JPH0258254A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPH0258254A
JPH0258254A JP20976488A JP20976488A JPH0258254A JP H0258254 A JPH0258254 A JP H0258254A JP 20976488 A JP20976488 A JP 20976488A JP 20976488 A JP20976488 A JP 20976488A JP H0258254 A JPH0258254 A JP H0258254A
Authority
JP
Japan
Prior art keywords
heat
insulating layer
flow circuit
high thermal
thermal conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20976488A
Other languages
Japanese (ja)
Inventor
Nobuo Mikoshiba
御子柴 宣夫
Kazuo Tsubouchi
和夫 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20976488A priority Critical patent/JPH0258254A/en
Priority to GB8918867A priority patent/GB2222721B/en
Priority to FR8911128A priority patent/FR2636777B1/en
Priority to DE19893927866 priority patent/DE3927866A1/en
Publication of JPH0258254A publication Critical patent/JPH0258254A/en
Priority to GB9117667A priority patent/GB2246472A/en
Priority to GB9117666A priority patent/GB2246471B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor element provided with a heat flow circuit which responds to a transient state and can eliminate heat from a minute region, by forming at least one insulating layer by using a high thermal conduction insulating layer, and constituting it in the manner in which the heat in a heat generating part is eliminated by the heat flow circuit containing the high thermal conduction insulating layer. CONSTITUTION:At least one insulating layer of a semiconductor element is formed by using a high thermal conduction insulating layer, and constituted in the manner in which the heat in a heat generating part is eliminated by a heat flow circuit containing the high thermal conduction insulating layer. For example, an MOS FET element is constituted of the following; a substrate 1 composed of p-Si, a channel 2, a gate electrode 3 composed of polycrystalline Si, a gate insulating film 4 composed of a silicon oxide film SiO2, a source or drain composed of N<+> type Si, a wiring 6 composed of Al, and high thermal conduction insulating layers 11, 12 composed of AlN, BN, etc. Since the semiconductor element itself is provided with the heat flow circuit which responds to a transient state and can eliminate heat from a minute region, the integration degree of an electronic circuit is increased, and the high speed operation is stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子に係り、特に半導体素子自体を放熱
/冷却に好適な構造とすることにより超高速、超高集積
の電子回路を実現するための改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device, and in particular to realizing an ultra-high speed, ultra-highly integrated electronic circuit by making the semiconductor device itself have a structure suitable for heat dissipation/cooling. Regarding improvements for.

[発明の概要コ 半導体素子の1つ以上の絶縁層を、高熱伝導性絶縁層で
形成し、該絶縁層を含む熱流回路により上記素子の発熱
部の熱を除去するようにしたものである。
[Summary of the Invention] One or more insulating layers of a semiconductor element are formed of a highly thermally conductive insulating layer, and heat from a heat generating portion of the element is removed by a heat flow circuit including the insulating layer.

[従来の技術] 半導体集積回路は、超高速、超高密度の要求に従って、
年と共に集積化が進行しているが、すでに現在において
、高速動作のため消費電力を要する集積回路の集積度は
、放熱限界で制限されつつある。
[Prior Art] Semiconductor integrated circuits are being developed in accordance with the demands for ultra-high speed and ultra-high density.
Although integration has progressed over the years, the degree of integration of integrated circuits that require high power consumption for high-speed operation is already being limited by heat dissipation limits.

現在使われている半導体集積回路で1例えば論理回路の
一例では、1チップ当り略150oゲート程度の集積度
であるが、1ゲート当り略1mW程度の消費電力である
ため1チップ当り略IWの発熱があり、この発熱量は通
常の空冷の放熱の限界に近く、今後単なる微細化技術だ
けによる集積化は難しい。
In the currently used semiconductor integrated circuits, for example, an example of a logic circuit has a degree of integration of about 150 gates per chip, but the power consumption is about 1 mW per gate, so it generates about IW per chip. This amount of heat is close to the heat dissipation limit of normal air cooling, and it will be difficult to integrate the device using only miniaturization technology in the future.

[発明が解決しようとする課題] しかし、半導体集積回路の高性能化、高速化の要求に伴
って、1チップ当りの消費電力は急激に増加している。
[Problems to be Solved by the Invention] However, with the demand for higher performance and higher speed of semiconductor integrated circuits, the power consumption per chip is rapidly increasing.

