JPH0257926A - Color sensor - Google Patents

Color sensor

Info

Publication number
JPH0257926A
JPH0257926A JP63208248A JP20824888A JPH0257926A JP H0257926 A JPH0257926 A JP H0257926A JP 63208248 A JP63208248 A JP 63208248A JP 20824888 A JP20824888 A JP 20824888A JP H0257926 A JPH0257926 A JP H0257926A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
color
light
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208248A
Other languages
Japanese (ja)
Inventor
Koichi Matsukawa
松川 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP63208248A priority Critical patent/JPH0257926A/en
Publication of JPH0257926A publication Critical patent/JPH0257926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a structure by forming a light-transmitting substrate of color glass having a prescribed spectral transmittance and by forming a photoelectric conversion layer of an amorphous semiconductor thin film. CONSTITUTION:A photoelectric conversion element 9 has a construction wherein a front electrode 2 of SnO2 or the like having a light-transmitting property, a photoelectric conversion layer 7 comprising an amorphous silicon p-layer 3, an amorphous silicon i-layer 4 and an amorphous silicon n-layer 5, and a rear electrode 6 of Al or the like, are laminated sequentially so as to form a photoelectric conversion element 8 composed of two electrodes 2 and 6 and the conversion layer 7 on the rear side in relation to an incident light A on a light-transmitting substrate 1 which is formed of color glass having a prescribed spectral transmittance whose peak is green. In a color sensor provided with this element 9, the substrate 1 has a spectral transmittance characteristic of which the peak is green, while the conversion element 8 has a spectral sensitivity characteristic. Therefore the spectral sensitivity characteristic of the element 9 is the product of the two characteristics. When a light entering from the substrate 1 is green, accordingly, the green can be discriminated from the level of an output subjected to photoelectric conversion. According to the color sensor thus constructed, a color filter of organic resin is dispensed with and the construction can be simplified.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明はカラーセンサに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a color sensor.

〈従来の技術〉 産業界では、生産工程、検査工程を中心に、色彩を定量
的かつ客観的に表現することが、色情報の伝達、品質管
理の上から非常に重要である。このような色情報を発生
するセンサとして非晶質シリコン等の非晶質半導体薄膜
を光電変換層として用いたカラーセンサがある。非晶質
シリコンは可視光領域での感度が高く、結晶シリコンを
用いた場合に比べて赤外線カットフィルタが不用となり
製造工程が簡単で大面積化が容易という優れた特徴を有
する。
<Prior Art> In the industrial world, it is very important to express colors quantitatively and objectively, mainly in production processes and inspection processes, from the viewpoint of transmitting color information and quality control. As a sensor that generates such color information, there is a color sensor that uses an amorphous semiconductor thin film such as amorphous silicon as a photoelectric conversion layer. Amorphous silicon has high sensitivity in the visible light region, and compared to the case where crystalline silicon is used, an infrared cut filter is not required, the manufacturing process is simple, and it is easy to increase the area.

従来、このような非晶質シリコンを光電変換層として用
いたカラーセンサには、大別して色フィルタを用いるも
のと用いないものとの2種類がある0色フィルタを用い
るものの例としては、例えば特開昭58−125869
号公報等に見られるように、非晶質シリコンの光電変換
層に着色有機樹脂等の色フィルタを直接的にあいはガラ
スを介して間接的に接着してカラーセンサとするものや
、誘電体多層膜を色フィルタとして蒸着するもの等があ
り、色フィルタを用いないものの例としては、特開昭6
0−160660号公報等に見られるように、入射光の
波長に対して吸収係数の異なる光電変換層を41層構造
とし、各層において発生する光信号の出力が光の波長に
応じて変化することを利用して色の判別を行うものや、
特開昭61−283838号公報等に見られるように、
光電変換層にバイアス電圧を選択的に印加して分光感度
特性を変化させ、これらの分光感度特性に基づいて出力
される光電流から所定の演算により色彩を判定するもの
等がある。
Conventionally, color sensors using such amorphous silicon as a photoelectric conversion layer can be roughly divided into two types: those that use a color filter and those that do not. Examples of those that use zero-color filters include, for example, Kaisho 58-125869
As seen in the above publications, there are color sensors in which a color filter such as a colored organic resin is adhered directly or indirectly through glass to an amorphous silicon photoelectric conversion layer, and a dielectric sensor. There is a method in which a multilayer film is vapor-deposited as a color filter, and an example of a method that does not use a color filter is JP-A No. 6
As seen in Publication No. 0-160660, etc., the photoelectric conversion layer has a 41-layer structure with different absorption coefficients depending on the wavelength of incident light, and the output of the optical signal generated in each layer changes depending on the wavelength of the light. Those that use color discrimination,
As seen in Japanese Patent Application Laid-Open No. 61-283838, etc.
There is a method in which a bias voltage is selectively applied to the photoelectric conversion layer to change the spectral sensitivity characteristics, and a color is determined by a predetermined calculation from the photocurrent outputted based on these spectral sensitivity characteristics.

