JPH04124883A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH04124883A
JPH04124883A JP2244222A JP24422290A JPH04124883A JP H04124883 A JPH04124883 A JP H04124883A JP 2244222 A JP2244222 A JP 2244222A JP 24422290 A JP24422290 A JP 24422290A JP H04124883 A JPH04124883 A JP H04124883A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
thin film
layer
type
conversion thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244222A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Shigeaki Tomonari
友成 惠昭
Takuro Nakamura
卓郎 中邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2244222A priority Critical patent/JPH04124883A/en
Publication of JPH04124883A publication Critical patent/JPH04124883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To set a photoelectric transfer device which is easy of high integration and suitable for a color sensor by stacking a photoelectric conversion thin film consisting of an intrinsic amorphous Si layer between a p-type amorphous Si layer and an n-type amorphous Si layer, and providing a thin film for transparent electrode between each photoelectric conversion thin film. CONSTITUTION:An ITO thin film is formed on a transparent glass board 2, and is patterned, and a transparent electrode 4 is provided, and an intrinsic amorphous Si layer 0.2-0.5mum consisting of a p-type a-Si layer, an i-type a-Si layer, and an n-type a-Si layer is stacked and patterned, thus the first photoelectric conversion thin film 3 is provided. Subsequently, an ITO thin film is formed and patterned, thus a transparent electrode 5 is provided, and a p-type a-Si layer, an i-type a-Si layer, and an n-type a-Si layer are stacked 0.3-1.8mm, and is patterned, thus the second photoelectric conversion thin film 3' is provided. Then, an ITO thin film is formed and patterned, and a transparent electrode 6 is provided, and a p-type a-Si layer, an i-type a-Si layer, and an n-type Si layer are stacked 0.1-2.0mm, and is patterned, thus the third photoelectric conversion thin film 3' is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アモルファスSi製の光電変換薄膜を有す
るカラーセンサに通した光電変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion device that passes through a color sensor having a photoelectric conversion thin film made of amorphous Si.

〔従来の技術〕[Conventional technology]

従来、カラーセンサとして、単結晶3i中に光電変換用
領域を形成し、表面に赤外カットフィルターおよび色フ
ィルターを配したセンサがある。
Conventionally, as a color sensor, there is a sensor in which a photoelectric conversion region is formed in a single crystal 3i, and an infrared cut filter and a color filter are arranged on the surface.

しかし、このセンサは、構造・製造工程が複雑であるた
め、非常にコストが高い。
However, this sensor has a complicated structure and manufacturing process, and is therefore very expensive.

一方、近年、アモルファスSi(以下、適宜「a−3i
Jと言う)製の光電変換薄膜を、太陽電池の他に光セン
サ−、あるいは、イメージセンサ−に応用する試みがな
されている。
On the other hand, in recent years, amorphous Si (hereinafter referred to as "a-3i")
Attempts have been made to apply photoelectric conversion thin films manufactured by J. J. Co., Ltd. to optical sensors or image sensors in addition to solar cells.

第3図に図示したa−3i製光電変換薄膜51応用力ラ
ーセン号はコストダウンが期待できる。
The A-3I photoelectric conversion thin film 51 applied force Larsen No. shown in FIG. 3 can be expected to reduce costs.

a−3i製光電変換薄膜51の場合、製造工程が簡単で
あるし、対波長感度特性が人間の目のそれに近くて赤外
域の感度が低く赤外カットフィルタの省略が可能であり
、ガラス基板上に作り付は同ガラス基板にそのまま保護
板機能を兼ねさせることもできるからである。
In the case of the a-3i photoelectric conversion thin film 51, the manufacturing process is simple, the wavelength sensitivity characteristics are close to those of the human eye, the sensitivity in the infrared region is low, and an infrared cut filter can be omitted, and the glass substrate is used. This is because the built-in glass substrate can also serve as a protective plate as it is.

第3図のカラーセンサの場合、光入射側に赤(R)・緑
(G)  ・lr (B)用の3つの色フィルタ52a
、52b、52cがガラス基板53表面に並べて設けら
れ、同基板53裏面の透明電極54を透過してa−3i
製光電変換薄膜51に光が達すると、透明電極54およ
び裏面電極55a、55b、55cの間にRGB信号が
発生する。
In the case of the color sensor shown in Fig. 3, there are three color filters 52a for red (R), green (G), and LR (B) on the light incident side.
, 52b, 52c are arranged side by side on the surface of the glass substrate 53, and a-3i is transmitted through the transparent electrode 54 on the back surface of the glass substrate 53.
When light reaches the photoelectric conversion thin film 51, RGB signals are generated between the transparent electrode 54 and the back electrodes 55a, 55b, and 55c.

