JPH0410681B2 - - Google Patents

Info

Publication number
JPH0410681B2
JPH0410681B2 JP58234388A JP23438883A JPH0410681B2 JP H0410681 B2 JPH0410681 B2 JP H0410681B2 JP 58234388 A JP58234388 A JP 58234388A JP 23438883 A JP23438883 A JP 23438883A JP H0410681 B2 JPH0410681 B2 JP H0410681B2
Authority
JP
Japan
Prior art keywords
vinyl acetate
weight
ethylene
degree
saponification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234388A
Other languages
Japanese (ja)
Other versions
JPS60127604A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23438883A priority Critical patent/JPS60127604A/en
Publication of JPS60127604A publication Critical patent/JPS60127604A/en
Publication of JPH0410681B2 publication Critical patent/JPH0410681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は例えば高電圧ケーブルの外部半導電層
として適した組成物に関し、詳しくは電力ケーブ
ルのポリオレフイン絶縁層と十分に密着し、且つ
必要に応じて容易に剥離可能なポリオレフイン絶
縁層被覆用架橋型半導電性樹脂組成物に関するも
のである。 高電圧ケーブルの絶縁層の周上には電解緩和の
目的から半導電性を有するゴム・プラスチツク配
合物層が被覆されている。この半導電性配合物層
は本来の目的である電解緩和に適した電気特性を
有することが第一に要求されるが、その他に耐寒
性、対油性及び耐熱性、特に加工時の熱安定性等
が要求される。又更に電力ケーブルの接続・端末
工事を施工する際、外部半導電層を絶縁層から一
部除去しなければならないが電気特性を低下させ
ないため絶縁層に傷をつけずに除去する必要があ
る。最近中小の施工業者による工事が増え、特殊
な技術や工具を必要としない易剥離性の外部半導
電層が要望されている。 従来架橋ポリオレフイン絶縁層高電圧ケーブル
の外部半導電層材料としてはポリエチレン、エチ
レン酢酸ビニル共重合体及びエチレン・エチルア
クリレート共重合体等に導電性フイラーを混合し
たものが多く使用されていた。しかしながらこれ
らの材料は隣接するポリエチレン、エチレン・プ
ロピレンゴム等ポリオレフイン絶縁層と類似組成
のため過度に密着し、ケーブルの接続・端末工事
を施工する際、2層間の剥離作業が非常に困難で
ある問題があつた。 この問題の解決方法としてエチレン・樹脂ビニ
ル・塩化ビニルグラフト共重合体、塩素化ポリエ
チレン及び酢酸ビニル含量の多い酢酸ビニル・エ
チレン共重合体等が提案されている。例えば、特
開昭55−76508号、特公昭54−9714号、特開昭51
−53286号、特公昭52−41875号等で提案されてい
る。 しかしながらこれらの提案では、剥離性を良好
とするには極性基である酢酸ビニル又は塩素含有
量を多くする必要があり、そのことは逆に耐寒性
を悪くする。又架橋ポリエチレンケーブルは一般
に約200℃に加熱し架橋しているが更に高温・短
時間で架橋する方が生産性の良いことは明白であ
る。ところが酢酸ビニルや塩化ビニル含量を単に
増した従来材料を用いた組成物の場合200℃での
架橋では物性上問題なくとも230℃以上で架橋す
ると剥離性が悪くなつたり、外部半導電層上の遮
蔽銅テープに腐食による変色を生じたりする。こ
れらの現象は加熱用の熱媒として水蒸気を用いた
場合には、更に促進されることから、熱分解ある
いは加水分解によつて生じた有機・無機酸等の分
解生成物が悪影響を与えていると推定される。 更に電力ケーブル製造上の問題として、外部半
導電層を押出被覆し、架橋した後一旦ケーブルを
ドラムに巻き取る工程が必要である。従来材料の
場合外部半導電層の表面が粘着性を持ち、ケーブ
ル同士が密着して巻き戻しの際半導電層が傷つい
たり剥離したりした、それを防ぐため特別の対策
を必要とする等生産性が悪かつた。 本発明者らはかゝる問題を解決すべく種々研究
の結果、酢酸ビニル−エチレン共重合体を一部ケ
ン化したポリマーからなる半導電性組成物を用い
ることにより絶縁層との剥離性、耐寒性、耐油
性、耐熱性及び押出加工性等が優れるだけでなく
ケーブル遮蔽銅テープの腐食性及びケーブル外部
半導電層の表面粘着性を改良できることを見い出
し本発明に到達した。 即ち、本発明は(A)エチレン含量20〜80重量%、
ケン化度3〜70重量%のエチレン・酢酸ビニル共
重合体部分ケン化物100重量部、(B)導電性フイラ
ー35〜100重量部を架橋してなり、必要に応じて
架橋助剤、老化防止剤及び加工助剤等を適宜添加
しても良い架橋型ポリオレフイン絶縁層被覆用架
橋型半導電性樹脂組成物を提供する。 本発明による半導電性組成物は、電気的性質、
耐寒性、耐油性、押出加工性及びポリオレフイン
絶縁層との剥離性に優れ、更に銅腐食性及び表面
粘着性の点で優れている。 この効果については、ポリマーの分離されやす
い部分がケン化された為に生じたものと推定され
る。 本発明に用いる部分ケン化エチレン・酢酸ビニ
ル共重合体は、エチレン含量20〜80重量%、ケン
化度3〜70重量%の範囲から選ばれるが、特に外
部半導電層に適した範囲としてエチレン含量30〜
65重量%、ケン化度5〜60重量%が好ましい。 該ポリマーのエチレン含量が20重量%未満では
該組成物の耐寒性が劣り、又80重量%を越えると
ポリオレフイン絶縁層との剥離性が劣る。 該ポリマーのケン化度が3重量%未満では該組
成物の銅腐食性や表面粘着性が改良されない、又
70重量%を越えると該組成物の耐寒性が劣り、更
