JPH0260138A - Board for semiconductor element mounting use - Google Patents

Board for semiconductor element mounting use

Info

Publication number
JPH0260138A
JPH0260138A JP21043388A JP21043388A JPH0260138A JP H0260138 A JPH0260138 A JP H0260138A JP 21043388 A JP21043388 A JP 21043388A JP 21043388 A JP21043388 A JP 21043388A JP H0260138 A JPH0260138 A JP H0260138A
Authority
JP
Japan
Prior art keywords
heat
film
insulating layer
semiconductor element
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21043388A
Other languages
Japanese (ja)
Inventor
Hiroshi Waki
脇 浩
Nobuhiro Fukuda
福田 信弘
Shunji Yoshida
芳田 俊爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21043388A priority Critical patent/JPH0260138A/en
Publication of JPH0260138A publication Critical patent/JPH0260138A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Abstract

PURPOSE:To obtain a film suitable for a board for semiconductor element mounting use by a method wherein an insulating layer consisting of an inorganic substance is formed on a heat-resistant resin film. CONSTITUTION:An insulating layer 2 consisting of an inorganic substance is formed on a heat-resistant resin film 1. A copper foil 3 is formed on this layer 2. Materials usable for the formation of the layer 2 consisting of this inorganic substance are an oxide, a nitride, a carbide and the like. Concretely, such materials having electrical insulation properties as an Si oxide, an Al oxide, a titanium oxide, a tantalum oxide, an Si nitride, an Al nitride and an Si carbide can be effectively used. In such a way, as the insulating layer consisting of such a material is formed on the heat-resistant film, a film suitable for a board for semiconductor element mounting use can be obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体素子実装用基板に関するものであり、と
くに、接着剤を不要とする構造の半導体素子実装用基板
に好適な耐熱性の樹脂フィルムおよびそれを使用した半
導体素子の実装用基板に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a substrate for mounting semiconductor elements, and in particular to a heat-resistant resin film suitable for a substrate for mounting semiconductor elements having a structure that does not require an adhesive, and a heat-resistant resin film using the same. The present invention relates to a substrate for mounting semiconductor elements used.

〔従来技術とその課題〕[Conventional technology and its issues]

近年、半導体素子を基板に実装する技術の進歩は急激で
ある。特にテープ自動配線接続(TapeAutoma
ted Bonding 、以下TABと略称する)は
集積回路を形成された半導体素子(以下ICチップと略
称する)を半導体素子実装用の回路基板にワイヤボンデ
ィングなしで、接続する技術であり、500〜600個
と云う多数の外部接続配線数を有するICチップの配線
接続を一度に可能にするため、高密度の実装技術が必要
とされている現在、研究開発が活発に進められている。
In recent years, there has been rapid progress in technology for mounting semiconductor elements on substrates. Especially tape automatic wiring connection (TapeAutoma)
ted Bonding (hereinafter abbreviated as TAB) is a technology that connects semiconductor elements formed with integrated circuits (hereinafter abbreviated as IC chips) to a circuit board for mounting semiconductor elements without wire bonding. Currently, research and development are actively progressing as high-density packaging technology is required to enable wiring connections for IC chips having such a large number of external connection wirings at once.

TABに用いる基板の方式には二層構造と三層構造があ
るが、いずれの構造においても第3図a(二層構造)お
よび第3図b(三層構造)に示されるように、ICチッ
プが実装される位置において樹脂フィルム3は穴あけ加
工を施さねばならない、これは、耐熱性の樹脂フィルム
といえども、ICチップ実装時の温度に耐えることが困
難であるからである。
There are two types of substrates used for TAB: two-layer structure and three-layer structure, but in both structures, the IC The resin film 3 must be perforated at the location where the chip is to be mounted. This is because even a heat-resistant resin film has difficulty withstanding the temperature at which the IC chip is mounted.

しかして、穴あけ加工は、二層構造と三層構造において
、それぞれ異なる方式で行われている。
Therefore, drilling is performed using different methods for the two-layer structure and the three-layer structure.

二層構造のTABにおいては、樹脂フィルムは工ッチン
グ加工により穴あけ加工が行われている。
In the TAB having a two-layer structure, holes are formed in the resin film by etching.

