JPH0259565B2 - - Google Patents

Info

Publication number
JPH0259565B2
JPH0259565B2 JP5389283A JP5389283A JPH0259565B2 JP H0259565 B2 JPH0259565 B2 JP H0259565B2 JP 5389283 A JP5389283 A JP 5389283A JP 5389283 A JP5389283 A JP 5389283A JP H0259565 B2 JPH0259565 B2 JP H0259565B2
Authority
JP
Japan
Prior art keywords
semiconducting layer
layer
vinyl acetate
power cable
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5389283A
Other languages
Japanese (ja)
Other versions
JPS59181416A (en
Inventor
Masashi Kinoshita
Muneo Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5389283A priority Critical patent/JPS59181416A/en
Publication of JPS59181416A publication Critical patent/JPS59181416A/en
Publication of JPH0259565B2 publication Critical patent/JPH0259565B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電力ケーブルにおいて架橋ポリオレフ
イン絶縁体と外部半導電層とが十分に密着し、且
つ必要に応じて容易に剥離可能な外部半導電層を
施した架橋ポリオレフイン絶縁電力ケーブル、特
に高電圧ケーブルに関するものである。 従来、架橋ポリオレフイン絶縁高電圧ケーブル
の外部半導電材料としてポリエチレン、エチレ
ン・酢酸ビニル共重合体、エチレン・エチルアク
リレート共重合体に導電性フイラーを混合したも
のが多く使用されている。しかしながら、これら
の材料は隣接する架橋ポリオレフイン絶縁層と完
全に密着していることにより、ケーブルの接続、
端末工事を施工する際、2層間の剥離作業が非常
に困難であるという問題がある。 この問題の解決方法として塩化ビニルグラフト
エチレン・酢酸ビニル共重合体、塩素化ポリエチ
レン及び酢酸ビニル含量の多い酢酸ビニル・エチ
レン共重合体を外部半導電層とする電力ケーブル
が提案されている(例えば、特開昭55−76508、
特公昭54−9714、特開昭51−53286、特公昭52−
41875)。 しかしながら、これらの外部半導電層用材料は
極性基を付与する酢酸ビニル又は塩素含有量を多
くすることにより剥離性が改善されているが、逆
に耐寒性が悪い欠点を有している。又、これらの
材料を半導電層とする架橋ポリエチレンケーブル
を生産性向上のため200℃以上の高温で架橋する
と、かかる材料を使用した外部半導電層が200℃
の加熱では物性上問題なくとも230℃以上で加熱
すると剥離性が悪くなつたり、外部半導電層上の
遮蔽銅テープに腐食による変色を生じたりする問
題がある。これらの現象は加熱用の熱媒体として
水蒸気を用いる場合は、更に促進されることから
熱分解あるいは加水分解によつて生じた有機酸、
無機酸等の分解生成物の影響によるものと推定さ
れる。 最近、剥離作業性等が優れているだけでなく、
高温架橋や水蒸気架橋に耐え、銅テープの腐食を
生じない外部半導電層を有する高性能の電力ケー
ブルの要望が高まつている。 本発明者らは電気特性、耐寒性、耐油性及び押
出加工性に優れ、しかも剥離性及び銅腐食性も良
好なフリー・ストリツプ型の外部半導電層を施し
た電力ケーブルを提供するために種々検討した結
果、酢酸ビニル・エチレン共重合体にアクリル系
単量体をグラフト条件下で重合して得られる改質
酢ビ・エチレン共重合体に導電性フイラー、架橋
剤等を加えた半導電性組成物を外部半導電層に用
いることによつて前記の問題点を解決できること
を見い出し本発明に至つた。 即ち、本発明は導体上に押出被覆されたオレフ
イン系重合体からなる絶縁体上に半導電層を形成
してなる電力ケーブルにおいて、該半導電層が溶
解度係数(sp値)8.6〜9.4、ムーニー粘度10〜
40、熱分解開始温度315℃以上であるアクリルグ
ラフト酢ビ・エチレン共重合体に導電性フイラ
ー、架橋剤を配合してなるもので必要に応じて架
橋助剤、老化防止剤、加工助剤等の添加剤を適宜
配合した半導電性組成物からなる架橋ポリオレフ
イン絶縁電力ケーブルを提供する。 本発明における電力ケーブルの半導電層を形成
する組成物は電気的性質、耐寒性、耐油性、押出
加工性等に優れ、しかも絶縁体との剥離性及び銅
腐食性に優れている。 本発明に用いるアクリルグラフト酢酸ビニル・
エチレン共重合体(以下グラフト共重合体と称
す)は絶縁体の構成材料であるオレフイン系重合
体、例えばポリエチレンやエチレン・プロピレン
共重合体との良好な剥離性を得るためにsp値が
8.6〜9.4であることが必要である。このsp値が8.6
未満では絶縁体との剥離性が悪くなり、又9.4よ
り多いと耐寒性が悪くなるた本発明の目的に合致
しなくなる。尚、ポリエチレンのsp値は7.9であ
る。 グラフト共重合体のムーニー粘度は剥離性、銅
腐食性及び成形加工性の点から10〜40であること
が必要である。このムーニー粘度が10未満である
と剥離性、銅腐食性が劣り、又40を越えると成形
加工性が悪くなる。 又、上記グラフト共重合体の熱分解温度は315
℃以上でなければならない。315℃未満であると
230℃以上の高温又は水蒸気で架橋した際に銅腐
食が生じる。 尚、グラフト共重合体の幹成分である酢酸ビニ
ル・エチレン共重合体は乳化重合法で製造した酢
酸ビニル含量50〜80重量%、ムーニー粘度5〜40
の共重合体が好ましい。 本発明のグラフト共重合体のグラフト成分はア
クリル系単量体をグラフト重合したものであり、
かかるアクリル系単量体としては(メタ)アクリ
ル酸、(メタ)アクリル酸メチル、(メタ)アクリ
ル酸エチル、(メタ)アクリル酸プロピル、(メ
タ)アクリル酸ブチル、(メタ)アクリル酸2−
エチルヘキシル、アクリロニトリル等が挙げられ
る。 エチレン・プロピレン等のオレフイン類、酢酸
ビニル、プロピオン酸ビニル等のビニルエステル
類、スチレン類等も本発明の効果を妨げない範囲
で併用してもよく、これらを1種又は2種以上混
合してもよい。銅腐食性の点から塩化ビニルやス
チレン単独は好ましくない。 グラフト成分の量は単量体のsp値により異るが
グラフト共重合体の5〜50%が好ましい。 又、グラフト共重合体に本発明の効果を損わな
い範囲で塩素化ポリエチレン、アクリルゴム、エ
チレン・プロピレンゴム、エチレン共重合体及び
ポリスチレン等のゴム又はプラスチツクを併用し
てもよい。 導電性フイラーとしてはアセチレンブラツク、
フアーネスブラツク、ケツチエンブラツク等が一
般的であり、添加量はグラフト共重合体100重量
部に対して20〜100重量部でよい。 架橋剤としてはジクミルパーオキサイド、1,
3−ビス(t−ブチルパーオキシ・イソプロピ
ル)ベンゼン、2,5−ジメチル(t−ブチル−
パーオキシ)ヘキシン−3等の有機過酸化物が一
般的である。尚、架橋手段としては架橋剤の添加