消費される電力のほとんどは熱となり、この発生した熱
はチップ全体の温度を上昇させ、素子特性の劣化や信頼
性の低下を引き起こす、しかしながら、熱が発生してい
る部分は、非常に微小な動作領域であり、かつ動作速度
が非常に高速であるので、局所的、過渡的な温度の変化
が問題になる。従って、従来までの静的、大領域を扱う
放熱回路では全く不十分であり、動作時の素子の過渡状
態を考えた動的、微小領域までを考慮した高速熱流回路
が必要である。
Most of the power consumed becomes heat, and this generated heat increases the temperature of the entire chip, causing deterioration of element characteristics and reliability. However, the part where heat is generated is extremely small. Since this is an operating region and the operating speed is very high, local and transient temperature changes become a problem. Therefore, conventional heat dissipation circuits that handle static and large areas are completely inadequate, and there is a need for a high-speed heat flow circuit that takes into account the transient state of the element during operation and takes into consideration even the smallest areas.

まず、従来の半導体素子の放熱における問題点を図示す
る。
First, problems in heat dissipation of conventional semiconductor devices will be illustrated.

第9図乃至第13図はSiを用いたMO3FET素子の
従来の例を示す。
9 to 13 show conventional examples of MO3FET elements using Si.

第9図には、従来のMOS  FET素子の典型的な構
造が示しである。構造が対称であるため1個のMOS 
 FET素子の1/4の部分を示しである。同図で、1
は基板で、例えばp−8iから成る。2はチャンネル、
3はゲート電極で、このゲート電極は例えば多結晶Si
から成る。4はゲート絶縁膜で、例えばシリコン酸化膜
Sio2である。5はソース又はドレインで、例えばn
“Siから成る。6は配線で1例えばAl1で作られて
いる。7は絶縁層で例えばSin、から成る。8は絶縁
層で1例えばSio2である。この典型的な例では、ゲ
ート長は、1.3μmでゲート幅は5μmである。駆動
パルス電流は、クロック周波数5MHz、パルス幅10
0nsecの標準的なものを使用する。
FIG. 9 shows a typical structure of a conventional MOS FET element. One MOS because the structure is symmetrical
This shows a 1/4 portion of the FET element. In the same figure, 1
is a substrate, for example made of p-8i. 2 is the channel,
3 is a gate electrode, and this gate electrode is made of, for example, polycrystalline Si.
Consists of. 4 is a gate insulating film, for example, a silicon oxide film Sio2. 5 is the source or drain, for example n
6 is a wiring made of, for example, Al1. 7 is an insulating layer, made of, for example, Sin. 8 is an insulating layer, 1 is made of, for example, Sio2. In this typical example, the gate length is , 1.3 μm, and the gate width is 5 μm.The driving pulse current has a clock frequency of 5 MHz and a pulse width of 10
A standard one of 0 nsec is used.

ゲート下のチャンネルは厚さ約8nmであるが、上記パ
ルス電流によって、発熱レートは2.9mWでジュール
熱がチャンネル近傍に発生する。
The channel under the gate has a thickness of about 8 nm, and due to the above pulse current, Joule heat is generated near the channel at a heat generation rate of 2.9 mW.

素子全体は、初期温度20”Cで、絶縁層8の表面は自
然対流(熱伝達係数1(V’w/d ℃)で放熱してい
る。
The initial temperature of the entire device is 20''C, and the surface of the insulating layer 8 radiates heat by natural convection (heat transfer coefficient 1 (V'w/d°C)).

第10図に上記MO5FET素子のチャンネル周辺にお
ける温度の時間変化を示す。パルス電流のON、OFF
の変化に対応してチャンネル周辺の温度がμmオーダー
の局所的領域で、n9eeオーダーの過渡的な変化をし
ている。
FIG. 10 shows the temporal change in temperature around the channel of the MO5FET element. Pulse current ON/OFF
In response to the change in , the temperature around the channel changes transiently on the order of n9ee in a local region on the order of μm.

第11図に、1OOnsec後、つまりパルス電流を切
った直後の第12図に示したX−Y平面図の温度分布を
示す。
FIG. 11 shows the temperature distribution in the X-Y plan view shown in FIG. 12 after 1OOnsec, that is, immediately after the pulse current is turned off.