しかしながら、耐熱性の樹脂フィルムの場合、このエツ
チングは困難である。一般的にTABに利用される耐熱
性の樹脂フィルムは耐薬品性にもすぐれているからであ
る。これに対して、三層構造のTABにおいては、あら
かじめ型抜きやパンチング等により穴あけ加工を行うこ
とができるので、従来技術においては、もっばら、この
三層構造のTABが半導体の実装用に用いられてきた。
However, in the case of heat-resistant resin films, this etching is difficult. This is because the heat-resistant resin film generally used for TAB also has excellent chemical resistance. On the other hand, in the case of a TAB with a three-layer structure, holes can be formed in advance by die-cutting, punching, etc., so in the conventional technology, this TAB with a three-layer structure is mainly used for mounting semiconductors. I've been exposed to it.

しかしながら、この三層構造のTABは、−船釣に銅箔
と耐熱性の樹脂フィルムを接着剤で貼り合わせたもので
あり、耐熱性の低い接着剤を用いているために、TAB
としての耐熱性は樹脂フィルムの耐熱性よりも低下する
という大きい問題点を有している。このために、接着剤
を不要にする構造のTABによる実装技術の開発が望ま
れており、従来は、接着剤が不要である三層構造におい
て、耐熱性の樹脂フィルムのエツチング技術が盛んに検
討されてきた。
However, this three-layer structure TAB is made by bonding copper foil and heat-resistant resin film with adhesive, and because it uses an adhesive with low heat resistance, TAB
A major problem is that the heat resistance of the resin film is lower than that of the resin film. For this reason, it is desired to develop mounting technology using TAB with a structure that eliminates the need for adhesives, and conventionally, for three-layer structures that do not require adhesives, etching technology for heat-resistant resin films has been actively studied. It has been.

本発明者等は、エツチング技術そのものを不要にする技
術を開発すべく、TABの実装工程を鋭意検討した結果
、ICチップの実装において、必要とされる熱負荷に耐
えるには、500°Cにおいて、約1秒の耐熱性を有す
れば、実質的に充分であり、該耐熱性は特定の絶縁層を
形成することにより与えられることを見出した0本発明
はかかる知見に基づきなされるに到ったものである。
In order to develop a technology that eliminates the need for etching technology itself, the inventors of the present invention have carefully studied the TAB mounting process. It has been found that a heat resistance of about 1 second is substantially sufficient, and that this heat resistance can be provided by forming a specific insulating layer.The present invention was made based on this knowledge. This is what happened.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、 耐熱性の樹脂フィルム上に、無機物質からなる絶縁層を
形成したことを特徴とする半導体素子の実装用の基板に
好適なフィルム、であり、また、耐熱性の樹脂フィルム
上に、無機物質からなる絶縁層を形成し、さらに該絶縁
層の上に導電性薄膜を形成してなることを特徴とする半
導体素子の実装用の基板、である。
That is, the present invention is a film suitable for a substrate for mounting a semiconductor element, characterized in that an insulating layer made of an inorganic substance is formed on a heat-resistant resin film, and also a heat-resistant resin film. This is a substrate for mounting a semiconductor element, characterized in that an insulating layer made of an inorganic substance is formed thereon, and a conductive thin film is further formed on the insulating layer.

〔発明の開示〕[Disclosure of the invention]

本発明は、第1図に示したように、耐熱性の樹脂フィル
ム1上に、無機物質からなる絶縁層2を形成した半導体
素子の実装用の基板に好適なフィルム、であり、また、
耐熱性の樹脂フィルム2上に、無機物質からなる絶縁層
2を形成し、さらに該絶縁層の上に導電性薄膜3を形成
してなる半導体素子の実装用の基板、である。
As shown in FIG. 1, the present invention is a film suitable for a substrate for mounting semiconductor elements, in which an insulating layer 2 made of an inorganic substance is formed on a heat-resistant resin film 1, and
This is a substrate for mounting a semiconductor element, which is formed by forming an insulating layer 2 made of an inorganic material on a heat-resistant resin film 2, and further forming a conductive thin film 3 on the insulating layer.