以外に電子線等の高エネルギー線放射線の照射に
よる架橋でも差しつかえない。 又、本発明の電力ケーブルの絶縁体層に用いら
れるオレフイン重合体としては例えばポリエチレ
ン、エチレン・プロピレン共重合体等のポリマー
と架橋剤とからなるものである。この絶縁体層は
通常、その上に被覆される半導電性組成物の架橋
の際に同時に架橋される。 本発明の高電圧ケーブルは例えば第1図に示す
ように、導体1上に例えばカーボンを含むポリエ
チレン等の内部半導電層2、絶縁体3及び外部半
導電層4が順次押出被覆され、その上に遮蔽銅テ
ープ5、押えテープ6、シース7が施され構成さ
れている。これらの半導電層2,4はコロナ放電
による絶縁劣化を防止するために、絶縁体3と空
隙なく十分に密着していることが必要である。 本発明の電力ケーブルは、外部半導電層として
特定のものを使用するため、かかる半導電層と絶
縁体層との密着性が適度であり、ケーブル同士の
接続の際に外部半導電層と絶縁体層との剥離が容
易である。 一方、従来使用されている材料を用いた外部半
導電層を有する電力ケーブルは外部半導電層が絶
縁体と適度に密着して剥離が不可能であり、その
ために外部半導電層をナイフ等で削りとつた後
に、更にサンドペーパー等により絶縁体表面を平
滑に仕上げなくてはならず、作業に多くの時間と
熟練を必要とする。 次に、本発明の特徴を明らかにするために実施
例を挙げて具体的に説明する。尚、実施例、比較
例中の部数は全て重量部を示す。 実施例1〜3、比較例1〜4 表1に示す配合の外部半導電層を有する33KV
架橋ポリエチレン絶縁ビニルシース電力ケーブル
(100mm3×1芯)を押出機を用いて成形した後水
蒸気架橋で試作した。 表1に実施例及び比較例のケーブルでの諸物性
を示す。尚、諸物性の試験方法を次に示す。 溶解度係数(sp値) Encyclopedia of Polymer Science and
Technology(Wiley Inter Science社発行)によ
るポリマーsp値を用いた。共重合体のsp値は組成
比による加成性を仮定して計算した。 剥離性 IPCEA S−66−524に準じて、長さ30cmの試
料ケーブルの外部半導電層に12.7mm(1/2インチ)
中の切れ目を入れ、ケーブル軸に対して直角に引
張試験機で750mm/分速度で剥離試験を行ない測
定した。剥離強度0.5〜2.5Kgを良とした。 体積固有抵抗 体積固有抵抗はIPCEA S−66−524に準じて、
長さ30cmの試料ケーブルを用いて測定した。 銅テープ腐食性試験 シース層を取除いた試料ケーブルを30cm切り取
り、105℃に調整した熱風乾燥機に30日間入れて
促進試験を行ない、外部半導電層上の遮蔽銅テー
プの腐食による変色状況を目視観察した。 判定規準は比較例2に比べて同等以上を良、以
下を不良とした。 耐寒性 ケーブルに押出しする以前の表1に示した配合
物を200℃で15分間プレス架橋して得られたシー
トを用いてJIS K−6301に準じて測定した。尚、
−15℃以下を合格とした。 押出加工性 ケーブルに押出しする以前の表1に示した配合
物をブラベンダープラフトグラフにかけ、160℃
×60r.p.m.の条件でトルクを追跡し最大ピークに
なるまでの時間を加硫時間として測定した。加硫
時間が15分以上なら良とした。この条件なら実用
の押出成型条件でもスコーチすることがない。 ムーニー粘度 JIS K−6300に準じて測定した。 熱分解開始温度 示差熱天秤により次の条件で測定した。尚、1
%減量した時の温度を熱分解開始温度とした。 雰囲気 窒素ガス 30ml/分 昇温速度 20℃/分 試料量 10±1mg
The present invention relates to a cross-linked polyolefin insulated power cable, particularly a high voltage cable, in which a cross-linked polyolefin insulator and an external semi-conducting layer are in close contact with each other, and if necessary, an external semi-conducting layer can be easily peeled off. It is something. Conventionally, materials obtained by mixing polyethylene, ethylene/vinyl acetate copolymer, or ethylene/ethyl acrylate copolymer with a conductive filler have often been used as external semiconductive materials for crosslinked polyolefin insulated high voltage cables. However, these materials are in perfect contact with the adjacent cross-linked polyolefin insulation layer, making cable connections,
When carrying out terminal work, there is a problem in that it is very difficult to separate the two layers. As a solution to this problem, power cables have been proposed in which the outer semiconducting layer is made of vinyl chloride grafted ethylene/vinyl acetate copolymer, chlorinated polyethylene, or vinyl acetate/ethylene copolymer with a high vinyl acetate content (for example, Japanese Patent Publication No. 55-76508,
Special Publication No. 54-9714, Special Publication No. 51-53286, Special Publication No. 52-Sho.
41875). However, although these materials for the outer semiconducting layer have improved removability by increasing the content of vinyl acetate or chlorine that imparts polar groups, they have the disadvantage of poor cold resistance. Furthermore, if a crosslinked polyethylene cable with semiconducting layers made of these materials is crosslinked at a high temperature of 200°C or higher to improve productivity, the outer semiconducting layer made of such materials will be heated to 200°C or higher.