しかしながら、このカラーセンサは、色フィルタを光入
射側に設ける必要があるため、十分な低コスト化を図る
ことは無理であり、RGB3つ分を合わせた広い基板面
積を必要とし各色毎にそれぞれフィルタを必要とする構
造は、高集積化が図り難く、カラーイメージセンサに用
いることは難しい。
However, since this color sensor requires a color filter to be provided on the light incident side, it is impossible to achieve sufficient cost reduction, and it requires a large substrate area for three RGB, and a separate filter for each color is required. A structure that requires this is difficult to achieve high integration and is difficult to use in a color image sensor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、上記事情に鑑み、色フィルタを必要とせず
、高集積化が図り易くてカラーセンサに通した光電変換
装置を提供することを課題とする〔課題を解決するため
の手段〕 前記課題を解決するため、請求項1.2記載の光電変換
装置は、n型アモルファスSi層とn型アモルファスS
i層の間にイントリンシックアモルファスSi層が設け
られてなる光電変換薄膜が3つ積層され、各光電変換薄
膜の間に透明電極用薄膜が設けられてなる構成をとって
いる。
In view of the above circumstances, it is an object of the present invention to provide a photoelectric conversion device that does not require a color filter, is easily highly integrated, and is passed through a color sensor.[Means for Solving the Problems] The above-mentioned problems In order to solve the problem, the photoelectric conversion device according to claim 1.2 includes an n-type amorphous Si layer and an n-type amorphous S layer.
Three photoelectric conversion thin films each having an intrinsic amorphous Si layer provided between the i-layers are laminated, and a transparent electrode thin film is provided between each photoelectric conversion thin film.

以下、この発明をより具体的に説明する。This invention will be explained in more detail below.

光入射側にある第1光電変換薄膜は青色検出用であり、
中間の第2光電変換薄膜は緑色検出用であり、光入射側
と反対の側の第3光電変換薄膜は赤色検出用である。
The first photoelectric conversion thin film on the light incidence side is for detecting blue color,
The second photoelectric conversion thin film in the middle is for detecting green color, and the third photoelectric conversion thin film on the side opposite to the light incident side is for detecting red color.

一般に、a−3i製薄膜の場合、短波長光に対して吸収
係数が大きく、波長が長くなるに従い吸収係数が小さく
なる性質がある。a−3i光電変換薄膜に、青、緑、赤
の各光が入射した場合、それぞれの光を90%吸収する
のに必要な膜深さは、下記の通りである。
Generally, in the case of a-3i thin film, the absorption coefficient is large for short wavelength light, and as the wavelength becomes longer, the absorption coefficient becomes smaller. When each of blue, green, and red light is incident on the a-3i photoelectric conversion thin film, the film depth required to absorb 90% of each light is as follows.

光の色 波長   吸収係数    膜深さ(nm) 
   (cn+−’)      Ctts)青   
480     1XIO’      0.23緑 
 550     5X10’      0.49赤
   650     5xlO”      2.3
つまり、a−3i光電変換薄膜が光入射側から順に0.
23n、0.26n、1.81pであれば、青色光は第
1光電変換薄膜で殆ど吸収され、緑色光は第2光電変換
薄膜までで殆ど吸収され、第3光電変換薄膜では赤色光
のみが吸収されるということになる。
Color of light Wavelength Absorption coefficient Film depth (nm)
(cn+-') Ctts) blue
480 1XIO' 0.23 green
550 5X10' 0.49 Red 650 5xlO" 2.3
In other words, the a-3i photoelectric conversion thin film is 0.0.
23n, 0.26n, and 1.81p, most of the blue light is absorbed by the first photoelectric conversion thin film, most of the green light is absorbed up to the second photoelectric conversion thin film, and only red light is absorbed by the third photoelectric conversion thin film. It will be absorbed.