本発明において、耐熱性O樹脂フィルム1としては、ポ
リイミド、ポリイミドアミド、ポリエチレンテレフタレ
ート、ポリエチレンナフタレート、ポリパラバン酸、ポ
リヒダントイン、ポリベンゾイミダゾール等の樹脂フィ
ルムを有効に用いることができる。
In the present invention, as the heat-resistant O resin film 1, resin films such as polyimide, polyimide amide, polyethylene terephthalate, polyethylene naphthalate, polyparabanic acid, polyhydantoin, polybenzimidazole, etc. can be effectively used.

本発明の無機物質からなる絶縁層2の形成に用いること
のできる材料は酸化物、窒化物、炭化物等であり、具体
的には、酸化珪素、酸化アルミ、酸化チタン、酸化タン
タル、窒化珪素、窒化アルミ、炭化珪素等の電気絶縁性
の材料を有効に用いることができる。絶縁層を耐熱フィ
ルム上に形成するには、物理的な手法、化学的な手法の
いずれでもよい、物理的な手法としては、スパッタリン
グや蒸着があり、化学的な手法としては、化学気相堆積
法(CVD法)、プラズマ化学気相堆積法(PCVD法
)のような気相成長、ゾルゲル法、浸漬法のように液状
の材料からの薄膜形成等の手法を有効に用いることがで
きる。好ましくは、低温での薄膜形成を可能にするスパ
ッタリングや蒸着、化学気相堆積法、プラズマ化学気相
堆積法等の形成法をもちいる。該絶縁層はTABプロセ
スにおける熱負荷に耐える性質好ましくは、上記したご
と<500°Cにおいて1秒間の耐熱性を付与するもの
であり、このために、絶縁層の厚みは0.01〜20μ
国、好ましくは、0.1〜15μmである。
Materials that can be used to form the insulating layer 2 made of an inorganic substance of the present invention include oxides, nitrides, carbides, etc. Specifically, silicon oxide, aluminum oxide, titanium oxide, tantalum oxide, silicon nitride, Electrically insulating materials such as aluminum nitride and silicon carbide can be effectively used. To form an insulating layer on a heat-resistant film, either physical or chemical methods can be used. Physical methods include sputtering and vapor deposition, and chemical methods include chemical vapor deposition. Techniques such as vapor phase growth such as (CVD method), plasma chemical vapor deposition method (PCVD method), sol-gel method, and thin film formation from a liquid material such as immersion method can be effectively used. Preferably, a formation method such as sputtering, vapor deposition, chemical vapor deposition, plasma chemical vapor deposition, or the like is used that enables thin film formation at low temperatures. The insulating layer has the property of being able to withstand the heat load in the TAB process, preferably providing heat resistance for 1 second at <500°C as described above, and for this purpose, the thickness of the insulating layer is 0.01 to 20 μm.
The diameter is preferably 0.1 to 15 μm.

本発明の一つは、以上説明したように、耐熱性フィルム
上にこのような絶縁層を形成した半導体素子の実装用の
基板に好適なフィルム、である。
As explained above, one aspect of the present invention is a film suitable for a substrate for mounting semiconductor elements, in which such an insulating layer is formed on a heat-resistant film.

本発明の他のひとつは、当該無機物質からなる絶縁層の
上に電気回路用の導電性の薄膜を形成したものである。
Another aspect of the present invention is that a conductive thin film for an electric circuit is formed on the insulating layer made of the inorganic substance.

