点もあつた。
[Problems to be Solved by the Invention] However, in the conventional field effect transistor described above, impurities in the InP substrate 21
It diffuses into the AlInAs layer 22, and as a result, there is a problem in that it is difficult to obtain good pinch-off characteristics as a characteristic of a field effect transistor. Another problem was that the characteristics of the field effect transistor were easily influenced by the substrate and were likely to vary depending on the substrate lot.

それゆえに、本発明の目的は、ピンチオフ特性
の良好な、かつ基板のロツトごとによるばらつき
の少ない電界効果トランジスタを提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a field effect transistor with good pinch-off characteristics and with less variation from one substrate lot to another.

[問題点を解決するための手段] 本発明の電界効果トランジスタでは、InP基板
上に、n型不純物が添加されたInP層を形成し、
該InP層上に不純物が添加されていないGaInAs
層を形成し、該GaInAs層上にAlInAs層を形成し
て、該AlInAs層上に制御電極を設け、該制御電
極の両側にGaInAs層に対して抵抗性接触となる
ソース電極およびドレイン電極を設けている。
[Means for solving the problems] In the field effect transistor of the present invention, an InP layer doped with an n-type impurity is formed on an InP substrate,
GaInAs with no impurities added on the InP layer
forming an AlInAs layer on the GaInAs layer, providing a control electrode on the AlInAs layer, and providing a source electrode and a drain electrode on both sides of the control electrode to be in resistive contact with the GaInAs layer. ing.

[作用] 本発明の電界効果トランジスタでは、n型InP
層とGaInAs層との界面に、2次元電子層が形成
される。この2次元電子層の電子密度を制御する
ため、制御電極を設けなければならないが、この
制御電極は整流性接触であることが必要である。
整流性接触としては、一般にシヨツトキー接触が
用いられているが、GaInAs層に対してシヨツト
キー接触を形成することは一般に困難である。そ
こで、本発明では、GaInAs層に対して直接にシ
ヨツトキー接触を形成して整流性接触を得るので
はなく、整流性接触の得やすいAlInAs層を
GaInAs層上に形成した後、制御電極を形成して
いる。ここで、AlInAs層は、不純物無添加、p
型またはn型のいずれであつてもよく、所要特性
によつて伝導型が選択される。たとえば、電界効
果トランジスタの制御電極への入力電圧耐圧を向
上させたいときには、不純物無添加が良く、しき
い値電圧を正にしたいときにはp型が選ばれる。
また、ドレイン電流として大きな値を得たいとき
はn型が選ばれる。
[Function] In the field effect transistor of the present invention, n-type InP
A two-dimensional electronic layer is formed at the interface between the GaInAs layer and the GaInAs layer. In order to control the electron density of this two-dimensional electron layer, a control electrode must be provided, and this control electrode needs to be a rectifying contact.
A shot key contact is generally used as a rectifying contact, but it is generally difficult to form a shot key contact with a GaInAs layer. Therefore, in the present invention, instead of directly forming a shot key contact with the GaInAs layer to obtain a rectifying contact, we use an AlInAs layer that is easy to obtain a rectifying contact.
After forming on the GaInAs layer, a control electrode is formed. Here, the AlInAs layer is free of impurities and p
The conductivity type may be either type or n-type, and the conductivity type is selected depending on the required characteristics. For example, when it is desired to improve the input voltage withstand voltage to the control electrode of a field effect transistor, no impurity is added, and when it is desired to make the threshold voltage positive, p-type is selected.
Furthermore, when a large value of drain current is desired, n-type is selected.

本発明では、InP基板上にn型InP層が形成さ
れているため、InP基板から拡散する不純物の影
響を少なくすることができる。一般に、InP基板
から拡散する不純物密度は、1016cm-3程度であ
り、拡散深さは300Å程度である。したがつて、
それ以上の層の厚みおよびn型不純物密度とする
ことにより、基板から拡散する不純物の影響を少
なくすることができる。
In the present invention, since the n-type InP layer is formed on the InP substrate, the influence of impurities diffused from the InP substrate can be reduced. Generally, the impurity density diffused from the InP substrate is about 10 16 cm -3 and the diffusion depth is about 300 Å. Therefore,
By making the layer thicker and the n-type impurity density larger than this, the influence of impurities diffused from the substrate can be reduced.