に該組成物が有機過酸化物で架橋されにくくなり
その結果架橋度が低下し、耐熱性や機械的物性の
低下を招く。 なお該ポリマーはまず塊状重合、溶液重合、乳
化重合及び懸濁重合等の方法により重合されたエ
チレン・酢酸ビニル共重合体を公知の方法(例え
ば村橋俊介編:合成高分子、朝倉書店(1971)
P67)にて一部ケン化して得られるが、重合の際
エチレン、酢酸ビニル以外にこれと共重合しうる
ビニル単量体、例えばピロピレン、イソブチレ
ン、アクリルアミド、アクリロニトリル、スチレ
ン、ハロゲン化ビニル、脂肪酸ビニルエステル、
マレイン酸、クロトン酸、フマール酸、アクリル
酸、メタアクリル酸等の非飽和酸或いはこれら不
飽和酸のアルキルエステル化物等の1種又は2種
以上を本発明の効果を損わない範囲で共重合又は
グラフト重合させても良い。 導電性フイラーとしては、アセチレンブラツ
ク、フアーネスブラツク、チヤンネルブラツク、
ケツチエンブラツク等の導電性に優れたカーボン
ブラツクが一般的に用いられる。添加量は35〜
100重量部の範囲から選ばれる。35重量部未満で
は外部半導電層としての電気特性が劣り、又100
重量部を越えると押出加工性及び機械的強度が劣
る。好ましい範囲は40〜70重量部である。 架橋剤としてはジクミルパートキサイド、1,
3−ビス(t−ブチルパーオキシイソプロピル)
ベンゼン、2,5−ジメチル−2,5−ジ(t−
ブチルパーオキシ)ヘキシン−3等の有機過酸化
物が用いられる。その添加量はポリマー100重量
部当り0.3〜5重量部の範囲である。但し電子線
等高エネルギー対射線の照射による架橋も可能で
あるが、その際は有機過酸化物を省いて行うこと
ができる。 本発明の組成物に発明の効果を損わない範囲で
塩素化ポリエチレン、クロルスルホン化ポリエチ
レン、アクリルゴム、エチレン・プロピレンゴ
ム、エチレン共重合体、飽和ポリエステル樹脂、
ポリアミド樹脂、ポリスチレン樹脂、ウレタン樹
脂等ゴム又は熱可塑性樹脂を併用しても良い。 本発明組成物はバンバリーミキサー、ロール等
のバツチ式加工機又は押出機等の連続式加工機に
より容易に加工できる。 架橋法はスチームを用いる湿式架橋法又は不活
性ガス雰囲気下高温で行う乾式架橋法等が一般的
に用いられる。 本発明組成物は架橋ポリオレフイン絶縁ケーブ
ル用の外部半導電層として用いることにより電力
ケーブルの水トリー劣化性やケーブル接続処理時
の剥離作業性を改良した高品質の電力ケーブルの
製造を可能とする。又、面状発熱体等導電性シー
ト、フイルム分野への応用も可能である。 次に本発明の特徴を更に明確にするため実施例
を挙げて具体的に説明する。尚、実施例、比較例
中の部数は全て重量部を示す。 実施例 1 エチレン含量42%、酢酸ビニル部分のケン化度
16%の部分ケン化酢酸ビニル・エチレン共重合体
100部にアセチレンブラツク55部、ステアリン酸
亜鉛1.0部、4,4′−チオビス(6−t−ブチル
−3−メチルフエノール)0.5部、2,5−ジメ
チル−2,5−ジ(t−ブチルパーオキシ)ヘキ
シン−3 1.5部を配合し、2本ロールミルを用
いて70℃で20分間混練した。厚さ約1mmの未架橋
ロールシートを得た。これを用いて次の物性を測
定し、結果を表1に示した。 (1) 押出加工性(スコーチ性) 未架橋シートから50gの試料を採取し、ブラ
ベンダープラストグラフイーにかけた。160℃
×60rpmの条件下でトルクを追跡し、トルクが
最低から10%上昇する迄の時間をスコーチ時間
とした。スコーチ時間が10分以上なら実用上問
題がなく、押出加工性は合格とする。 (2) 絶縁層との剥離性(対ポリエチレン剥離性) 厚さ1mmの上記未架橋シートと同じく厚さ1
mmのジクミルパーオキサイド2%含有の未架橋
低密度ポリエチレンシートとをはり合せて、
200℃で15分間プレス成形した。その架橋シー
トから2.5cm巾の短册状試片を切り取り、180°
の角度、10mm/minのスピードで剥離した。剥
離強度が0.5〜4Kg/2.5cmの間にあるものは実
用上問題がなく合格とした。 (3) 銅腐食性 上記未架橋シートを蒸気加硫缶を用いて200
℃×15分間の条件で架橋した。得られた架橋シ
ートから3×3cm2切取り銅板に貼り合せて均熱
乾燥機中に105℃で1週間促進試験した。銅板
が腐食又は変色していないものは実用上問題が
なく合格とした。 (4) 機械的性質 未架橋シートを200℃で15分間プレス成形し
て2mm厚のシートを得てJIS K−6301に準拠し
て測定した。抗張力80Kg/cm2以上、伸び200%
以上あれば実用上問題がなく、合格とした。 (5) 耐寒性 (4)で得たシートを用いてJIS K−6301に準拠
して脆化温度を測定した。−10℃以下であれば
実用上問題なく、合格とした。 (6) 粘着性 (4)で得たシートから2.5cm巾の短冊状試片を
切り取り、2枚をはり合せ1cm2当り5Kgの荷重
をかけて50℃で24時間放置後、室温に戻し、
180°の角度、50mm/minのスピードで剥離し
た。剥離強度が4Kg/2.5cm以下であれば実用
上問題なく、合格とした。 (7) 架橋度 (4)で得たシートを用いてJIS C−3005に準拠
して架橋度を測定した。80%以上あれば実用上
問題がなく、合格とした。 実施例2〜4、比較例1〜4 実施例1において該ポリマーをエチレン含量42
%、酢酸ビニル部分のケン化度8%の部分ケン化
酢酸ビニル・エチレン共重合体としたものを実施
例2とした。 実施例1において該ポリマーをエチレン含量28
%、酢酸ビニル部分のケン化度5%の部分ケン化
酢酸ビニル・エチレン共重合体としたものを実施
例3とした。 実施例1において該ポリマーをエチレン含量63
%、酢酸ビニル部分のケン化度58%の部分ケン化
エチレン・酢酸ビニル共重合体としたものを実施
例4とした。 実施例1において該ポリマーをエチレン含量41
%、酢酸ビニル部分のケン化度0%の酢酸ビニ
ル・エチレン共重合体としたものを比較例1とし
た。 実施例1において該ポリマーをエチレン含量53
%、酢酸ビニル部分のケン化度77%の部分ケン化
酢酸ビニル・エチレン共重合体としたものを比較
例2とした。 実施例1において該ポリマーをエチレン含量89
%、酢酸ビニル部分のケン化度15%の部分ケン化
エチレン・酢酸ビニル共重合体としたものを比較
例3とした。 実施例1において該ポリマーをエチレン含量15