〈発明が解決しようとする課題〉 しかしながら、これら従来のカラーセンサおいては、色
フィルタを用いるカラーセンサの場合、有機樹脂系の色
フィルタは分光透過率特性の経年変化を無視できず、温
度変化に弱く剥離の心配があり、光電変換領域との位置
合わせ接着等工程も複雑となる。また、蒸着色フィルタ
の形成には誘電体多層膜の蒸着という製造工程が必要と
なる等の問題点がある。
<Problems to be Solved by the Invention> However, in the case of these conventional color sensors that use color filters, organic resin color filters cannot ignore changes in spectral transmittance characteristics over time, and temperature changes There is a risk of peeling due to the weak resistance, and the processes such as positioning and adhesion with the photoelectric conversion area are complicated. Further, there are other problems such as the need for a manufacturing process of vapor deposition of a dielectric multilayer film to form a vapor-deposited color filter.

一方、色フィルタを用いないカラーセンサの場合、色フ
ィルタの形成工程は必要ないものの、前者では吸収係数
の異なる複数の光電変換層を積層しなければならず製造
工程が複雑になるという問題点があり、後者では光電変
換層に選択的にバイアス電圧を印加する手段が必要等の
問題点をそれぞれ有している。
On the other hand, in the case of a color sensor that does not use a color filter, the process of forming a color filter is not necessary, but the former has the problem that multiple photoelectric conversion layers with different absorption coefficients must be laminated, which complicates the manufacturing process. However, the latter has problems such as the need for means for selectively applying a bias voltage to the photoelectric conversion layer.

本発明は上記の事情に鑑みなされたもので、特別の色フ
ィルタを形成する必要がなく、光電変換層も単層で済み
、バイアス電圧印加等の特別な手段も必要とせず、製造
工程、構造共に簡単で信頼性の高いカラーセンサを提供
することを目的とする。
The present invention was made in view of the above circumstances, and there is no need to form a special color filter, a single photoelectric conversion layer is sufficient, no special means such as applying a bias voltage is required, and the manufacturing process and structure Both aim to provide a simple and highly reliable color sensor.

(課題を解決するための手段〉 このため本発明は、透光性基板の入射光に対して裏面側
に、透光性の前面電極と、光電変換層と、裏面電極とを
順次積層して構成した光電変換素子を備え、前記透光性
基板を所定の分光透過率を有する色フィルタの機能を兼
ね備えた色ガラスとし、前記光電変換層を非晶質半導体
薄膜として構成した。
(Means for Solving the Problems) For this reason, the present invention includes sequentially stacking a translucent front electrode, a photoelectric conversion layer, and a back electrode on the back side of the translucent substrate with respect to incident light. The light-transmitting substrate was made of colored glass having a predetermined spectral transmittance and also had the function of a color filter, and the photoelectric conversion layer was formed as an amorphous semiconductor thin film.