この時のチャンネル2の温度上昇は約4℃であるが、ゲ
ート絶縁膜4において深さ方向(Y方向)に約100℃
/μmという非常に大きな温度勾配が生じており、加え
て温度変化が数n seeで応答している点を考慮する
と、この結果発生する局所的過渡的な熱ストレスは非常
に大きいものである。
At this time, the temperature rise in channel 2 is approximately 4°C, but in the gate insulating film 4 it is approximately 100°C in the depth direction (Y direction).
Considering that a very large temperature gradient of /μm is occurring and that the temperature change responds by several nanometers, the resulting local transient thermal stress is extremely large.

第12図に、110nsec後、つまりパルス電流を切
って10 n see後のX−Y平面図の温度分布を同
様に示す。
FIG. 12 similarly shows the temperature distribution in the X-Y plane view after 110 nsec, that is, after 10 nsee after the pulse current was cut off.

パルス電流が切れた後は、チャンネル近傍の温度は急激
に下がっている。このように、従来のMOS  FET
素子の構造では、チャンネル近傍に、局所的、過渡的に
大きな温度変化があり、これを除去するためには、新し
い熱流回路の構造が必要である。
After the pulse current is cut off, the temperature near the channel drops rapidly. In this way, conventional MOS FET
In the device structure, there is a large local and transient temperature change near the channel, and in order to eliminate this, a new heat flow circuit structure is required.

第14図乃至第18図にS OI (Silicon 
onInsulator)構造のMOS  FET素子
の従来の例を示す。
Figures 14 to 18 show SOI (Silicon
1 shows a conventional example of a MOS FET element with an onInsulator structure.

第14図に示すSOT構造のMOS  FET素子にお
いて、9がSOI用の絶縁層で1例えば厚さ2μmのS
 i02層である。10がSO2用の半導体活性層で、
例えばp−3iで、厚さ0.3μm、面積5×7μm2
の典型的な例が示しである。他の構造は第9図のMOS
  FET素子と類似している。第14図の素子には、
第9図〜第13図の例と同様のパルス電流を流す。
In the MOS FET element with the SOT structure shown in FIG. 14, 9 is an insulating layer for SOI, and 1 is, for example, an S
This is the i02 layer. 10 is a semiconductor active layer for SO2,
For example, p-3i, thickness 0.3 μm, area 5 x 7 μm2
A typical example is shown below. The other structure is the MOS shown in Figure 9.
It is similar to a FET device. The elements in Figure 14 include:
A pulse current similar to the example shown in FIGS. 9 to 13 is applied.

第15図に上記素子におけるシリコン活性層10とチャ
ンネル2の周辺における温度の時間変化を示す、やはり
、パルス電流のON、OFFの変化に対応して、チャン
ネル2周辺の温度が局所的、過渡的に激しく変動する。
FIG. 15 shows the temporal change in temperature around the silicon active layer 10 and channel 2 in the above device. As expected, the temperature around channel 2 changes locally and transiently in response to changes in the ON and OFF states of the pulse current. fluctuates wildly.

第16図にl OOn see後、つまりパルス電流を
切った直後の第18図に示す部分の温度分布を示す。こ
のSOI構造MO5FET素子では、上記のSL基板上
のMOS  FET素子よりもチャンネル2周辺の温度
がずっと高くなってしまう。
FIG. 16 shows the temperature distribution in the portion shown in FIG. 18 after l OOn see, that is, immediately after the pulse current is cut off. In this SOI structure MO5FET element, the temperature around the channel 2 becomes much higher than in the above-mentioned MOS FET element on the SL substrate.

これは、絶縁膜(S iO2) 9の熱伝導率がSiよ
りも2桁程度小さいために基板への放熱が妨げられシリ
コン活性層10に熱が蓄積してしまう。
This is because the thermal conductivity of the insulating film (SiO2) 9 is about two orders of magnitude lower than that of Si, which prevents heat radiation to the substrate and causes heat to accumulate in the silicon active layer 10.

パルス印加後100nsecにおけるチャンネル2の温
度は約30℃で上記のSi基板上MO5FET素子より
も約6℃高い、また、ゲート絶縁膜9の幅には、Y方向
に約170℃/μmの温度勾配ができており、上記のS
i基板上MO3FET、!子の場合よりも更に大きい熱
ストレスが発生している。
The temperature of the channel 2 at 100 nsec after pulse application is about 30°C, which is about 6°C higher than that of the MO5FET device on the Si substrate, and the width of the gate insulating film 9 has a temperature gradient of about 170°C/μm in the Y direction. is completed, and the above S
MO3FET on i board! Even greater heat stress occurs than in the case of children.