この発明における光電変換薄膜では、光電変換に直接与
からないp型a−3i層とn型a−3i層は極く薄く 
(数100Å以下、通寓100〜300人)でイントリ
ンシックアモルファスSi(以下、適宜「i型a−3i
Jと言う)層の厚みに比べ非常に小さい。そのため、光
電変換薄膜厚みは、事実上、i型a−3i層に支配され
る。各光電変換薄膜における各色の光の吸収が上記のよ
うに適切な状態であるためには、i型a−3i層の厚み
は、請求項2のように、すなわち、下記の範囲にあるこ
とが好ましい。
In the photoelectric conversion thin film in this invention, the p-type a-3i layer and the n-type a-3i layer, which do not directly participate in photoelectric conversion, are extremely thin.
(several 100 Å or less, 100 to 300 people) and intrinsic amorphous Si (hereinafter referred to as "i type a-3i" as appropriate)
J) is very small compared to the thickness of the layer. Therefore, the thickness of the photoelectric conversion thin film is practically controlled by the i-type a-3i layer. In order for the absorption of light of each color in each photoelectric conversion thin film to be in the appropriate state as described above, the thickness of the i-type a-3i layer must be in the following range as claimed in claim 2. preferable.

光入射側の光電変換薄膜(第1光電変換薄膜)のイント
リンシックアモルファスSi層:0.2〜0.51 中間の光電変換薄膜(第2光電変換薄11’J)のイン
トリンシックアモルファスSi層:0.3〜1.8μm 光入射側とは逆の側の光電変換薄膜(第3光電変換薄膜
)のイントリンシックアモルファスS+層:0.1〜2
.On 赤色光入射の場合、第1.2光電変換薄膜の出力にも赤
色光吸収分が出るし、緑色光入射の場合は、第1光電変
換薄膜の出力にも緑色光吸収分が出る。また、青、緑、
赤の色の光のうち2以上が同時に入射する場合、第1.
2光電変換薄膜の出力には他の色の光吸収分が含まれる
。しかし、信号処理の段階で他の出力を使い他色の混入
光吸収分を除く補正を行うようにして、RGB信号を得
ることができるので問題ない。例えば、青色光と赤色光
が同時に入射した場合、第1光電変換薄膜には青色光吸
収分の他、赤色光吸収分も含まれるが、信号処理の段階
で、第3光電変換薄膜の出力を使い、第1光電変換薄膜
に出力から赤色光吸収分を差し引く補正を行えば、この
補正出力がB信号になるのである。
Intrinsic amorphous Si layer of the photoelectric conversion thin film on the light incident side (first photoelectric conversion thin film): 0.2 to 0.51 Intrinsic amorphous Si layer of the middle photoelectric conversion thin film (second photoelectric conversion thin film 11'J): 0.3 to 1.8 μm Intrinsic amorphous S+ layer of the photoelectric conversion thin film (third photoelectric conversion thin film) on the side opposite to the light incident side: 0.1 to 2
.. On When red light is incident, the red light absorption component also appears in the output of the first and second photoelectric conversion thin films, and in the case of green light incidence, the green light absorption component also appears in the output of the first photoelectric conversion thin film. Also, blue, green,
When two or more red lights are incident at the same time, the first...
The output of the two-photoelectric conversion thin film includes light absorption of other colors. However, there is no problem because the RGB signals can be obtained by using other outputs at the signal processing stage to perform correction to remove the absorption of mixed light of other colors. For example, when blue light and red light are incident at the same time, the first photoelectric conversion thin film absorbs not only the blue light but also the red light; however, in the signal processing stage, the output of the third photoelectric conversion thin film is If the first photoelectric conversion thin film is corrected by subtracting red light absorption from the output, this corrected output becomes the B signal.

続いて、この発明の光電変換装置の具体的な構成例を、
図面を参照しながら説明する。
Next, a specific configuration example of the photoelectric conversion device of the present invention will be described.
This will be explained with reference to the drawings.

第1図は、この発明の光電変換装置の一例を破断してあ
られし、第2図は、同光電変換装置を上方からみた状態
をあられす。
FIG. 1 shows an example of the photoelectric conversion device of the present invention in a broken state, and FIG. 2 shows the same photoelectric conversion device viewed from above.

光電変換装置1は、透明なガラス基板2を備え、同基板
2の上に3個の光電変換薄膜3.3′3″が積層形成さ
れたタンデム構造である。
The photoelectric conversion device 1 has a tandem structure including a transparent glass substrate 2 on which three photoelectric conversion thin films 3.3'3'' are laminated.