%、酢酸ビニル部分のケン化度4%の部分ケン化
酢酸ビニル・エチレン共重合体としたものを比較
例4とした。 以上の実施例・比較例について実施例1と同様
に物性を評価した、結果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition suitable for example as an outer semiconducting layer of a high voltage cable, and more particularly to a composition that adheres well to a polyolefin insulation layer of a power cable and is easily removable if necessary. The present invention relates to a crosslinked semiconductive resin composition for coating a polyolefin insulating layer. The circumference of the insulating layer of the high voltage cable is coated with a semiconductive rubber-plastic compound layer for the purpose of electrolytic mitigation. This semiconductive compound layer is primarily required to have electrical properties suitable for electrolytic relaxation, which is the original purpose, but it is also required to have cold resistance, oil resistance, and heat resistance, especially thermal stability during processing. etc. are required. Furthermore, when performing power cable connection/termination work, it is necessary to partially remove the external semiconducting layer from the insulating layer, but it is necessary to remove it without damaging the insulating layer so as not to reduce the electrical characteristics. Recently, construction work by small and medium-sized contractors has increased, and there is a demand for an easily peelable external semiconductive layer that does not require special techniques or tools. Conventionally, materials prepared by mixing polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, etc. with a conductive filler have often been used as materials for the outer semiconductive layer of cross-linked polyolefin insulating layer high voltage cables. However, these materials adhere excessively to the adjacent polyolefin insulating layer, such as polyethylene or ethylene/propylene rubber, due to their similar composition, making it extremely difficult to separate the two layers when constructing cable connections and terminals. It was hot. As a solution to this problem, ethylene/vinyl resin/vinyl chloride graft copolymers, chlorinated polyethylene, and vinyl acetate/ethylene copolymers with a high vinyl acetate content have been proposed. For example, JP-A-55-76508, JP-A-54-9714, JP-A-51
It has been proposed in No.-53286, Special Publication No. 52-41875, etc. However, in these proposals, in order to improve releasability, it is necessary to increase the content of vinyl acetate or chlorine, which are polar groups, which in turn worsens cold resistance. Although cross-linked polyethylene cables are generally cross-linked by heating to about 200°C, it is clear that cross-linking at higher temperatures and in a shorter time is more productive. However, in the case of compositions using conventional