Even if there is no problem in terms of physical properties, heating at temperatures above 230° C. causes problems such as poor peelability and discoloration due to corrosion of the shielding copper tape on the external semiconducting layer. These phenomena are further accelerated when water vapor is used as a heating medium, so organic acids generated by thermal decomposition or hydrolysis,
It is presumed that this is due to the influence of decomposition products such as inorganic acids. Recently, not only has excellent peeling workability, etc.
There is a growing need for high performance power cables with external semiconducting layers that can withstand high temperature crosslinking, water vapor crosslinking, and do not cause corrosion of the copper tape. The present inventors have made various efforts to provide a power cable coated with a free strip type outer semiconductive layer that has excellent electrical properties, cold resistance, oil resistance, and extrusion processability, as well as good peelability and copper corrosion resistance. As a result of our investigation, we found that a modified vinyl acetate/ethylene copolymer obtained by polymerizing vinyl acetate/ethylene copolymer with an acrylic monomer under grafting conditions has a semiconducting material with a conductive filler, a crosslinking agent, etc. The inventors have discovered that the above-mentioned problems can be solved by using the composition for the outer semiconductive layer, leading to the present invention. That is, the present invention provides a power cable in which a semiconducting layer is formed on an insulator made of an olefinic polymer extrusion coated on a conductor, in which the semiconducting layer has a solubility coefficient (sp value) of 8.6 to 9.4, a Mooney Viscosity 10~
40. It is made by blending a conductive filler and a crosslinking agent with an acrylic grafted vinyl acetate/ethylene copolymer with a thermal decomposition onset temperature of 315℃ or higher. Crosslinking aids, anti-aging agents, processing aids, etc. are added as necessary. Provided is a crosslinked polyolefin insulated power cable made of a semiconductive composition suitably blended with additives. The composition forming the semiconductive layer of the power cable of the present invention has excellent electrical properties, cold resistance, oil resistance, extrusion processability, etc., and is also excellent in peelability from an insulator and copper corrosion resistance. Acrylic grafted vinyl acetate used in the present invention
Ethylene copolymers (hereinafter referred to as graft copolymers) have a high sp value in order to obtain good releasability from olefinic polymers, such as polyethylene and ethylene-propylene copolymers, which are constituent materials of insulators.
Must be between 8.6 and 9.4. This sp value is 8.6
If it is less than 9.4, the peelability from the insulator will be poor, and if it is more than 9.4, the cold resistance will be poor, which does not meet the object of the present invention. Note that the sp value of polyethylene is 7.9. The Mooney viscosity of the graft copolymer is required to be 10 to 40 from the viewpoint of peelability, copper corrosion resistance, and moldability. If the Mooney viscosity is less than 10, the peelability and copper corrosion resistance will be poor, and if it exceeds 40, the moldability will be poor. In addition, the thermal decomposition temperature of the above graft copolymer is 315