通常、ガラス基板2の上に電極4を形成し、ついで、p
型a−5i層、i型a−5i、n型aSi層を順に形成
して光電変換薄膜3を形成する。続いて、電極5を形成
してからp型a−5i層i型a−3i、n型a−3i層
を順に形成して光電変換薄膜3′を形成する。ついで、
電極6を形成してからp型a−3i層、i型a−5i、
n型a−8i層を順に形成して光電変換薄膜3“を形成
し、最後に、電極7を形成すれば完成である。なお、各
電極4〜7は電気的接続をとるための伸延部4a、5a
、6a、7aを有するが、各電極の伸延部が他の電極の
伸延部と異なる方向に出るように電極パターンが選ばれ
ている。
Usually, an electrode 4 is formed on a glass substrate 2, and then p
A photoelectric conversion thin film 3 is formed by sequentially forming a type a-5i layer, an i-type a-5i layer, and an n-type aSi layer. Subsequently, after forming the electrode 5, a p-type a-5i layer, an i-type a-3i layer, and an n-type a-3i layer are formed in this order to form a photoelectric conversion thin film 3'. Then,
After forming the electrode 6, a p-type a-3i layer, an i-type a-5i layer,
The photoelectric conversion thin film 3'' is formed by sequentially forming the n-type A-8i layer, and finally, the electrode 7 is formed to complete the process.Each electrode 4 to 7 is an extension part for electrical connection. 4a, 5a
, 6a, 7a, but the electrode pattern is chosen such that the extension of each electrode is in a different direction than the extension of the other electrodes.

光がガラス基板2側から入射する場合(図示の場合)、
電極4〜6を透明電極とする。透明電極は、例えば、酸
化錫と酸化インジウムからなる透明薄膜(TTO薄膜)
を用いる。電極7は透明である必要はなく、例えば、C
r薄膜を用いる。
When light enters from the glass substrate 2 side (as shown),
Electrodes 4 to 6 are transparent electrodes. The transparent electrode is, for example, a transparent thin film made of tin oxide and indium oxide (TTO thin film).
Use. The electrode 7 does not need to be transparent, for example C
r Use a thin film.

光がガラス基板2側とは反対の側から入射する場合、電
極5〜7を透明電極とする。透明電極は、例えば、酸化
錫と酸化インジウムからなる透明薄膜CITO薄H*)
を用いる。電極4は透明である必要はなく、例えば、C
r薄膜を用いる。ガラス基板2も不透明な絶縁板でよい
When light enters from the side opposite to the glass substrate 2 side, the electrodes 5 to 7 are transparent electrodes. The transparent electrode is, for example, a transparent thin film CITO thin H*) made of tin oxide and indium oxide.
Use. The electrode 4 does not need to be transparent, for example C
r Use a thin film. The glass substrate 2 may also be an opaque insulating plate.

〔作   用〕[For production]

この発明の光電変換装置は、カラーセン号として好適で
ある。これは、3つの第1〜3光電変換薄膜が積層され
、第1光電変換薄膜で青色光がほぼ吸収され、中間の第
2光電変換薄膜までで緑色光がほぼ吸収され、最後の第
3光電変換薄膜では赤色光のみが吸収され、各薄膜の出
力からRGB信号を得ることが可能だからである。
The photoelectric conversion device of this invention is suitable as a color sensor. This is because three first to third photoelectric conversion thin films are stacked, the first photoelectric conversion thin film absorbs most of the blue light, the intermediate second photoelectric conversion thin film absorbs most of the green light, and the third photoelectric conversion thin film absorbs most of the green light. This is because the conversion thin film absorbs only red light, and it is possible to obtain RGB signals from the output of each thin film.

この光電変換装置は、十分な低コスト化が可能である。This photoelectric conversion device can be sufficiently reduced in cost.

色フィルタが不要なため、構成・製造工程が大幅に簡単
になるからである。勿論、a−8i光電変換薄膜を用い
ていることで、赤外カットフィルタが要らず、製造工程
が簡単であることも、低コスト化に寄与していることは
言うまでもない。
This is because no color filter is required, which greatly simplifies the configuration and manufacturing process. Of course, it goes without saying that the use of the a-8i photoelectric conversion thin film eliminates the need for an infrared cut filter and simplifies the manufacturing process, contributing to cost reduction.