materials with simply increased vinyl acetate or vinyl chloride content, crosslinking at 200°C may cause no problems in terms of physical properties, but crosslinking at 230°C or higher may result in poor peelability or damage to the outer semiconducting layer. The shielding copper tape may become discolored due to corrosion. These phenomena are further accelerated when water vapor is used as a heating medium, so decomposition products such as organic and inorganic acids produced by thermal decomposition or hydrolysis have an adverse effect. It is estimated to be. A further problem in manufacturing power cables is that after extrusion coating the outer semiconductive layer and crosslinking, the cable must be wound onto a drum. In the case of conventional materials, the surface of the outer semiconductive layer is sticky, and the cables stick together and the semiconductive layer is damaged or peeled off when unwinding, which requires special measures to prevent production. It was a bad idea. The inventors of the present invention have conducted various studies to solve such problems, and have found that by using a semiconductive composition made of a partially saponified vinyl acetate-ethylene copolymer, it is possible to improve the peelability from the insulating layer. The present invention was achieved by discovering that the present invention not only has excellent cold resistance, oil resistance, heat resistance, extrusion processability, etc., but also can improve the corrosion resistance of the cable shielding copper tape and the surface tackiness of the cable external semiconductive layer. That is, the present invention has (A) an ethylene content of 20 to 80% by weight,
100 parts by weight of a partially saponified ethylene/vinyl acetate copolymer with a degree of saponification of 3 to 70% by weight, 35 to 100 parts by weight of (B) conductive filler, and optionally a crosslinking aid and anti-aging agent. The present invention provides a crosslinked semiconductive resin composition for coating a crosslinked polyolefin insulating layer, to which a crosslinked polyolefin insulating layer may be appropriately added with additives, processing aids, and the like. The semiconductive composition according to the invention has electrical properties,
It has excellent cold resistance, oil resistance, extrusion processability, and peelability from polyolefin insulating layers, and is also excellent in copper corrosion resistance and surface tackiness. This effect is presumed to be due to saponification of the easily separated portion of the polymer. The partially saponified ethylene/vinyl acetate copolymer used in the present invention has an ethylene content of 20 to 80% by weight and a degree of saponification of 3 to 70% by weight. Content 30~