Must be above ℃. If it is less than 315℃
Copper corrosion occurs when cross-linked at high temperatures of 230℃ or higher or with water vapor. The vinyl acetate/ethylene copolymer, which is the main component of the graft copolymer, is manufactured by an emulsion polymerization method and has a vinyl acetate content of 50 to 80% by weight and a Mooney viscosity of 5 to 40.
A copolymer of is preferred. The graft component of the graft copolymer of the present invention is obtained by graft polymerizing an acrylic monomer,
Examples of such acrylic monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and 2-(meth)acrylate.
Examples include ethylhexyl and acrylonitrile. Olefins such as ethylene and propylene, vinyl esters such as vinyl acetate and vinyl propionate, styrenes, etc. may also be used in combination as long as they do not impair the effects of the present invention, and these may be used alone or in combination of two or more. Good too. Vinyl chloride or styrene alone is not preferred from the viewpoint of copper corrosion. The amount of the graft component varies depending on the sp value of the monomer, but is preferably 5 to 50% of the graft copolymer. Further, rubbers or plastics such as chlorinated polyethylene, acrylic rubber, ethylene/propylene rubber, ethylene copolymer, and polystyrene may be used in combination with the graft copolymer to the extent that the effects of the present invention are not impaired. Acetylene black as a conductive filler,
Furnace black, butcher black, etc. are commonly used, and the amount added may be 20 to 100 parts by weight per 100 parts by weight of the graft copolymer. As a crosslinking agent, dicumyl peroxide, 1,
3-bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl(t-butyl-
Organic peroxides such as (peroxy)hexyne-3 are common. In addition to the addition of a crosslinking agent, the crosslinking means may also be crosslinking by irradiation with high energy radiation such as an electron beam. Further, the olefin polymer used in the insulating layer of the power cable of the present invention is composed of a polymer such as polyethylene or ethylene/propylene copolymer and a crosslinking agent. This insulating layer is usually crosslinked simultaneously with the crosslinking of the semiconducting composition coated thereon. In the high voltage cable of the present invention, for example, as shown in FIG. 1, an inner semiconducting layer 2 of polyethylene containing carbon, an insulator 3, and an outer semiconducting layer 4 are sequentially extruded and coated on a conductor 1. A shielding copper tape 5, a holding tape 6, and a sheath 7 are applied to the top. These semiconducting layers 2 and 4 need to be in sufficient contact with the insulator 3 without any gaps in order to prevent insulation deterioration due to corona discharge. Since the power cable of the present invention uses a specific material as the outer semiconducting layer, the adhesion between the semiconducting layer and the insulating layer is appropriate, and when the cables are connected to each other, the outer semiconducting layer is