(作用〉 上記構成において、光電変換素子の分光感度特性は、色
ガラスの分光透過率特性と、非晶質半導体薄膜の分光感
度特性との積になるので、目的に応じた所定の分光透過
率特性をもつ色ガラスを選択すれば、それら光電変換素
子の分光感度特性に基づいて出力される光電流か、ら色
彩を判別することができ、光電変換素子が1個の場合に
は単色の、また、光電変換素子が複数の場合には多色の
色彩判別が可能となる。
(Function) In the above configuration, the spectral sensitivity characteristic of the photoelectric conversion element is the product of the spectral transmittance characteristic of the colored glass and the spectral sensitivity characteristic of the amorphous semiconductor thin film, so the predetermined spectral transmittance is determined according to the purpose. If colored glass with specific characteristics is selected, the color can be determined from the photocurrent output based on the spectral sensitivity characteristics of those photoelectric conversion elements, and if there is only one photoelectric conversion element, monochromatic, Furthermore, when there are a plurality of photoelectric conversion elements, multicolor discrimination becomes possible.

〈実施例〉 以下、本発明の実施例を図面を参照しながら説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のカラーセンサの第1実施例を示す断面
図で、緑色の単色カラーセンサの例である。
FIG. 1 is a sectional view showing a first embodiment of the color sensor of the present invention, which is an example of a green monochromatic color sensor.

図において、第2図に示す緑色にピークを持つ所定の分
光透過率特性を有する色ガラスからなる透光性基板lの
入射光Aに対して裏面側に、インジウムスズ酸化物(I
TO)やSnO□等の透光性を有する前面電極2と、非
晶質半導体例えば非晶質シリコンp層3.非晶質シリコ
ンi層4及び非晶質シリコンn層5からなる光電変換層
7と、アルミニウム(An等からなる裏面電極6とを順
次積層して、画電極2,6と光電変換N7とからなる光
電変換部8を透光性基板1上に構成してなる光電変換素
子9を構成している。
In the figure, indium tin oxide (I
A front electrode 2 having a light-transmitting property such as TO) or SnO□, and an amorphous semiconductor such as an amorphous silicon p layer 3. A photoelectric conversion layer 7 consisting of an amorphous silicon i layer 4 and an amorphous silicon n layer 5 and a back electrode 6 made of aluminum (An, etc.) are sequentially laminated to form a photoelectric conversion layer 7 from the picture electrodes 2 and 6 and the photoelectric conversion layer 7. A photoelectric conversion element 9 is constructed by configuring a photoelectric conversion section 8 on a transparent substrate 1.

更に詳述すると、透光性基板lに、スパッタリング又は
蒸着によりITOやSnO□等の前面電極2を積層形成
し、次に、該前面電極2上に、プラズマCVD法により
、ボロン又はボロンとカーボンをドープした厚さ約0.
05μm以下の非晶質99372層3.ノンドープの厚
さ約0.5μm前後の非晶質99371層4及びリンを
ドープした厚さ約0.1μm以下の非晶質シリコンn層
5からなる光電変換層7を積層形成し、更に、該光電変
換層7上に、スパッタリング又は蒸着によりA2等の裏
面電極6を積層形成して光電変換素子9を形成している
More specifically, a front electrode 2 made of ITO, SnO□, etc. is laminated on a transparent substrate 1 by sputtering or vapor deposition, and then boron or boron and carbon is deposited on the front electrode 2 by plasma CVD. The doped thickness is about 0.
3. Amorphous 99372 layers of 0.05 μm or less. A photoelectric conversion layer 7 consisting of a non-doped amorphous 99371 layer 4 with a thickness of about 0.5 μm and a phosphorus-doped amorphous silicon n layer 5 with a thickness of about 0.1 μm or less is laminated; A photoelectric conversion element 9 is formed by laminating a back electrode 6 such as A2 on the photoelectric conversion layer 7 by sputtering or vapor deposition.