この回路形成用の導電性薄膜の材料としては、銅、ニッ
ケル、銀、アルミニウム、クロム等の金属やこれらの合
金を有効に用いることができる。当該金属や合金を薄膜
にする場合、当然のことながら、二種類以上の導電性薄
膜を積雇して用いることもできる。薄膜の形成法として
は、物理的な手法、化学的な手法のいずれでもよい、物
理的な手法としては、スパッタリングや蒸着等があり、
化学的な手法としては、化学気相堆積法(CVD法)、
プラズマ化学気相堆積法(PCVD法)のような気相成
長、ゾルゲル法、無電解メツキ法、電気メツキ法、浸漬
法のように液状の材料からの薄膜形成等の手法を有効に
用いることができる。好ましくは、低温での薄膜形成を
可能にするスパッタリングや蒸着、化学気相堆積法、プ
ラズマ化学気相堆積法、無電解メツキ法、電気メツキ法
等の形成法をもちいる。また、これらの形成法を複合し
て用いることもできる。たとえば、スパッタリング法で
薄膜を形成したあとで、メツキ法により膜厚を数十倍に
厚(することもできる、導電性薄膜の厚みは特に限定さ
れる条件ではない、なお、電気回路としては、基本的に
は、0.1μ−程度の膜厚で充分であるが、ICチップ
実装用として、TABに用いるために、好ましくは、0
.5〜35μ糟程度 である、導電性薄膜の膜厚が薄く
なれば、電気回路のパターンを微細にできることは、当
業者が容易に理解できることである。
As the material for the conductive thin film for forming the circuit, metals such as copper, nickel, silver, aluminum, chromium, and alloys thereof can be effectively used. When forming a thin film from the metal or alloy, it is of course possible to use two or more types of conductive thin films stacked together. The method for forming a thin film may be either a physical method or a chemical method. Physical methods include sputtering, vapor deposition, etc.
Chemical methods include chemical vapor deposition method (CVD method),
Methods such as vapor phase growth such as plasma chemical vapor deposition (PCVD), sol-gel method, electroless plating method, electroplating method, and thin film formation from liquid materials such as immersion method can be effectively used. can. Preferably, a formation method such as sputtering, vapor deposition, chemical vapor deposition, plasma enhanced chemical vapor deposition, electroless plating, or electroplating is used that enables thin film formation at low temperatures. Further, a combination of these formation methods can also be used. For example, after forming a thin film using the sputtering method, the film thickness can be made several tens of times thicker using the plating method.The thickness of the conductive thin film is not particularly limited.However, as an electric circuit, Basically, a film thickness of about 0.1μ is sufficient, but for IC chip mounting and TAB use, it is preferably 0.1μ.
.. Those skilled in the art can easily understand that if the thickness of the conductive thin film is reduced, which is about 5 to 35 μm, the pattern of the electric circuit can be made finer.

本発明の好ましい実施態様を第2図において説明する。A preferred embodiment of the invention is illustrated in FIG.

第2図aは、第1図と同様耐熱性の樹脂フィルムl上に
、無機物質からなる絶縁層2および導電性薄膜3を形成
した半導体素子の実装用の基板であり、これが本発明の
一つである。さらに、第2図すは、ICチップを実装で
きるように銅箔3の不必要な部分を常法により、除去し
たところの断面図を示すものである。第2図CはICチ
ップ4を実装した時の断面図であり、本発明の適用例で
ある。第1図ならびに第2図において、縦、横のサイズ
は任意に選択されており、とくに断面図においては、説
明を容易にするために、材料の厚みを拡大強調している
ことが注意されるべきである。
FIG. 2a shows a substrate for mounting a semiconductor element, in which an insulating layer 2 made of an inorganic substance and a conductive thin film 3 are formed on a heat-resistant resin film l, similar to that shown in FIG. 1. It is one. Further, FIG. 2 shows a cross-sectional view of the copper foil 3 in which unnecessary portions have been removed by a conventional method so that an IC chip can be mounted thereon. FIG. 2C is a sectional view when the IC chip 4 is mounted, and is an application example of the present invention. In Figures 1 and 2, the vertical and horizontal sizes are arbitrarily selected, and it should be noted that in cross-sectional views in particular, the thickness of the material is enlarged and emphasized for ease of explanation. Should.