第17図に、150nsec後、つまりパルス電流を切
って50 n see後の、やはり第18図に示すX−
Y平面部分の温度分布を示す、上記の第13図に比較す
ると、熱が残ってしまう。
FIG. 17 shows the X-
When compared with FIG. 13 above, which shows the temperature distribution on the Y plane, heat remains.

従って、SOI構造の場合には、絶縁層9に妨げられて
Si基板へチャンネル2から熱が逃げないので、この熱
を除去するため、さらに新しい熱流回路の構造が必要で
ある。
Therefore, in the case of the SOI structure, heat is prevented from escaping from the channel 2 to the Si substrate by the insulating layer 9, so a new heat flow circuit structure is required to remove this heat.

[発明の目的コ 本発明の目的は、かかる点を考慮して、過渡的に応答し
、微小域からの熱を除去可能な熱流回路を備えた半導体
素子を提供することにある。
[Object of the Invention] In consideration of the above points, an object of the present invention is to provide a semiconductor element equipped with a heat flow circuit that responds transiently and can remove heat from a minute area.

[i11題を解決するための手段] 本発明の半導体素子は上記目的を達成するため。[Means for solving problem i11] The semiconductor device of the present invention achieves the above object.

少なくとも絶縁層を高熱伝導性絶縁層で形成し。At least the insulating layer is formed of a highly thermally conductive insulating layer.

発熱部の熱を上記高熱伝導性絶縁層を含む熱流回路によ
り除去するように構成したことを要旨とする。
The gist of the present invention is that the heat of the heat generating portion is removed by a heat flow circuit including the above-mentioned highly thermally conductive insulating layer.

[作用] 前記チャンネルのような発熱部で、過渡的、局所的に温
度上昇があっても、上記高熱伝導性絶縁層を含む熱流回
路により速やかに除去される。
[Function] Even if there is a transient or local temperature rise in the heat generating portion such as the channel, it is quickly removed by the heat flow circuit including the highly thermally conductive insulating layer.

[実施例] 以下、図面を参照しながら本発明の各実施例について説
明する。
[Example] Hereinafter, each example of the present invention will be described with reference to the drawings.

まず、第1図から第4図に示した第1の実施例は、従来
のMOS  FET素子の問題点を解決するために、新
しい熱流回路の構造としたものである。
First, the first embodiment shown in FIGS. 1 to 4 has a new heat flow circuit structure in order to solve the problems of conventional MOS FET elements.

従来例の第9図に示したMOS  FET素子において
熱流回路の妨げとなった絶縁層7と絶縁層8を本実施例
では第1図に示したように、高熱伝導性絶縁層11と1
2で置き換えた。絶縁層4はMO3特性を維持するため
従来のSin、とする。
The insulating layers 7 and 8, which obstructed the heat flow circuit in the conventional MOS FET device shown in FIG. 9, are replaced with highly thermally conductive insulating layers 11 and 1, as shown in FIG.
Replaced with 2. The insulating layer 4 is made of conventional Sin in order to maintain MO3 characteristics.

MO5特性を劣化させなければ4も高熱伝導性絶縁層と
しても良い、この場合、高熱伝導性絶縁層とは、AQN
、BNなどであるが、金属なみの熱伝導率をもち、かつ
絶縁体であれば他のものでもよい、また、11又は12
のどちらかのみが高熱伝導性絶縁層であり、他は通常の
絶縁層を用いても効果がある。
4 may also be used as a highly thermally conductive insulating layer as long as it does not deteriorate the MO5 characteristics. In this case, the highly thermally conductive insulating layer is AQN
, BN, etc., but other materials may be used as long as they have thermal conductivity comparable to metals and are insulators.
It is effective even if only one of them is a highly thermally conductive insulating layer and the other is a normal insulating layer.

第2図〜第4図に本実施例の特性の1つの具体例を示し
たが、この場合AflNを上記高熱伝導性絶縁層11.
12として用いて第4図の構造のようにした。第2図に
、従来例で用いた同じパルス電流を流したとき100n
sec後の温度分布を示す。
One specific example of the characteristics of this embodiment is shown in FIGS. 2 to 4. In this case, AflN is used as the high thermal conductive insulating layer 11.
12, and the structure shown in FIG. 4 was obtained. Figure 2 shows that when the same pulse current used in the conventional example is applied, 100n
The temperature distribution after sec is shown.