ここで、一般に、色ガラスの着色機構としては、ガラス
中に溶解した遷移金属イオンあるいは希土類イオンの電
子遷移による光の吸収、ガラス中にコロイド状に分散し
た元素あるいは化合物の微粒子による散乱と吸収、及び
放射線等の照射により生じた着色中心による光の吸収等
があることが知られており([ガラスハンドブック」、
朝食書店。
In general, the coloring mechanism of colored glass includes absorption of light by electronic transition of transition metal ions or rare earth ions dissolved in the glass, scattering and absorption by fine particles of elements or compounds colloidally dispersed in the glass, It is known that there is absorption of light by colored centers caused by irradiation with radiation, etc. ([Glass Handbook],
Breakfast bookstore.

作花他)、着色剤の種類や製造工程の違いにより各種の
分光透過率特性を持つものが市販されているが、通常の
使用条件下ではほとんど色調の変化が見られないことが
特徴である。
There are products on the market that have various spectral transmittance characteristics depending on the type of colorant and manufacturing process, but the characteristic of this product is that there is almost no change in color tone under normal usage conditions. .

かかる構成の光電変換素子9を備えたカラーセンサにお
いて、透光性基板lは前述したように第2図に示す緑色
にピークをもつ分光透過率特性を持ち、光電変換部8は
第3図に示す分光感度特性であるので、光電変換素子9
の分光感度特性は、第2図と第3図に示す特性の積とな
り第4図に示す如くなる。よって、透光性基板1から入
射した光が緑色光であれば、光電変換された出力のレベ
ルより緑色を判別できる。
In a color sensor equipped with a photoelectric conversion element 9 having such a configuration, the light-transmitting substrate l has a spectral transmittance characteristic having a peak in green as shown in FIG. Since the spectral sensitivity characteristics are shown, the photoelectric conversion element 9
The spectral sensitivity characteristic of is the product of the characteristics shown in FIGS. 2 and 3, as shown in FIG. 4. Therefore, if the light incident from the transparent substrate 1 is green light, the green color can be determined from the level of the photoelectrically converted output.

かかる構成のカラーセンサによれば、を機樹脂系の色フ
ィルタ等を使用する必要がないので、経年変化による劣
化がな(、剥離等の心配が全くなくなると共に、色フィ
ルタ等の接着工程がなく製造工程が簡略化できる。また
、従来の色フィルタのないものに比べてもバイアス電圧
の印加手段等が不用となり構成が簡単になる。
According to a color sensor having such a configuration, there is no need to use a resin-based color filter, etc., so there is no deterioration due to aging (there is no need to worry about peeling, etc.), and there is no need for an adhesion process for color filters, etc. The manufacturing process can be simplified. Also, compared to conventional products without color filters, a means for applying bias voltage, etc. is not required, making the configuration simpler.

次に、第5図は本発明の第2実施例を示す断面図である
Next, FIG. 5 is a sectional view showing a second embodiment of the present invention.

図において、本実施例のカラーセンサは、第6図に示す
ように、長波長側にピークがある分光感度特性(図中Y
で示す)を有する光電変換素子9Y及び短波長側にピー
クがある分光感度特性(図中Cで示す)を有する光電変
換素子9Cを、先人射光方向に対して並設した状態で有
機樹脂10によりモールドして一体化して形成したもの
である。
In the figure, the color sensor of this example has a spectral sensitivity characteristic with a peak on the long wavelength side (Y
A photoelectric conversion element 9Y having a spectral sensitivity characteristic (indicated by C in the figure) and a photoelectric conversion element 9C having a spectral sensitivity characteristic having a peak on the short wavelength side (indicated by C in the figure) are arranged in parallel with respect to the direction of light emitted by the organic resin 10. It is integrally formed by molding.

各光電変換素子9Y、9Cは、第1実施例と同様に、透
光性基板IY、ICに、[TOやSnO。
Each of the photoelectric conversion elements 9Y and 9C has a transparent substrate IY and an IC coated with [TO or SnO], as in the first embodiment.