〔実施例〕〔Example〕

以下、実施例により、本発明の実施の態様をさらに詳細
に説明する。
Hereinafter, embodiments of the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 125μmのポリイミドフィルム上に、酸化珪素をスパ
ッタリングにより膜厚0.2μm形成し本発明の半導体
素子の実装用の基板に好適なフィルムを得た。この上か
ら、ニッケルをスパッタリングにより、1.0μmの膜
厚に形成した。ついで、銅を無電解メツキによりニッケ
ル上に10μm形成し本発明の半導体素子の実装用の基
板を得た。銅およびニッケルを塩化第二鉄を用いてエツ
チング除去して、回路を形成した。この回路に、ICチ
ップを実装するかわりに、500°Cに加熱した銅の棒
を1秒間接触させて、耐熱性をテストした。テスト後、
耐熱性フィルムには外観ならびに電気的な性質の劣化は
全く観察されず、ICチップの実装に充分耐える耐熱性
を有していることが明らかとなった。
[Example 1] Silicon oxide was formed to a thickness of 0.2 μm on a 125 μm polyimide film by sputtering to obtain a film suitable for a substrate for mounting a semiconductor element of the present invention. On top of this, nickel was formed by sputtering to a thickness of 1.0 μm. Next, copper was formed on the nickel to a thickness of 10 μm by electroless plating to obtain a substrate for mounting the semiconductor element of the present invention. The copper and nickel were etched away using ferric chloride to form the circuit. Instead of mounting an IC chip on this circuit, a copper rod heated to 500°C was brought into contact with the circuit for 1 second to test its heat resistance. After the test,
No deterioration in appearance or electrical properties was observed in the heat-resistant film, and it was revealed that the film had heat resistance sufficient to withstand mounting of IC chips.

〔実施例2〕 75μmのポリイミドフィルム上に、ジシランおよび二
酸化炭素を原料としてプラズマ化学堆積法により、ポリ
イミドフィルムの温度を200℃として、酸化珪素薄膜
を2μm形成し、本発明の半導体素子の実装用の基板に
好適なフィルムを得た。酸化珪素薄膜形成後、銅をスパ
ッタリングにより膜厚0.5μm形成し、さらに、当該
銅薄膜上に銅を無電解メツキにより4.0μm形成し本
発明の半導体素子の実装用の基板を得た。ついで、当該
w4m膜をエツチング除去して、回路を形成した。実施
例1と同じ耐熱性のテストを実施し、同様の結果を得た
ことにより、プラズマ化学堆積法により形成される酸化
珪素も本発明において、有効であることが確認された。
[Example 2] A 2 μm silicon oxide thin film was formed on a 75 μm polyimide film using disilane and carbon dioxide as raw materials by plasma chemical deposition at a temperature of 200° C., and was used for mounting the semiconductor element of the present invention. A film suitable for the substrate was obtained. After the silicon oxide thin film was formed, copper was formed to a thickness of 0.5 μm by sputtering, and then copper was further formed to a thickness of 4.0 μm by electroless plating on the copper thin film to obtain a substrate for mounting the semiconductor element of the present invention. Then, the w4m film was removed by etching to form a circuit. The same heat resistance test as in Example 1 was conducted and similar results were obtained, confirming that silicon oxide formed by plasma chemical deposition is also effective in the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明は接着剤を不
要にする構造の基板を提供するものであり、従来のTA
B技術において、困難であった耐熱性の樹脂フィルムの
エツチングを不要とするものであるから、今後のTAB
技術を大幅に進展させ、高密度実装技術にきわめて、貢
献するものである。すなわち、その産業上の利用可能性
はきわめて大きいものであると言わざるを得ない。
As is clear from the above embodiments, the present invention provides a substrate with a structure that eliminates the need for adhesives, and
Since this technology eliminates the need for etching the heat-resistant resin film, which was difficult in technology B, future TAB
This will significantly advance the technology and greatly contribute to high-density packaging technology. In other words, it must be said that its industrial applicability is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の態様を示す断面図である。第2
図a〜第2図Cは本発明をTABに使用するときの実施
の態様を示す断面図である。第3図aおよび第3図すは
従来技術によるTAB用の基板の例を示す断面図である
0図中、1・・・・・・・・・−・耐熱性の樹脂フィル
ム、2   無機物質の絶縁層、3   w4箔、4 
  ICチップ、5接着剤、を示す。 第1図 第2図
FIG. 1 is a sectional view showing an embodiment of the present invention. Second
Figures a to 2C are cross-sectional views showing embodiments of the present invention when used in a TAB. Figures 3a and 3 are cross-sectional views showing examples of TAB substrates according to the prior art. Insulating layer, 3 W4 foil, 4
An IC chip and 5 adhesives are shown. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)耐熱性の樹脂フィルム上に、無機物質からなる絶
縁層を形成したことを特徴とする半導体素子の実装用の
基板に好適なフィルム。
(1) A film suitable for a substrate for mounting semiconductor elements, characterized in that an insulating layer made of an inorganic substance is formed on a heat-resistant resin film.
(2)耐熱性の樹脂フィルム上に、無機物質からなる絶
縁層を形成し、さらに該絶縁層の上に導電性薄膜を形成
してなることを特徴とする半導体素子の実装用の基板。
(2) A substrate for mounting a semiconductor element, characterized in that an insulating layer made of an inorganic substance is formed on a heat-resistant resin film, and a conductive thin film is further formed on the insulating layer.
JP21043388A 1988-08-26 1988-08-26 Board for semiconductor element mounting use Pending JPH0260138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21043388A JPH0260138A (en) 1988-08-26 1988-08-26 Board for semiconductor element mounting use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21043388A JPH0260138A (en) 1988-08-26 1988-08-26 Board for semiconductor element mounting use