insulated. It is easy to peel off from the body layer. On the other hand, in power cables that have an outer semiconducting layer made of conventionally used materials, the outer semiconducting layer adheres moderately to the insulator and cannot be peeled off. After scraping, the surface of the insulator must be smoothed using sandpaper, etc., which requires a lot of time and skill. Next, in order to clarify the characteristics of the present invention, examples will be given to specifically explain the present invention. Note that all parts in Examples and Comparative Examples indicate parts by weight. Examples 1 to 3, Comparative Examples 1 to 4 33KV with an external semiconductive layer having the composition shown in Table 1
A cross-linked polyethylene insulated vinyl sheathed power cable (100 mm 3 × 1 core) was molded using an extruder and then prototyped by steam cross-linking. Table 1 shows the physical properties of the cables of Examples and Comparative Examples. The testing methods for various physical properties are shown below. Solubility coefficient (sp value) Encyclopedia of Polymer Science and
The polymer sp value according to Technology (published by Wiley Inter Science) was used. The sp value of the copolymer was calculated assuming additivity depending on the composition ratio. Peelability: According to IPCEA S-66-524, 12.7 mm (1/2 inch) is applied to the outer semiconducting layer of a 30 cm long sample cable.
A cut was made in the middle of the cable, and a peel test was performed at a speed of 750 mm/min using a tensile tester perpendicular to the cable axis. A peel strength of 0.5 to 2.5 kg was considered good. Volume resistivity Volume resistivity is based on IPCEA S-66-524.
Measurements were made using a sample cable with a length of 30 cm. Copper Tape Corrosion Test A 30cm sample cable from which the sheath layer had been removed was cut and placed in a hot air dryer adjusted to 105℃ for 30 days to perform an accelerated test. Visually observed. The evaluation criteria were as follows: compared to Comparative Example 2, a sample that was equal to or better than Comparative Example 2 was considered good, and a sample that was less than or equal to Comparative Example 2 was considered bad. Cold resistance Measurement was performed according to JIS K-6301 using a sheet obtained by press-crosslinking the composition shown in Table 1 at 200° C. for 15 minutes before extrusion into a cable. still,
-15°C or lower was considered acceptable. Extrusion processability Before being extruded into cables, the formulations shown in Table 1 were subjected to a Brabender Plaft graph at 160°C.
The torque was tracked under the conditions of ×60 rpm, and the time until it reached the maximum peak was measured as the vulcanization time. It was considered good if the vulcanization time was 15 minutes or more. Under these conditions, scorch will not occur even under practical extrusion molding conditions. Mooney viscosity Measured according to JIS K-6300. Thermal decomposition onset temperature Measured using a differential thermal balance under the following conditions. Furthermore, 1
The temperature at which the weight was reduced by % was defined as the thermal decomposition start temperature. Atmosphere Nitrogen gas 30ml/min Heating rate 20℃/min Sample amount 10±1mg