等からなる前面電極2Y、2Cと、非晶質シリコンp層
3Y、3C1非晶質シリコンi層4Y、4C反び非晶質
シリコンn層5Y、5Cからなる光電変換層7Y、7C
と、Af等からなる裏面電極6Y、6Cとを順次積層し
て構成されているが、透光性基板IY、ICに用いる色
ガラスの分光透過率特性を異ならせてあり、透光性基板
IYの色ガラスの分光透過率特性は、長波長側にピーク
があり、透光性基板ICの色ガラスの分光透過率特性は
、短波長側にピークがある。尚、8Y、8Cは、前面電
極2Y、2Cと、光電変換層7Y、7Cと、裏面電極6
Y、6Cとで構成される光電変換部を示す。
front electrodes 2Y, 2C consisting of amorphous silicon p-layers 3Y, 3C1 amorphous silicon i-layers 4Y, 4C and photoelectric conversion layers 7Y, 7C consisting of amorphous silicon n-layers 5Y, 5C.
and back electrodes 6Y and 6C made of Af or the like are sequentially laminated, but the spectral transmittance characteristics of the colored glasses used for the translucent substrate IY and IC are different, and the translucent substrate IY The spectral transmittance characteristics of the colored glass have a peak on the long wavelength side, and the spectral transmittance characteristics of the colored glass of the translucent substrate IC have a peak on the short wavelength side. Note that 8Y and 8C are the front electrodes 2Y and 2C, the photoelectric conversion layers 7Y and 7C, and the back electrode 6.
A photoelectric conversion unit composed of Y and 6C is shown.

このようにして形成されたカラーセンサにおいては、光
電変換素子9Yの分光感度特性は第6図の曲線Yであり
、光電変換素子9Cの分光感度特性は第6図の曲線Cで
あるので、今、色ガラス側から光が入射すると、波長の
長い光の場合は光電変換素子9Yの光電変換出力が大き
く、逆に、波長の短い光の場合は光電変換素子9Cの光
電変換出力が大きくなる。従って、両者の分光感度特性
がオーバーラツプしている範囲の波長を有する入射光に
対しては、両光電変換素子9Yと9Cの出力の比からそ
の入射光の色の識別ができる。
In the color sensor formed in this way, the spectral sensitivity characteristic of the photoelectric conversion element 9Y is curve Y in FIG. 6, and the spectral sensitivity characteristic of the photoelectric conversion element 9C is curve C in FIG. When light enters from the colored glass side, the photoelectric conversion output of the photoelectric conversion element 9Y is large in the case of light with a long wavelength, and on the contrary, the photoelectric conversion output of the photoelectric conversion element 9C is large in the case of light with a short wavelength. Therefore, for incident light having a wavelength within a range in which the spectral sensitivity characteristics of both photoelectric conversion elements overlap, the color of the incident light can be identified from the ratio of the outputs of both photoelectric conversion elements 9Y and 9C.

次に、第7図は本発明の第3実施例を示す断面図である
Next, FIG. 7 is a sectional view showing a third embodiment of the present invention.

図において、本実施例のものは、3つの光電変換素子9
R,9G、9B、即ち、赤色光にピークのある分光透過
率特性をもつ色ガラスからなる透光性基板IRを使用し
た光電変換素子9Rと、緑色光にピークのある分光透過
率特性をもつ色ガラスからなる透光性基板IGを使用し
た光電変換素子9Gと、青色光にピークのある分光透過
率特性をもつ色ガラスからなる透光性基板IBを使用し
た光電変換素子9Bを、第2実施例と同様に入射光に対
して並設した状態で有機樹脂2oによりモールドして一
体化して形成したものである。
In the figure, the one in this example has three photoelectric conversion elements 9.
R, 9G, 9B, that is, a photoelectric conversion element 9R using a transparent substrate IR made of colored glass having spectral transmittance characteristics with a peak in red light, and a photoelectric conversion element 9R with spectral transmittance characteristics with a peak in green light. A photoelectric conversion element 9G using a transparent substrate IG made of colored glass, and a photoelectric conversion element 9B using a transparent substrate IB made of colored glass having spectral transmittance characteristics with a peak in blue light, As in the embodiment, they are molded and integrated with organic resin 2o in a state where they are arranged parallel to the incident light.