65% by weight, and the degree of saponification is preferably 5 to 60% by weight. If the ethylene content of the polymer is less than 20% by weight, the composition will have poor cold resistance, and if it exceeds 80% by weight, the peelability from the polyolefin insulation layer will be poor. If the degree of saponification of the polymer is less than 3% by weight, the copper corrosion resistance and surface tackiness of the composition will not be improved;
If it exceeds 70% by weight, the composition will have poor cold resistance, and will also become difficult to crosslink with the organic peroxide, resulting in a decrease in the degree of crosslinking and a decrease in heat resistance and mechanical properties. The polymer is first polymerized by a method such as bulk polymerization, solution polymerization, emulsion polymerization, or suspension polymerization, and then ethylene/vinyl acetate copolymer is polymerized using a known method (for example, Shunsuke Murahashi, Synthetic Polymers, Asakura Shoten (1971)).
P67), but during polymerization, in addition to ethylene and vinyl acetate, vinyl monomers that can be copolymerized with ethylene and vinyl acetate, such as propylene, isobutylene, acrylamide, acrylonitrile, styrene, vinyl halides, fatty acid vinyl ester,
Copolymerization of one or more unsaturated acids such as maleic acid, crotonic acid, fumaric acid, acrylic acid, methacrylic acid, or alkyl esters of these unsaturated acids within a range that does not impair the effects of the present invention. Alternatively, graft polymerization may be performed. Examples of conductive fillers include acetylene black, furnace black, channel black,
Carbon black with excellent conductivity, such as ketchen black, is generally used. Addition amount is 35~
Selected from a range of 100 parts by weight. If it is less than 35 parts by weight, the electrical properties as an external semiconducting layer will be poor;
Exceeding the weight part results in poor extrusion processability and mechanical strength. The preferred range is 40 to 70 parts by weight. As a crosslinking agent, dicumyl pertoxide, 1,
3-bis(t-butylperoxyisopropyl)
Benzene, 2,5-dimethyl-2,5-di(t-
Organic peroxides such as (butylperoxy)hexyne-3 are used. The amount added is in the range of 0.3 to 5 parts by weight per 100 parts by weight of polymer. However, crosslinking by irradiation with high-energy radiation such as electron beams is also possible, but in that case, the organic peroxide can be omitted. The composition of the present invention may include chlorinated polyethylene, chlorosulfonated polyethylene, acrylic rubber, ethylene/propylene rubber, ethylene copolymer, saturated polyester resin, within a range that does not impair the effects of the invention.