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電力ケーブルの部分剥離斜視
図である。 1……導体、2……内部半導電層、3……絶縁
体、4……外部半導電層、5……遮蔽銅テープ、
6……押えテープ、7……シース層。
FIG. 1 is a partially exploded perspective view of the power cable of the present invention. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Inner semiconducting layer, 3... Insulator, 4... Outer semiconducting layer, 5... Shielding copper tape,
6... Presser tape, 7... Sheath layer.

Claims (1)

【特許請求の範囲】[Claims] 1 オレフイン系重合体からなる絶縁体層上に外
部半導電層を形成してなる電力ケーブルにおい
て、該半導電層が溶解度係数8.6〜9.4、ムーニー
粘度10〜40及び熱分解開始温度が315℃以上であ
るアクリルグラフト酢酸ビニル・エチレン共重合
体に導電性フイラー、架橋剤を配合した半導電性
組成物からなることを特徴とする架橋ポリオレフ
イン絶縁電力ケーブル。
1. A power cable in which an external semiconducting layer is formed on an insulating layer made of an olefin polymer, in which the semiconducting layer has a solubility coefficient of 8.6 to 9.4, a Mooney viscosity of 10 to 40, and a thermal decomposition onset temperature of 315°C or higher. A crosslinked polyolefin insulated power cable comprising a semiconductive composition comprising an acrylic grafted vinyl acetate/ethylene copolymer mixed with a conductive filler and a crosslinking agent.
JP5389283A 1983-03-31 1983-03-31 Crosslinked polyolefine insulated power cable Granted JPS59181416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5389283A JPS59181416A (en) 1983-03-31 1983-03-31 Crosslinked polyolefine insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5389283A JPS59181416A (en) 1983-03-31 1983-03-31 Crosslinked polyolefine insulated power cable

Publications (2)

Publication Number Publication Date
JPS59181416A JPS59181416A (en) 1984-10-15
JPH0259565B2 true JPH0259565B2 (en) 1990-12-12

Family

ID=12955370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5389283A Granted JPS59181416A (en) 1983-03-31 1983-03-31 Crosslinked polyolefine insulated power cable

Country Status (1)

Country Link
JP (1) JPS59181416A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170994A (en) * 2015-03-13 2016-09-23 日立金属株式会社 Power transmission cable

Also Published As

Publication number Publication date
JPS59181416A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
JPS6320266B2 (en)
US6972099B2 (en) Strippable cable shield compositions
EP1668652B1 (en) Strippable semiconductive shield and compositions therefor
JP5117725B2 (en) Low voltage transmission cable containing polyolefin with polar groups, hydrolyzable silane groups, and silanol condensation
EP0012014B1 (en) A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
JP4319347B2 (en) Electrical cable and methods and compositions for producing the same
JPH039140B2 (en)
JPH10283851A (en) Direct current power cable and its connection part
JPH0259565B2 (en)
EP0210425A2 (en) Compositions based on mixtures of ethylene-ethyl, acrylate copolymers and ethylene-vinyl acetate-vinyl chloride terpolymers
JP2001302856A (en) Semiconductive resin composition and electric cable using the same
JPH05298927A (en) Highly insulating body made of ethylene-based copolymer or its composition and electric cable using thereof
JP3428388B2 (en) DC cable
JP4533506B2 (en) Peelable semiconductive resin composition for externally semiconductive layer of chemically crosslinked polyethylene insulated power cable
JP3773569B2 (en) DC power cable
JP3222198B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
JP2002175730A (en) Watertight admixture
JPH0410681B2 (en)
JPH10265583A (en) Crosslinked molded product and electric wire, cable
JPH0641543B2 (en) Semi-conductive resin composition
JP3133145B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
JPH0737440A (en) Resin composition for easily peeled external semiconductive layer and electric power cable coated with resin composition thereof
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPH01239710A (en) Resin compound for external semiconductive layer of power cable
CN114402022A (en) Polyethylene copolymer blends