ここで、各光電変換素子9R,9G、9Bは、前記第1
及び第2実施例と同様であり、各透光性基板IR,IC
,lBに、ITOや5nOz等の前面電極2R,2G、
2Bと、非晶質シリコンからなる光電変換層7R,7G
、7Bと、A42等の裏面電極6R,6G、6Bとから
なる光電変換部8R,8G、8Bを積層形成した構成で
ある。尚、非晶質シリコンからなる光電変換層7R,7
G。
Here, each photoelectric conversion element 9R, 9G, 9B is
and the same as in the second embodiment, and each light-transmitting substrate IR, IC
, lB, front electrodes 2R, 2G made of ITO, 5nOz, etc.
2B, and photoelectric conversion layers 7R and 7G made of amorphous silicon.
, 7B and back electrodes 6R, 6G, 6B such as A42, photoelectric conversion parts 8R, 8G, and 8B are laminated. Note that the photoelectric conversion layers 7R, 7 made of amorphous silicon
G.

7Bは、非晶質シリ3フ2層3R,3G、3B、非晶質
99171層4R,4G、4B、非晶質シリコンn層5
R,5G、5Bを、前面電極2R。
7B is amorphous silicon 3 layer 2 layers 3R, 3G, 3B, amorphous 99171 layer 4R, 4G, 4B, amorphous silicon n layer 5
R, 5G, 5B are the front electrode 2R.

2G、2B側から裏面電極6R,6G、6B側に順次積
層して構成されており、前述の実施例と同様である。
It is constructed by sequentially stacking layers from the 2G and 2B sides to the back electrodes 6R, 6G, and 6B, and is similar to the previous embodiment.

このようにして形成されたカラーセンサにおいて、光電
変換素子9Rの分光感度特性は第8図の曲線Rであり、
光電変換素子9Gの分光感度特性は同じく曲線Gであり
、光電変換素子9Bの分光感度特性は曲線Bである。従
って、今、透光性基板IR,IC,IB側から光が入射
すると、入射光の波長成分と第8図の各分光感度特性と
で決まる3つの光電変換出力が得られ、この3つの出力
を比較することにより、可視光全域の色の識別ができる
In the color sensor formed in this way, the spectral sensitivity characteristic of the photoelectric conversion element 9R is curve R in FIG.
Similarly, the spectral sensitivity characteristic of the photoelectric conversion element 9G is curve G, and the spectral sensitivity characteristic of the photoelectric conversion element 9B is curve B. Therefore, when light enters from the translucent substrate IR, IC, and IB sides, three photoelectric conversion outputs determined by the wavelength components of the incident light and each spectral sensitivity characteristic shown in Fig. 8 are obtained, and these three outputs By comparing the colors, it is possible to identify colors in the entire visible light range.

第2及び第3実施例のカラーセンサのように多色の判別
ができるものにおいては、第1実施例の効果に加えて、
吸収係数の異なる光電変換層を複数積層する必要がなく
製造が容易になると共に、バイアス電圧の切換手段等も
不要となり構成が簡単となる。
In addition to the effects of the first embodiment, in the color sensors of the second and third embodiments, which can discriminate multiple colors,
It is not necessary to laminate a plurality of photoelectric conversion layers having different absorption coefficients, which simplifies manufacturing, and also eliminates the need for bias voltage switching means, which simplifies the structure.

尚、光電変換素子を複数有する場合の配置構造としては
、第7図に示すように一列に並設する配置構造のみに限
定するものではなく、光入射面が略同−面上に位置する
ならば、例えば第9図に示すように中心対称状やその他
の配置構造であってもよいことは言うまでもない。
Note that the arrangement structure in the case of having a plurality of photoelectric conversion elements is not limited to the arrangement structure in which they are arranged side by side in a line as shown in FIG. For example, it goes without saying that the arrangement may be centrally symmetrical, as shown in FIG. 9, or any other arrangement.