そして、この光電変換装置は高集積化が図り易い。RG
B信号を得るのに光電変換薄膜を3つ必要としても、積
層構成であるため1個分の光電薄膜面積と同じ基板面積
を必要とするだけだからである。それに、多数集積され
ても色フイルタ形成が不要であって製造し易く、この点
も高集積化を容易にしている。
Further, this photoelectric conversion device can easily be highly integrated. RG
This is because even if three photoelectric conversion thin films are required to obtain the B signal, the stacked structure requires only the same substrate area as one photoelectric thin film. In addition, even if a large number of devices are integrated, there is no need to form color filters, which facilitates manufacturing, which also facilitates high integration.

〔実 施 例〕〔Example〕

以下、この発明の詳細な説明する。この発明は、下記の
実施例に限らない。
The present invention will be explained in detail below. This invention is not limited to the following embodiments.

実施例1 以下のようにして、第1図と第2図に示す構成の光電変
換装置を得た。
Example 1 A photoelectric conversion device having the configuration shown in FIGS. 1 and 2 was obtained in the following manner.

透明なガラス基板上に厚み0.2μ璽のITO薄膜をE
B蒸着により形成し、フォトリソグラフィ技術を用いパ
ターン化し、所定形状の透明な電極を設けた。
A thin ITO film with a thickness of 0.2μ is deposited on a transparent glass substrate.
It was formed by B vapor deposition and patterned using photolithography technology to provide a transparent electrode in a predetermined shape.

ついで、プラズマCVD法により、厚み0.011のp
型a−3i層、厚み0.4 nO1型a−3i層、厚み
0.01pのn型a−5i層を積層し、フォトリソグラ
フィ技術を用いパターン化し、所定形状の第1光電変換
薄膜を設けた。
Next, by plasma CVD method, a p film with a thickness of 0.011
A type a-3i layer, a thickness of 0.4 nO1 type a-3i layer, and an n-type a-5i layer of a thickness of 0.01p are laminated, patterned using photolithography technology, and a first photoelectric conversion thin film of a predetermined shape is provided. Ta.

第1光電変換薄膜の上に、厚み0.2 nのIT○薄膜
をEB蒸着により形成し、フォトリソグラフィ技術を用
いパターン化し、所定形状の透明な電極を設けた。
On the first photoelectric conversion thin film, an IT◯ thin film having a thickness of 0.2 nm was formed by EB evaporation, and patterned using photolithography technology to provide transparent electrodes in a predetermined shape.

電極形成に続いて、プラズマCVD法により、厚み0.
01uOp型a−3i層、厚み0.6n(7)i型a−
3i1ii、厚み0.01pのn型a−5i層を積層し
、フォトリソグラフィ技術を用いパターン化し、所定形
状の第2光電変換薄膜を設けた。その後、厚み0.2p
のTTO薄膜をEB蒸着により形成し、フォトリソグラ
フィ技術を用いパターン化し、所定形状の透明な電極を
設けた。
Following the electrode formation, the plasma CVD method is used to form the electrodes to a thickness of 0.
01uOp type a-3i layer, thickness 0.6n (7) i type a-
3i1ii and 0.01p thick n-type a-5i layers were laminated and patterned using photolithography technology to provide a second photoelectric conversion thin film having a predetermined shape. After that, the thickness is 0.2p.
A TTO thin film was formed by EB evaporation, patterned using photolithography technology, and a transparent electrode of a predetermined shape was provided.

この後、再び、プラズマCVD法により、厚み0.01
pのp型a−3i層、厚み0.6 usのi型aSi層
、厚み0.01pのn型a−3i層を積層し、フォトリ
ソグラフィ技術を用いパターン化し、所定形状の第3光
電変換薄膜を設けた。最後に、厚み0.2μのCr薄膜
を形成し、フォトリソグラフィ技術を用いパターン化し
、所定形状の電極を設け、光電変換装置を完成した。
After this, by plasma CVD method again, the thickness was 0.01.
A p-type a-3i layer, a 0.6 μs-thick i-type aSi layer, and a 0.01p-thick n-type a-3i layer are stacked and patterned using photolithography technology to form a third photoelectric conversion layer with a predetermined shape. A thin film was provided. Finally, a Cr thin film with a thickness of 0.2 μm was formed, patterned using photolithography, and electrodes of a predetermined shape were provided to complete a photoelectric conversion device.