[実施例] 第1図は、本発明の一実施例を説明するための
断面図である。半絶縁性InP基板1上に、有機金
属気相成長法あるいはガスソースMBE
(Molecular−beam epitaxy)法により、基板温
度600℃〜650℃において、Si、S、Seなどのn
型不純物を添加したInP層2を形成する。ここ
で、n型不純物の密度は1×1017cm-3〜5×1018
cm-3程度とし、層の厚みは500Å〜2000Å範囲と
する。次に、不純物無添加のGaInAs層3を200
Å〜2000Å程度の厚さで形成し、AlInAs層4を
200Å〜2000Åの範囲の厚さで形成する。
[Example] FIG. 1 is a sectional view for explaining an example of the present invention. Metal organic vapor phase epitaxy or gas source MBE is applied on the semi-insulating InP substrate 1.
Using the (Molecular-beam epitaxy) method, the substrate temperature is 600°C to 650°C.
An InP layer 2 doped with type impurities is formed. Here, the density of n-type impurity is 1×10 17 cm -3 to 5×10 18
cm -3 and the layer thickness is in the range of 500 Å to 2000 Å. Next, the impurity-free GaInAs layer 3 is
The AlInAs layer 4 is formed with a thickness of about 2,000 Å to 2,000 Å.
It is formed with a thickness in the range of 200 Å to 2000 Å.

AlInAs層4をp型にする際には、不純物とし
てMn、Mg、Znが用いられ、n型にする際には
Si、S、Seなどが用いられる。p型およびn型
のいずれの場合でも、不純物密度としては、1016
cm-3〜1018cm-3程度にされる。
When making the AlInAs layer 4 p-type, Mn, Mg, and Zn are used as impurities, and when making it n-type, Mn, Mg, and Zn are used as impurities.
Si, S, Se, etc. are used. In both p-type and n-type cases, the impurity density is 10 16
cm -3 to 10 18 cm -3 .

GaInAs層3およびAlInAs層4の混晶組成は、
InP基板との格子不整が0.1%以下になるようにす
る。
The mixed crystal composition of the GaInAs layer 3 and the AlInAs layer 4 is
Ensure that the lattice mismatch with the InP substrate is 0.1% or less.

さらに、AuGe合金よりなる抵抗性接触金属を
蒸着し、たとえば4000℃で合金化することによ
り、ソース電極7およびドレイン電極8を形成す
る。最後に、たとえばAl、Pt、Au、W、WSiな
どから選ばれた制御電極6を、蒸着法などにより
形成して完成させる。
Further, a resistive contact metal made of an AuGe alloy is deposited and alloyed at, for example, 4000° C., thereby forming a source electrode 7 and a drain electrode 8. Finally, a control electrode 6 selected from, for example, Al, Pt, Au, W, WSi, etc. is formed by vapor deposition or the like to complete the process.

[発明の効果] 本発明の電界効果トランジスタでは、InP基板
上にn型InP層が形成されているため、InP基板
から拡散する不純物の影響を少なくすることがで
きる。したがつて、この発明によれば、再現性良
く、高周波特性・増幅特性の優れた電界効果トラ
ンジスタとすることができる。
[Effects of the Invention] In the field effect transistor of the present invention, since the n-type InP layer is formed on the InP substrate, the influence of impurities diffused from the InP substrate can be reduced. Therefore, according to the present invention, a field effect transistor with good reproducibility and excellent high frequency characteristics and amplification characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための
断面図である。第2図は、従来の電界効果トラン
ジスタを示す断面図である。 図において、1はInP基板、2はn型InP層、
3はGaInAs層、4はAlInAs層、5は2次元電子
層、6は制御電極、7はソース電極、8はドレイ
ン電極を示す。
FIG. 1 is a sectional view for explaining one embodiment of the present invention. FIG. 2 is a sectional view showing a conventional field effect transistor. In the figure, 1 is an InP substrate, 2 is an n-type InP layer,
3 is a GaInAs layer, 4 is an AlInAs layer, 5 is a two-dimensional electron layer, 6 is a control electrode, 7 is a source electrode, and 8 is a drain electrode.