〈発明の効果〉 以上説明したように本発明によれば、光電変換層として
非晶質半導体薄膜を用いたことから、結晶半導体薄膜を
用いたものに比べて可視光領域での感度が高く、赤外線
カットフィルタ等がいらず製造工程が簡単で、大面積化
が容易となる。また、透光性基板に色ガラスを用いたこ
とから、着色有機樹脂による色フィルタや多層蒸着膜に
よる色フィルタ及びこれらを保護するための保護ガラス
や保護膜が不要となり製造工程、構造共に簡単になると
共に、色フィルタの退色や剥離の問題も解決され信頬度
が向上する。また、色フィルタを使用しない従来のカラ
ーセンサに比べて、バイアス電圧印加のような余分な手
段を設けずに済む。
<Effects of the Invention> As explained above, according to the present invention, since an amorphous semiconductor thin film is used as the photoelectric conversion layer, the sensitivity in the visible light region is higher than that using a crystalline semiconductor thin film. There is no need for an infrared cut filter, etc., the manufacturing process is simple, and it is easy to increase the area. In addition, since colored glass is used for the translucent substrate, there is no need for color filters made of colored organic resins, color filters made of multilayer vapor deposited films, and protective glass or protective films to protect them, simplifying the manufacturing process and structure. At the same time, the problem of color fading and peeling of the color filters is solved, and confidence is improved. Furthermore, compared to conventional color sensors that do not use color filters, there is no need to provide extra means such as bias voltage application.

更に、光電変換素子を複数有するものの場合には、光電
変換部を複数個積層する必要がなく単層で済む等製造工
程、構造が簡単となる。従って、従来のカラーセンサよ
りも、可視光領域での感度が高く、信顛度が高く、製造
工程及び構造も簡単である等多大な効果を有する。
Furthermore, in the case of a device having a plurality of photoelectric conversion elements, there is no need to laminate a plurality of photoelectric conversion parts, and a single layer is sufficient, thereby simplifying the manufacturing process and structure. Therefore, it has many advantages over conventional color sensors, such as higher sensitivity in the visible light region, higher reliability, and simpler manufacturing process and structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカラーセンサの第1実施例の断面図、
第2図は同上実施例の透光性基板に使用する緑色の色ガ
ラスの分光透過率特性を示す図、第3図は同上実施例の
光電変換部の分光感度特性を示す図、第4図は同上実施
例の緑色単色カラーセンサの分光感度特性を示す図、第
5図は本発明の第2実施例のカラーセンサの断面図、第
6図は同上実施例のカラーセンサの分光感度特性を示す
図、第7図は本発明の第3実施例のカラーセンサの断面
図、第8図は同上実施例のカラーセンサの分光感度特性
を示す図、第9図は本発明の第4実施例のカラーセンサ
の平面図である。 1、IY、IC,IR,IG、IB・・・透光性基板 
 2,2Y、2C,2R,2G、2B・・・前面電極 
 3,3Y、3C,3R,3G、3B・・・非晶質99
372層  4,4Y、4C,4R,4G、4B・・・
非晶質99371層  5,5Y、5C,5R,5G、
5B・・・非晶質シリコンn層6.6Y、6C,6R,
6G、6B・・・裏面電極7.7Y、7C,7R,7G
、7B・・・光電変換層8、BY、8C,8R,8G、
8B・・・光電変換部9.9Y、9C,9R,9G、9
B・・・光電変換素子  10.20・・・有機樹脂
FIG. 1 is a sectional view of a first embodiment of the color sensor of the present invention;
Figure 2 is a diagram showing the spectral transmittance characteristics of the green colored glass used in the translucent substrate of the same example, Figure 3 is a diagram showing the spectral sensitivity characteristics of the photoelectric conversion part of the same example, and Figure 4 5 is a cross-sectional view of the color sensor of the second embodiment of the present invention, and FIG. 6 is a diagram showing the spectral sensitivity characteristics of the color sensor of the above embodiment. 7 is a sectional view of a color sensor according to a third embodiment of the present invention, FIG. 8 is a diagram showing spectral sensitivity characteristics of the color sensor according to the above embodiment, and FIG. 9 is a diagram showing a fourth embodiment of the present invention. FIG. 3 is a plan view of the color sensor of FIG. 1, IY, IC, IR, IG, IB...transparent substrate
2, 2Y, 2C, 2R, 2G, 2B...Front electrode
3,3Y, 3C, 3R, 3G, 3B...Amorphous 99
372 layers 4, 4Y, 4C, 4R, 4G, 4B...
Amorphous 99371 layer 5, 5Y, 5C, 5R, 5G,
5B...Amorphous silicon n layer 6.6Y, 6C, 6R,
6G, 6B... Back electrode 7.7Y, 7C, 7R, 7G
, 7B... Photoelectric conversion layer 8, BY, 8C, 8R, 8G,
8B...Photoelectric conversion section 9.9Y, 9C, 9R, 9G, 9
B...Photoelectric conversion element 10.20...Organic resin