Rubber or thermoplastic resins such as polyamide resin, polystyrene resin, urethane resin, etc. may be used in combination. The composition of the present invention can be easily processed using a batch processing machine such as a Banbury mixer or a roll machine, or a continuous processing machine such as an extruder. As the crosslinking method, a wet crosslinking method using steam or a dry crosslinking method performed at high temperature under an inert gas atmosphere is generally used. By using the composition of the present invention as an outer semiconducting layer for crosslinked polyolefin insulated cables, it is possible to manufacture high-quality power cables with improved water tree deterioration resistance and peeling workability during cable connection processing. Furthermore, it can also be applied to the field of conductive sheets and films such as planar heating elements. Next, in order to further clarify the features of the present invention, examples will be given to specifically explain the features of the present invention. Note that all parts in Examples and Comparative Examples indicate parts by weight. Example 1 Ethylene content 42%, saponification degree of vinyl acetate part
16% partially saponified vinyl acetate-ethylene copolymer
To 100 parts, 55 parts of acetylene black, 1.0 part of zinc stearate, 0.5 part of 4,4'-thiobis(6-t-butyl-3-methylphenol), 2,5-dimethyl-2,5-di(t-butyl) 1.5 parts of peroxy)hexyne-3 was blended and kneaded for 20 minutes at 70°C using a two-roll mill. An uncrosslinked rolled sheet with a thickness of about 1 mm was obtained. The following physical properties were measured using this, and the results are shown in Table 1. (1) Extrusion processability (scorchability) A 50g sample was taken from the uncrosslinked sheet and subjected to Brabender plastography. 160℃
The torque was tracked under the condition of ×60 rpm, and the time until the torque increased by 10% from the minimum was defined as the scorch time. If the scorch time is 10 minutes or more, there is no practical problem and the extrusion processability is passed. (2) Peelability with insulating layer (peelability with polyethylene) Same as the above uncrosslinked sheet with a thickness of 1mm.
mm of uncrosslinked low-density polyethylene sheet containing 2% dicumyl peroxide,
Press molding was performed at 200°C for 15 minutes. Cut a 2.5cm wide short box-shaped specimen from the crosslinked sheet, and
Peeling was performed at an angle of 10 mm/min and a speed of 10 mm/min. Those with a peel strength between 0.5 and 4 kg/2.5 cm had no practical problems and were passed. (3) Copper corrosivity The above uncrosslinked sheet was heated to
Crosslinking was carried out at ℃ for 15 minutes. A 3×3 cm 2 cut sheet was cut out from the obtained crosslinked sheet and pasted on a copper plate, and an accelerated test was carried out at 105° C. for one week in a soaking dryer. If the copper plate was not corroded or discolored, there was no practical problem and it was passed. (4) Mechanical properties An uncrosslinked sheet was press-molded at 200°C for 15 minutes to obtain a 2 mm thick sheet and measured in accordance with JIS K-6301. Tensile strength 80Kg/ cm2 or more, elongation 200%
If it is above, there is no practical problem and it is considered as passing. (5) Cold resistance Using the sheet obtained in (4), the embrittlement temperature was measured in accordance with JIS K-6301. If it was -10°C or lower, there would be no practical problem and it was considered a pass. (6) Adhesiveness Cut a 2.5 cm wide strip from the sheet obtained in (4), glue the two pieces together, apply a load of 5 kg per 1 cm 2 and leave it at 50°C for 24 hours, then return to room temperature.