そして、この光電変換装置に、基板側から青、緑、赤の
各色の光を入射し、光電変換特性を調べた。
Then, blue, green, and red light was incident on this photoelectric conversion device from the substrate side, and the photoelectric conversion characteristics were examined.

波長480nmの青色光の場合、第1光電変換薄膜に約
0.7■の電圧が発生した。第2.3光電変換薄膜には
電圧が殆ど発生しなかった。
In the case of blue light with a wavelength of 480 nm, a voltage of about 0.7 µ was generated in the first photoelectric conversion thin film. Almost no voltage was generated in the 2.3 photoelectric conversion thin film.

波長550r+mの緑色光の場合、第2光電変換薄膜に
約0.7Vの電圧が発生した。第3光電変換薄膜には電
圧が殆ど発生しなかった。なお、第2光電変換薄膜では
緑色光の約40%が吸収される。
In the case of green light with a wavelength of 550 r+m, a voltage of about 0.7 V was generated in the second photoelectric conversion thin film. Almost no voltage was generated in the third photoelectric conversion thin film. Note that about 40% of the green light is absorbed by the second photoelectric conversion thin film.

波長650nmの赤色光の場合、第3光電変換薄膜に約
0.7Vの電圧が発生した。なお、第3光電変換薄膜で
は赤色光の約35%が吸収される。
In the case of red light with a wavelength of 650 nm, a voltage of about 0.7 V was generated in the third photoelectric conversion thin film. Note that about 35% of the red light is absorbed by the third photoelectric conversion thin film.

また、光の強度を変えると強度に応した出力電流が得ら
れることも確認できた。
It was also confirmed that by changing the intensity of light, an output current corresponding to the intensity could be obtained.

実施例2− 以下のようにして、第1図と第2図に示す構成の光電変
換装置を得た。
Example 2 - A photoelectric conversion device having the configuration shown in FIGS. 1 and 2 was obtained in the following manner.

表面に酸化膜が形成されたSiウェハを用い、同ウェハ
上に厚み0.21のCr薄膜を形成し、パターン化して
所定形状の電極を設けた。
Using a Si wafer with an oxide film formed on its surface, a 0.21-thick Cr thin film was formed on the wafer and patterned to provide electrodes in a predetermined shape.

ついで、プラズマCVD法により、厚み0.0Inのp
型a−8i層、厚み0.6 nのj型a−3i層、厚み
0.01pのn型a−3i層を積層し、フォトリソグラ
フィ技術を用いパターン化し、所定形状の第3光電変換
薄膜を設けた。
Then, by plasma CVD method, a p layer with a thickness of 0.0 In
A third photoelectric conversion thin film having a predetermined shape is formed by stacking a type A-8i layer, a J-type A-3i layer with a thickness of 0.6n, and an N-type A-3i layer with a thickness of 0.01p, and patterning it using photolithography technology. has been established.

第3光電変換薄膜の上に、厚み0.2nのITO薄膜を
EB蒸着により形成し、フォトリソグラフィ技術を用い
パターン化し、所定形状の透明な電極を設けた。
On the third photoelectric conversion thin film, an ITO thin film with a thickness of 0.2 nm was formed by EB evaporation, and patterned using photolithography technology to provide transparent electrodes in a predetermined shape.

電極形成に続いて、プラズマCVD法により、厚みo、
olnのTl型a−3irr71、厚ミ0.6 n(D
 i型a−3i層、厚み0.01mのn型a−3i層を
積層し、フォトリソグラフィ技術を用いパターン化し、
所定形状の第2光電変換薄膜を設けた。その後、厚み0
.2nのITO薄膜をEB蒸着により形成し・フォトリ
ソグラフィ技術を用し)ノ々ターン化し、所定形状の透
明な電極を設けた。
Following electrode formation, the thickness o,
oln Tl type a-3irr71, thickness 0.6 n (D
An i-type a-3i layer and an n-type a-3i layer with a thickness of 0.01 m are stacked and patterned using photolithography technology.
A second photoelectric conversion thin film having a predetermined shape was provided. After that, the thickness is 0
.. A 2n ITO thin film was formed by EB evaporation and turned into multiple turns (using photolithography), and a transparent electrode of a predetermined shape was provided.