従来例の第11図と本実施例の第2図を比較すれば、本
実施例ではチャンネル2近傍の温度が上がっておらず1
本構造の熱流回路の効果が現れている。
Comparing FIG. 11 of the conventional example and FIG.
The effect of the heat flow circuit of this structure is evident.

第3図に1本実施例の110nsec後(パルスが切れ
て10 n sec後)の温度分布を示す。従来構造の
第12図と比較すれば、第3図では、わずかパルス電流
が切れて10 n sec後でチャンネル2近傍から熱
が除去されており、本実施例の電流回路は簡単でかつ効
果が絶大なことが現れている。
FIG. 3 shows the temperature distribution after 110 nsec (10 nsec after the pulse ends) in this example. Compared to the conventional structure shown in FIG. 12, in FIG. 3, the heat is removed from the vicinity of channel 2 after 10 n seconds after the pulse current is cut off, indicating that the current circuit of this embodiment is simple and effective. Something huge is happening.

なお、上記の手法は3次元的多層構造の半導体素子にも
適用可能である。
Note that the above method can also be applied to a semiconductor element having a three-dimensional multilayer structure.

第5図から第8図に示した第2の実施例を次に説明する
The second embodiment shown in FIGS. 5 to 8 will now be described.

これは、従来のSOI構造のMOS  FET素子の問
題点を解決するために、新しい熱流回路の構造としたも
のである。
This is a new heat flow circuit structure to solve the problems of the conventional SOI structure MOS FET element.

従来例の第14図に示したS○工構造のMO5FET素
子において熱流回路の妨げとなった絶縁層7,8.9を
1本実施例では、第5図に示したように、高熱伝導性絶
縁層11,12.13で置き換えた。絶縁層4は、MO
Sの電気的特性を維持するため従来のSin、とするが
、MOS特性を劣化させなければ絶縁層4も高熱伝導性
絶縁層としても良い。
In this embodiment, as shown in FIG. 5, the insulating layers 7, 8.9, which obstruct the heat flow circuit in the MO5FET element with the S○ structure shown in FIG. They were replaced with insulating layers 11, 12, and 13. The insulating layer 4 is MO
In order to maintain the electrical characteristics of S, conventional Si is used, but the insulating layer 4 may also be a highly thermally conductive insulating layer as long as it does not deteriorate the MOS characteristics.

この場合、高熱伝導性絶縁層とは、AQN。In this case, the highly thermally conductive insulating layer is AQN.

BNなどであるが、金属なみの熱伝導率をもち、かつ絶
縁体であれば他のものでもよい6.また、絶縁層11,
12.13のうち、いずれか1つ又は2つが高熱伝導性
絶縁層であり、他は通常の絶縁層を用いても効果がある
。第6図〜第8図に本実施例の特性の1つの具体例を示
したが、この場合第8図に示すように高熱伝導性絶縁層
11,12゜13としてAQN膜を用いた構造とした。
6. BN etc., but other materials may be used as long as they have thermal conductivity comparable to metals and are insulators.6. In addition, the insulating layer 11,
It is effective even if one or two of 12.13 are high thermally conductive insulating layers and the others are ordinary insulating layers. One specific example of the characteristics of this embodiment is shown in FIGS. 6 to 8. In this case, as shown in FIG. did.

第6図に、従来例で用いた同じパルス電流を流したとき
、100nsec後の第8図で示した部分の温度分布を
示す。
FIG. 6 shows the temperature distribution in the portion shown in FIG. 8 after 100 nsec when the same pulse current used in the conventional example was applied.

従来例の第16図と本実施例の第6図を比較すれば、チ
ャンネル2、ゲート絶縁膜4、ゲート電極3近傍の温度
が上がっておらず、本構造の熱流回路の効果が現れてい
る。
Comparing FIG. 16 of the conventional example and FIG. 6 of the present example, the temperature near the channel 2, gate insulating film 4, and gate electrode 3 does not rise, and the effect of the heat flow circuit of this structure is evident. .

第7図に1本実施例の特性の150nsec後(上記の
パルス電流が切れて50 n see後)の温度分布を
示す。
FIG. 7 shows the temperature distribution after 150 nsec (50 nsec after the above-mentioned pulse current is cut off) of the characteristics of this example.