Claims (1)

【特許請求の範囲】 1 InP基板上に、n型不純物が添加されたInP
層を形成し、該InP層上に不純物が添加されてい
ないGaInAs層を形成し、該GaInAs層上に
AlInAs層を形成して、該AlInAs層上に制御電極
を設け、該制御電極の両側に前記GaInAs層に対
して抵抗性接触となるソース電極およびドレイン
電極を設けたことを特徴とする、電界効果トラン
ジスタ。 2 前記AlInAs層に不純物が添加されていない
ことを特徴とする、特許請求の範囲第1項記載の
電界効果トランジスタ。 3 前記AlInAs層の伝導型がp型であることを
特徴とする、特許請求の範囲第1項記載の電界効
果トランジスタ。 4 前記AlInAs層の伝導型がn型であることを
特徴とする、特許請求の範囲第1項記載の電界効
果トランジスタ。
[Claims] 1. InP doped with n-type impurities on an InP substrate
a GaInAs layer to which no impurity is added is formed on the InP layer, and a GaInAs layer to which no impurities are added is formed on the InP layer;
A field effect device characterized in that an AlInAs layer is formed, a control electrode is provided on the AlInAs layer, and a source electrode and a drain electrode that are in resistive contact with the GaInAs layer are provided on both sides of the control electrode. transistor. 2. The field effect transistor according to claim 1, wherein no impurity is added to the AlInAs layer. 3. The field effect transistor according to claim 1, wherein the conductivity type of the AlInAs layer is p-type. 4. The field effect transistor according to claim 1, wherein the conductivity type of the AlInAs layer is n-type.
JP61254180A 1986-10-24 1986-10-24 Field effect transistor Granted JPS63107172A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61254180A JPS63107172A (en) 1986-10-24 1986-10-24 Field effect transistor
EP87115444A EP0264932A1 (en) 1986-10-24 1987-10-21 Field effect transistor
CA000550121A CA1261977A (en) 1986-10-24 1987-10-23 Field effect transistor
KR1019870011772A KR900008154B1 (en) 1986-10-24 1987-10-23 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61254180A JPS63107172A (en) 1986-10-24 1986-10-24 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63107172A JPS63107172A (en) 1988-05-12
JPH0260224B2 true JPH0260224B2 (en) 1990-12-14

Family

ID=17261341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61254180A Granted JPS63107172A (en) 1986-10-24 1986-10-24 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS63107172A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965358B2 (en) * 1995-11-09 1999-10-18 松下電子工業株式会社 Field-effect transistor

Also Published As

Publication number Publication date
JPS63107172A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
JPS63276267A (en) Manufacture of semiconductor device
KR920010671B1 (en) Semiconductor devices
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
JPS6356710B2 (en)
JP2758803B2 (en) Field effect transistor
EP0240567B1 (en) Semiconductor device
US5258631A (en) Semiconductor device having a two-dimensional electron gas as an active layer
JPH0260224B2 (en)
JPH0312770B2 (en)
JPH08186249A (en) Semiconductor device and its manufacture
JPS6242569A (en) Field effect transistor
JP2800770B2 (en) Field effect transistor and method of manufacturing the same
JPH0793323B2 (en) Field effect transistor
EP0264932A1 (en) Field effect transistor
JPS63161677A (en) Field effect transistor
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2980630B2 (en) Compound semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
JPS6115375A (en) Hetero junction fet
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JP3008587B2 (en) Field effect transistor and method of manufacturing the same
JP2834172B2 (en) Field effect transistor
JPH04233241A (en) High breakdown strength field-effect transistor
JPS63115384A (en) Manufacture of semiconductor device
Umebachi et al. A New Heterojunction-Gate GaAs FET

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term