Peeling was performed at an angle of 180° and a speed of 50 mm/min. If the peel strength was 4 kg/2.5 cm or less, there was no problem in practical use and the product was considered to be passed. (7) Degree of crosslinking Using the sheet obtained in (4), the degree of crosslinking was measured in accordance with JIS C-3005. If it is 80% or higher, there is no practical problem and it is considered a pass. Examples 2 to 4, Comparative Examples 1 to 4 In Example 1, the polymer had an ethylene content of 42
Example 2 was a partially saponified vinyl acetate/ethylene copolymer with a degree of saponification of the vinyl acetate portion of 8%. In Example 1, the polymer had an ethylene content of 28
Example 3 was a partially saponified vinyl acetate/ethylene copolymer with a degree of saponification of the vinyl acetate portion of 5%. In Example 1, the polymer had an ethylene content of 63
Example 4 was a partially saponified ethylene/vinyl acetate copolymer with a degree of saponification of the vinyl acetate portion of 58%. In Example 1, the polymer had an ethylene content of 41
%, and a vinyl acetate/ethylene copolymer with a degree of saponification of the vinyl acetate portion of 0% was used as Comparative Example 1. In Example 1, the polymer had an ethylene content of 53
%, and a partially saponified vinyl acetate/ethylene copolymer with a degree of saponification of the vinyl acetate portion of 77% was used as Comparative Example 2. In Example 1, the polymer had an ethylene content of 89
%, and a partially saponified ethylene/vinyl acetate copolymer with a degree of saponification of the vinyl acetate portion of 15% was used as Comparative Example 3. In Example 1, the polymer had an ethylene content of 15
%, and a partially saponified vinyl acetate/ethylene copolymer with a degree of saponification of the vinyl acetate portion of 4% was used as Comparative Example 4. The physical properties of the above Examples and Comparative Examples were evaluated in the same manner as in Example 1, and the results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 (A) エチレン含量20〜80重量%、ケン化度3
〜70重量%の部分ケン化エチレン・酢酸ビニル
共重合体100重量部、 (B) 導電性フイラー35〜100重量部を架橋して成
るポリオレフイン絶縁層被覆用架橋型半導電性
樹脂組成物。
[Claims] 1 (A) Ethylene content 20 to 80% by weight, degree of saponification 3
A crosslinked semiconductive resin composition for coating a polyolefin insulating layer, comprising 100 parts by weight of a partially saponified ethylene/vinyl acetate copolymer containing ~70% by weight and 35 to 100 parts by weight of (B) a conductive filler.
JP23438883A 1983-12-14 1983-12-14 Semiconductive resin composition Granted JPS60127604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23438883A JPS60127604A (en) 1983-12-14 1983-12-14 Semiconductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23438883A JPS60127604A (en) 1983-12-14 1983-12-14 Semiconductive resin composition

Publications (2)

Publication Number Publication Date
JPS60127604A JPS60127604A (en) 1985-07-08
JPH0410681B2 true JPH0410681B2 (en) 1992-02-26

Family

ID=16970213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23438883A Granted JPS60127604A (en) 1983-12-14 1983-12-14 Semiconductive resin composition

Country Status (1)

Country Link
JP (1) JPS60127604A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005297A1 (en) * 2000-07-12 2002-01-17 Kabushiki Kaisha Bridgestone Shielded flat cable

Also Published As

Publication number Publication date
JPS60127604A (en) 1985-07-08

Similar Documents

Publication Publication Date Title
EP0012014B1 (en) A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
JP4319347B2 (en) Electrical cable and methods and compositions for producing the same
JPH10283851A (en) Direct current power cable and its connection part
US4399060A (en) Semiconductive elastomeric composition
JPH0410681B2 (en)
JP3327341B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
US4085249A (en) Semiconductive composition having controlled strippability
JPS60253103A (en) Semiconductive resin composition
JPH08319381A (en) Electrical insulating resin composition
JPH0259565B2 (en)
JP3222198B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
JPS6215962B2 (en)
JP2620960B2 (en) Polyolefin composition
JP3133145B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
JPS6215244A (en) Semiconductive resin composition
JPS6112738A (en) Mixture for semiconductive layer
JPS59139503A (en) Semiconductive resin composition
JPH10265583A (en) Crosslinked molded product and electric wire, cable
JP3195025B2 (en) High insulator made of ethylene polymer composition and power cable using the same
JPS5962656A (en) Semiconducting composition
JPH0737440A (en) Resin composition for easily peeled external semiconductive layer and electric power cable coated with resin composition thereof
JPH01239710A (en) Resin compound for external semiconductive layer of power cable
JPH01241704A (en) Electric power cable
JPS6129084B2 (en)
JPH024962B2 (en)