従来構造の第17図と比較すれば、第7図では。If you compare it with the conventional structure shown in Fig. 17, in Fig. 7.

パルス電流が切れてわずか50 n see後で、チャ
ンネル2近傍から熱が除去されており1本実施例の熱流
回路は簡単で、かつ効果が絶大なことが現れている。
Heat is removed from the vicinity of channel 2 only 50 nsees after the pulse current is cut off, demonstrating that the heat flow circuit of this embodiment is simple and extremely effective.

[発明の効果] 以上説明した所から明らかなように本発明によれば、半
導体素子自体が過渡的に応答し、微小域からの熱を除去
できる熱流回路を備えたことによって、11子回路の集
積度が増大し、かつ高速動作が安定にできるようになり
、半導体素子の機能を飛躍的に高めることができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the semiconductor element itself responds transiently and is equipped with a heat flow circuit that can remove heat from a minute area, thereby improving the efficiency of the 11-child circuit. The degree of integration increases, high-speed operation becomes stable, and the functionality of semiconductor devices can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は本発明によるMOS  FET素子
の一実施例を示す概略図、第2図及び第3図は夫々該実
施例の温度分布図、第5図及び第8図は本発明によるS
O■構造のMOS  FET素子の一実施例を示す概略
図、第6図及び第7図は該実施例の温度分布図、第9図
乃至第13図は夫々従来のMOS  FET素子の問題
点を説明するための図、第14図乃至第18図は夫々従
来のSOI構造のMOS  FET素子の問題点を説明
するための図である。 1・・・・・・・・・基板、2・・・・・・・・・チャ
ンネル、3・・・・・・・・・ゲート電極、4・・・・
・・・・・ゲート絶縁膜、5・・・・・・・・・ドレイ
ン又はソース、6・・・・・・・・・配線、7・・・・
・・・・・絶縁層、8・・・・・・・・・絶縁層、9・
・・・・・・・・絶縁層(SOI用)、1o・・・・・
・・・・半導体層(SOI用)、11・・・・・・・・
・高熱伝導性絶縁層、12・・・・・・・・・高熱伝導
性絶縁層、13・・・・・・・・・高熱伝導性絶縁層(
SOI用)。 第1図 特許出願人    御子柴 置去(他1名)代理人  
弁理士 永 1)武 三 部第5図 第9図 第10図 端間(n図 第14図
1 and 4 are schematic diagrams showing one embodiment of a MOS FET element according to the present invention, FIGS. 2 and 3 are temperature distribution diagrams of the embodiment, respectively, and FIGS. 5 and 8 are schematic diagrams showing an embodiment of a MOS FET element according to the present invention. by S
6 and 7 are temperature distribution diagrams of the embodiment, and FIGS. 9 to 13 each illustrate the problems of conventional MOS FET elements. The explanatory diagrams, FIGS. 14 to 18, are diagrams for explaining the problems of the conventional SOI structure MOS FET element, respectively. 1...Substrate, 2...Channel, 3...Gate electrode, 4...
...Gate insulating film, 5...Drain or source, 6...Wiring, 7...
...Insulating layer, 8...Insulating layer, 9.
...Insulating layer (for SOI), 1o...
...Semiconductor layer (for SOI), 11...
・High thermal conductive insulating layer, 12... High thermal conductive insulating layer, 13... High thermal conductive insulating layer (
for SOI). Figure 1 Patent applicant Mikoshiba (one other person) attorney
Patent Attorney Nagai 1) Takeshi Part 5 Figure 9 Figure 10 End-to-end (Figure N Figure 14

Claims (5)