Publications (1)

Publication Number Publication Date
JPH0260138A true JPH0260138A (en) 1990-02-28

Family

ID=16589243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21043388A Pending JPH0260138A (en) 1988-08-26 1988-08-26 Board for semiconductor element mounting use

Country Status (1)

Country Link
JP (1) JPH0260138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260137A (en) * 1988-08-26 1990-02-28 Mitsui Toatsu Chem Inc Board for semiconductor element mounting use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848954A (en) * 1981-09-18 1983-03-23 Sumitomo Electric Ind Ltd Substrate for tape carrier type integrated circuit
JPH01133729A (en) * 1987-11-19 1989-05-25 Nitto Denko Corp Conductive laminated film
JPH0260137A (en) * 1988-08-26 1990-02-28 Mitsui Toatsu Chem Inc Board for semiconductor element mounting use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848954A (en) * 1981-09-18 1983-03-23 Sumitomo Electric Ind Ltd Substrate for tape carrier type integrated circuit
JPH01133729A (en) * 1987-11-19 1989-05-25 Nitto Denko Corp Conductive laminated film
JPH0260137A (en) * 1988-08-26 1990-02-28 Mitsui Toatsu Chem Inc Board for semiconductor element mounting use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260137A (en) * 1988-08-26 1990-02-28 Mitsui Toatsu Chem Inc Board for semiconductor element mounting use

Similar Documents

Publication Publication Date Title
US6159586A (en) Multilayer wiring substrate and method for producing the same
US4702967A (en) Multiple-layer, multiple-phase titanium/nitrogen adhesion/diffusion barrier layer structure for gold-base microcircuit interconnection
JP2000100847A (en) Semiconductor device and manufacture thereof
JP2004524684A (en) Method for interconnecting multi-layer copper to very large scale integrated circuits
JPS5940560A (en) Multilayer circuit device
US5679444A (en) Method for producing multi-layer circuit board and resulting article of manufacture
JPH0260138A (en) Board for semiconductor element mounting use
US4965700A (en) Thin film package for mixed bonding of chips
JP2757593B2 (en) Manufacturing method of film carrier device
JPH0629634A (en) Flexible circuit board
JPH0260137A (en) Board for semiconductor element mounting use
JP2725390B2 (en) Copper wiring ceramic substrate and manufacturing method
US5512780A (en) Inorganic chip-to-package interconnection circuit
JP2729647B2 (en) Thermoelectric device manufacturing method
JPH0245996A (en) Manufacture of hybrid integrated circuit
JPH07297551A (en) Thin film multilayer wiring board
US6602431B2 (en) Enhancements in sheet processing and lead formation
JPS6229192A (en) Enamelled substrate for electronic circuit
JP2600669B2 (en) Metal bump for transfer bump
JP2006196483A (en) Wiring board and its manufacturing method
JPH05251510A (en) Tab tape carrier and its production
JPH0618220B2 (en) Chip on board
JPS6224694A (en) Multilayer wiring board
JPH08148339A (en) Electronic component and magnetic component
JPH0360184A (en) Manufacture of ceramic substrate with copper wiring