Claims (1)

【特許請求の範囲】[Claims] 透光性基板の入射光に対して裏面側に、透光性の前面電
極と、光電変換層と、裏面電極とを順次積層して構成し
た光電変換素子を備え、前記透光性基板を所定の分光透
過率を有する色ガラスとし、前記光電変換層を非晶質半
導体薄膜としたことを特徴とするカラーセンサ。
A photoelectric conversion element configured by sequentially laminating a transparent front electrode, a photoelectric conversion layer, and a back electrode is provided on the back side of the transparent substrate with respect to incident light, and the transparent substrate is placed in a predetermined position. A color sensor characterized in that the photoelectric conversion layer is an amorphous semiconductor thin film, and the photoelectric conversion layer is an amorphous semiconductor thin film.
JP63208248A 1988-08-24 1988-08-24 Color sensor Pending JPH0257926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208248A JPH0257926A (en) 1988-08-24 1988-08-24 Color sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208248A JPH0257926A (en) 1988-08-24 1988-08-24 Color sensor

Publications (1)

Publication Number Publication Date
JPH0257926A true JPH0257926A (en) 1990-02-27

Family

ID=16553107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208248A Pending JPH0257926A (en) 1988-08-24 1988-08-24 Color sensor

Country Status (1)

Country Link
JP (1) JPH0257926A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173033A (en) * 1984-09-19 1986-04-15 Fuji Electric Co Ltd Color exposure device
JPS61170076A (en) * 1985-01-24 1986-07-31 Matsushita Electric Ind Co Ltd Light-receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173033A (en) * 1984-09-19 1986-04-15 Fuji Electric Co Ltd Color exposure device
JPS61170076A (en) * 1985-01-24 1986-07-31 Matsushita Electric Ind Co Ltd Light-receiving element

Similar Documents

Publication Publication Date Title
US8803270B2 (en) Light sensor having IR cut and color pass interference filter integrated on-chip
US7605354B2 (en) Color sensor, production method thereof, sensor, and electronics device
US5081347A (en) Photoelectric converting apparatus with reflection-prevention section
TW201100904A (en) Photo sensor, method of forming the same, and optical touch device
TW201417249A (en) Infrared reflection/absorption layer for reducing ghost image of infrared reflection noise and image sensor using the same
JPS59143362A (en) Passivation film
US20130163005A1 (en) Optical Sensing Device
US4656109A (en) Layered solid state color photosensitive device
WO2002073303A1 (en) Optically addressed spatial light modulator (oaslm) with dielectric mirror comprising layers of amorphous hydrogenated carbon
JPH04206571A (en) Solid-state image sensing device
JPH0257926A (en) Color sensor
JPS59227171A (en) Color sensor
JPH0915040A (en) Pyroelectric type infrared detector
JPH04124883A (en) Photoelectric conversion device
JPH06324326A (en) Liquid crystal display device
JPH0534463A (en) X-ray image sensor
JPH0738138A (en) Ultraviolet sensor
JPS6382326A (en) Element for ultraviolet ray sensor
JPS6193678A (en) Photoelectric conversion device
JPH01271706A (en) Optical filter and photoelectric sensor using same
JPH0335558A (en) Color sensor
JPS58125867A (en) Color sensor
JPH04250664A (en) Light sensor and production method
JPS61203668A (en) Image sensor
JPH07174623A (en) Pyroelectric infrared sensor and its manufacture