この後、再び、プラズマCVD法により、厚み0.01
pのp型a−3i層、厚み0.4nのi型a−3i層、
厚み0.01pのn型a−3i層を積層し・フォトリソ
グラフィ技術を用いパターン化し、所定形状の第1光電
変換薄膜を設けた。最後に、厚み0.2nのITO薄膜
を形成し、フォトリソグラフィ技術を用いパターン化し
、所定形状の透明な電極を設け、光電変換装置を完成し
た。
After this, by plasma CVD method again, the thickness was 0.01.
p-type a-3i layer, 0.4n-thick i-type a-3i layer,
N-type A-3i layers having a thickness of 0.01p were laminated and patterned using photolithography technology to provide a first photoelectric conversion thin film having a predetermined shape. Finally, an ITO thin film with a thickness of 0.2 nm was formed, patterned using photolithography technology, and transparent electrodes of a predetermined shape were provided to complete a photoelectric conversion device.

そして、この光電変換装置に、基板側とは反対の側から
青、緑、赤の各色の光を入射し、光電変換特性を調べた
Then, blue, green, and red light was incident on this photoelectric conversion device from the side opposite to the substrate side, and the photoelectric conversion characteristics were examined.

波長480nmの青色光の場合、第1光電変換薄膜に約
0.7■の電圧が発生した。第2.3光電変換薄膜には
電圧が殆ど発生しなかった。
In the case of blue light with a wavelength of 480 nm, a voltage of about 0.7 µ was generated in the first photoelectric conversion thin film. Almost no voltage was generated in the 2.3 photoelectric conversion thin film.

波長550nmの緑色光の場合、第2光電変換薄膜に約
0.7Vの電圧が発生した。第3光電変換薄膜には電圧
が殆ど発生しなかった。なお、第2光電変換薄膜では緑
色光の約40%が吸収される。
In the case of green light with a wavelength of 550 nm, a voltage of about 0.7 V was generated in the second photoelectric conversion thin film. Almost no voltage was generated in the third photoelectric conversion thin film. Note that about 40% of the green light is absorbed by the second photoelectric conversion thin film.

波長650nmの赤色光の場合、第3光電変換薄膜に約
0.7 Vの電圧が発生した。なお、第3光電変換薄膜
では赤色光の約25%が吸収される。
In the case of red light with a wavelength of 650 nm, a voltage of about 0.7 V was generated in the third photoelectric conversion thin film. Note that approximately 25% of the red light is absorbed by the third photoelectric conversion thin film.

また、光の強度を変えると強度に応じた出力電流が得ら
れることも確認できた。
We also confirmed that by changing the intensity of light, we could obtain an output current that corresponds to the intensity.

〔発明の効果〕 この発明の光電変換装置は、積層された3つの第1〜3
光電変換薄膜の出力からRGB信号を得ることが出来る
ため、カラーセンサに適しており、色フィルタが不要で
積層構成であるがため、十分な低コスト化や高集積化が
図り易い。
[Effects of the Invention] The photoelectric conversion device of the present invention has three laminated first to third
Since RGB signals can be obtained from the output of the photoelectric conversion thin film, it is suitable for a color sensor, and since it does not require a color filter and has a laminated structure, it is easy to achieve sufficient cost reduction and high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明にかかる光電変換装置の一例の構成
をあられす断面図、第2図は、同光電変換装置の平面図
、第3図は、従来の光電変換装置の構成をあられす断面
図である。 1・・・光電変換装置  3.3′ 3″・・・光電変
換薄膜  5.6・・・(透明)電極 代理人 弁理士  松 本 武 彦
FIG. 1 is a cross-sectional view showing the configuration of an example of a photoelectric conversion device according to the present invention, FIG. 2 is a plan view of the photoelectric conversion device, and FIG. 3 is a cross-sectional view showing the configuration of a conventional photoelectric conversion device. FIG. 1... Photoelectric conversion device 3.3'3''... Photoelectric conversion thin film 5.6... (Transparent) Electrode agent Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】 1 p型アモルファスSi層とn型アモルファスSi層
の間にイントリンシックアモルファスSi層が設けられ
てなる光電変換薄膜が3つ積層され、各光電変換薄膜の
間に透明電極用薄膜が設けられてなる光電変換装置。 2 光電変換薄膜それぞれのイントリンシックアモルフ
ァスSi層の厚みが下記の通りである請求項1記載の光
電変換装置。 光入射側の光電変換薄膜のイントリンシックアモルファ
スSi層:0.2〜0.5μm 中間の光電変換薄膜のイントリンシックアモルファスS
i層:0.3〜1.8μm 光入射側とは逆の側の光電変換薄膜のイントリンシック
アモルファスSi層:0.1〜2.0μm
[Claims] 1. Three photoelectric conversion thin films each having an intrinsic amorphous Si layer provided between a p-type amorphous Si layer and an n-type amorphous Si layer are laminated, and a layer for a transparent electrode is formed between each photoelectric conversion thin film. A photoelectric conversion device provided with a thin film. 2. The photoelectric conversion device according to claim 1, wherein the thickness of the intrinsic amorphous Si layer of each of the photoelectric conversion thin films is as follows. Intrinsic amorphous Si layer of photoelectric conversion thin film on light incident side: 0.2 to 0.5 μm Intrinsic amorphous S layer of photoelectric conversion thin film in the middle
I layer: 0.3 to 1.8 μm Intrinsic amorphous Si layer of the photoelectric conversion thin film on the side opposite to the light incident side: 0.1 to 2.0 μm
JP2244222A 1990-09-15 1990-09-15 Photoelectric conversion device Pending JPH04124883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244222A JPH04124883A (en) 1990-09-15 1990-09-15 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244222A JPH04124883A (en) 1990-09-15 1990-09-15 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH04124883A true JPH04124883A (en) 1992-04-24