【特許請求の範囲】[Claims] (1)半導体素子において、少なくとも1つの絶縁層を
高熱伝導性絶縁層で形成し、発熱部の熱を上記高熱伝導
性絶縁層を含む熱流回路により除去するように構成した
ことを特徴とする半導体素子。
(1) A semiconductor device characterized in that at least one insulating layer is formed of a highly thermally conductive insulating layer, and the heat from the heat generating part is removed by a heat flow circuit including the highly thermally conductive insulating layer. element.
(2)上記半導体素子がMOSFET素子である請求項
(1)に記載の半導体素子。
(2) The semiconductor device according to claim 1, wherein the semiconductor device is a MOSFET device.
(3)上記半導体素子がSOI構造のMOSFET素子
である請求項(1)に記載の半導体素子。
(3) The semiconductor device according to claim 1, wherein the semiconductor device is a MOSFET device having an SOI structure.
(4)前記高熱伝導性絶縁層がAlN又はBN層である
請求項(1)、(2)又は(3)に記載の半導体素子。
(4) The semiconductor device according to claim (1), (2) or (3), wherein the highly thermally conductive insulating layer is an AlN or BN layer.
(5)MOSFET素子又はSOI構造のMOSFET
素子のゲート絶縁膜を高熱伝導性絶縁膜で形成した請求
項(2)又は(3)に記載の半導体素子。
(5) MOSFET element or SOI structure MOSFET
4. The semiconductor device according to claim 2, wherein the gate insulating film of the device is formed of a highly thermally conductive insulating film.
JP20976488A 1988-08-23 1988-08-23 Semiconductor element Pending JPH0258254A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20976488A JPH0258254A (en) 1988-08-23 1988-08-23 Semiconductor element
GB8918867A GB2222721B (en) 1988-08-23 1989-08-18 Cooling semiconductor devices
FR8911128A FR2636777B1 (en) 1988-08-23 1989-08-22 SEMICONDUCTOR DEVICE WITH HEAT DISCHARGE CIRCUIT
DE19893927866 DE3927866A1 (en) 1988-08-23 1989-08-23 SEMICONDUCTOR COMPONENT
GB9117667A GB2246472A (en) 1988-08-23 1991-08-15 Cooling semiconductor devices
GB9117666A GB2246471B (en) 1988-08-23 1991-08-15 Cooling semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20976488A JPH0258254A (en) 1988-08-23 1988-08-23 Semiconductor element

Publications (1)

Publication Number Publication Date
JPH0258254A true JPH0258254A (en) 1990-02-27

Family

ID=16578237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20976488A Pending JPH0258254A (en) 1988-08-23 1988-08-23 Semiconductor element

Country Status (1)

Country Link
JP (1) JPH0258254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009289837A (en) * 2008-05-27 2009-12-10 Oki Semiconductor Co Ltd Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126211A (en) * 1984-07-16 1986-02-05 Agency Of Ind Science & Technol Crystal growth of semiconductor
JPS61171141A (en) * 1985-01-25 1986-08-01 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126211A (en) * 1984-07-16 1986-02-05 Agency Of Ind Science & Technol Crystal growth of semiconductor
JPS61171141A (en) * 1985-01-25 1986-08-01 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
JP4529355B2 (en) * 2003-01-20 2010-08-25 富士電機システムズ株式会社 Semiconductor device
JP2009289837A (en) * 2008-05-27 2009-12-10 Oki Semiconductor Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
TW228036B (en)
US6521516B2 (en) Process for local on-chip cooling of semiconductor devices using buried microchannels
EP1479106B1 (en) Fuse structure programming by electromigration of silicide enhanced by creating temperature gradient
US3564354A (en) Semiconductor structure with fusible link and method
US20020134419A1 (en) Heat dissipating IC devices
JP3147048B2 (en) Semiconductor device
JP2015015388A (en) Semiconductor device
Russ ESD issues in advanced CMOS bulk and FinFET technologies: Processing, protection devices and circuit strategies
US7842553B2 (en) Cooling micro-channels
US7488994B2 (en) Coiled circuit device and method of making the same
JPH0258254A (en) Semiconductor element
Redman-White et al. Direct extraction of MOSFET dynamic thermal characteristics from standard transistor structures using small signal measurements
JPH0258255A (en) Semiconductor chip
JPS60224253A (en) Semiconductor device and manufacture thereof
Desai et al. Novel junction level cooling in pulsed GaN devices
JPH04293268A (en) Semiconductor device and manufacture thereof
JPH03171657A (en) Semiconductor device
JP2713200B2 (en) Semiconductor device and manufacturing method thereof
JP2504498B2 (en) Semiconductor device
JPH11135692A (en) Integrated circuit
JPS6084837A (en) Semiconductor integrated circuit device
GB2246472A (en) Cooling semiconductor devices
CN110571205B (en) Semiconductor structure and forming method thereof
CN110571206B (en) Semiconductor structure and forming method thereof and forming method of chip
JP3134357B2 (en) Semiconductor device