Family

ID=17115565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244222A Pending JPH04124883A (en) 1990-09-15 1990-09-15 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH04124883A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552603A (en) * 1994-09-15 1996-09-03 Martin Marietta Corporation Bias and readout for multicolor quantum well detectors
JP2002062257A (en) * 2000-08-23 2002-02-28 Fuji Xerox Co Ltd Measuring instrument for measuring ozone concentration
JP2002519853A (en) * 1998-06-24 2002-07-02 インテル・コーポレーション Pixel structure without infrared filter
JP2007273961A (en) * 2006-03-10 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2012216872A (en) * 2006-03-10 2012-11-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP5196488B2 (en) * 2006-07-21 2013-05-15 ルネサスエレクトロニクス株式会社 Photoelectric conversion device and imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552603A (en) * 1994-09-15 1996-09-03 Martin Marietta Corporation Bias and readout for multicolor quantum well detectors
JP2002519853A (en) * 1998-06-24 2002-07-02 インテル・コーポレーション Pixel structure without infrared filter
JP2002062257A (en) * 2000-08-23 2002-02-28 Fuji Xerox Co Ltd Measuring instrument for measuring ozone concentration
JP2007273961A (en) * 2006-03-10 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2012216872A (en) * 2006-03-10 2012-11-08 Semiconductor Energy Lab Co Ltd Semiconductor device
US8415664B2 (en) 2006-03-10 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5196488B2 (en) * 2006-07-21 2013-05-15 ルネサスエレクトロニクス株式会社 Photoelectric conversion device and imaging device

Similar Documents

Publication Publication Date Title
JP3046701B2 (en) Color liquid crystal display
TWI304511B (en) Liquid crystal display device having light-shield color filter pattern and method for fabricating the same
TW201100904A (en) Photo sensor, method of forming the same, and optical touch device
JPH04124883A (en) Photoelectric conversion device
KR20010066368A (en) Thin Film Transistor Substrate And Method for Fabricating the Same
JPH02177374A (en) Photoelectric conversion device
JPH06347826A (en) Liquid crystal display device
JPH0737323Y2 (en) Color sensor
JPS61203668A (en) Image sensor
JPS61217087A (en) Non-linear type resistance element for liquid crystal display unit
JPH09307132A (en) Solar cell device and manufacture thereof
JPH02159772A (en) Pin vertical type photosensor
JPH03268369A (en) Color sensor
TWI322917B (en) Active matrix type liquid crystal display
JPH0536280Y2 (en)
JPH0335558A (en) Color sensor
JPH01271706A (en) Optical filter and photoelectric sensor using same
JPS61171161A (en) One-dimensional image sensor
JPS60157270A (en) Thin film light receiving element
JPS6191687A (en) Semiconductor device
JPH0257926A (en) Color sensor
JPS61181158A (en) Contact type image sensor
JPS61117521A (en) Production of semiconductor device
JPH02308105A (en) Color filter and its production
JPH05145054A (en) Photodiode and image sensor using the same