JPH0257577B2 - - Google Patents

Info

Publication number
JPH0257577B2
JPH0257577B2 JP56085698A JP8569881A JPH0257577B2 JP H0257577 B2 JPH0257577 B2 JP H0257577B2 JP 56085698 A JP56085698 A JP 56085698A JP 8569881 A JP8569881 A JP 8569881A JP H0257577 B2 JPH0257577 B2 JP H0257577B2
Authority
JP
Japan
Prior art keywords
polyethylene
density
parts
less
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56085698A
Other languages
Japanese (ja)
Other versions
JPS57202326A (en
Inventor
Toshihiro Yamane
Isamu Tamai
Shunji Ookubo
Koji Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP8569881A priority Critical patent/JPS57202326A/en
Publication of JPS57202326A publication Critical patent/JPS57202326A/en
Publication of JPH0257577B2 publication Critical patent/JPH0257577B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリエチレン発泡体、特に架橋タイプ
のポリエチレン発泡体の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyethylene foams, particularly cross-linked polyethylene foams.

従来、架橋タイプのポリエチレン発泡体の製造
法としては、ポリエチレンに加熱によりガスを発
生する発泡剤を添加して発泡剤の分解温度よりも
低い温度で溶融混練し成形後、該成形物を電離性
放射線または化学架橋剤で架橋せしめ、ついで発
泡剤の分解温度以上に加熱して発泡せしめる方法
が知られている。
Conventionally, the method for producing cross-linked polyethylene foam has been to add a foaming agent that generates gas when heated to polyethylene, melt-knead it at a temperature lower than the decomposition temperature of the foaming agent, mold it, and then make the molded product ionizable. A method of crosslinking with radiation or a chemical crosslinking agent and then foaming by heating to a temperature higher than the decomposition temperature of the foaming agent is known.

特にポリエチレンとして高圧法でつくられた低
密度ポリエチレンを用いたポリエチレン発泡体は
商業的規模で大量に生産販売されている。また中
圧法、低圧法でつくられた密度が0.935g/cm3
りも高い高密度ポリエチレンを用いた架橋タイプ
の発泡体も知られている。
In particular, polyethylene foams using low-density polyethylene produced by a high-pressure method are produced and sold in large quantities on a commercial scale. Also known are cross-linked foams made using high-density polyethylene with a density higher than 0.935 g/cm 3 produced by a medium-pressure method or a low-pressure method.

しかしながら高密度ポリエチレンの発泡体はポ
リマーの融点が高いため、発泡剤の分解温度より
も低い温度での混練と成形が非常に困難で、発泡
剤の分解が起りやすく均一な気泡の発泡体が得ら
れないので、その性能的に機械的性質、耐熱性が
すぐれているにもかかわらず、商業的規模ではま
つたく生産販売されていない。
However, because high-density polyethylene foam has a high polymer melting point, it is extremely difficult to knead and mold it at a temperature lower than the decomposition temperature of the blowing agent, which tends to cause the blowing agent to decompose, making it difficult to obtain a foam with uniform cells. Therefore, despite its excellent mechanical properties and heat resistance, it is not produced and sold on a commercial scale.

一方、高圧法による低密度ポリエチレンを原料
とした発泡体は、すでに大量に生量されている
が、その性能は機械的性質や耐熱性の点でやや不
十分なものであり用途面で限界があつた。
On the other hand, foams made from low-density polyethylene produced by high-pressure methods are already produced in large quantities, but their performance is somewhat inadequate in terms of mechanical properties and heat resistance, and there are limits to their applications. It was hot.

本発明の目的は、従来低密度ポリエチレンを原
料とした発泡体で不十分であつた性能、特に真空
成形性および引張破断伸度をもとに改良せんとす
るものである。
The object of the present invention is to improve the performance of conventional foams made from low-density polyethylene, particularly in terms of vacuum formability and tensile elongation at break.

本発明は上記目的を達成すため、次の構成、す
なわち、融点115℃未満、密度0.935g/cm3以下の
低密度ポリエチレン(A)50部超過80部以下、および
共重合成分として炭素数4〜20α−オレフインを
共重合したポリエチレンであつて融点115℃〜130
℃、密度0.940g/cm3以下、メルトフローレート
0.1〜50g/10min、分子量分布6以下のポリエ
チレン(B)50部未満20部以上を樹脂主成分とし、こ
れに加熱によりガスを発生する発泡剤を添加して
発泡剤の分解温度よりも低い温度で溶融混練し成
形後、該成形物を放射線架橋法により架橋せし
め、ついて発泡剤の分解温度以上に加熱して発泡
せしめるポリエチレン発泡体の製造法を特徴とす
るものである。
In order to achieve the above object, the present invention has the following composition: more than 50 parts but not more than 80 parts of low-density polyethylene (A) having a melting point of less than 115°C and a density of not more than 0.935 g/cm 3 and a carbon number of 4 as a copolymer component. Polyethylene copolymerized with ~20α-olefin, melting point 115℃~130
°C, density 0.940g/ cm3 or less, melt flow rate
0.1 to 50g/10min, less than 50 parts of polyethylene (B) with a molecular weight distribution of 6 or less The main component is 20 parts or more, and a blowing agent that generates gas when heated is added to this to a temperature lower than the decomposition temperature of the blowing agent. This method is characterized by a method for producing a polyethylene foam, in which after melt-kneading and molding, the molded product is crosslinked by a radiation crosslinking method, and then heated to a temperature higher than the decomposition temperature of the foaming agent to foam it.

但し、本発明における混合量または添加量の単
位の「部」は、「重量部」を示すものである。
However, in the present invention, the unit "parts" for the amount of mixture or amount added indicates "parts by weight."

本発明の低密度ポリエチレン(A)は従来から商業
的規模で大量に生産販売されている架橋タイプの
ポリリエチレン発泡体の原料として用いられてい
るものに相当し、前述のようにこのポリエチレン
単独からは高性能の発泡体は得られない。
The low-density polyethylene (A) of the present invention corresponds to that conventionally used as a raw material for cross-linked polyethylene foams that have been produced and sold in large quantities on a commercial scale. It is not possible to obtain a high-performance foam.

本発明で用いるもう一種のポリエチレン(B)は融
点が115℃〜130℃、密度が0.940g/cm3以下、好
ましくは0.935g/cm3以下、メルトフローレート
が0.1〜50g/10min、分子量分布が6以下のも
ので共重合成分としてC4〜20好ましくはC5〜10のα
−オレフインを共重合したものである。
Another type of polyethylene (B) used in the present invention has a melting point of 115°C to 130°C, a density of 0.940 g/cm 3 or less, preferably 0.935 g/cm 3 or less, a melt flow rate of 0.1 to 50 g/10 min, and a molecular weight distribution. is 6 or less, and the copolymerization component is C 4 to 20 , preferably C 5 to 10 α.
-It is a copolymerized product of olefin.

低密度ポリエチレン(A)とポリエチレン(B)の混合
比率は前者が50部超過80部以下、後者が50部未満
20部以上、すなわち、両者の和の20%以上50%未
満をポリエチレン(B)が占める。この範囲内であれ
ば低密度ポリエチレン(A)による溶融混練性の良さ
を維持し、かつ高性能、特に引張り破断伸度の高
いポリエチレン発泡体が得られる。
The mixing ratio of low density polyethylene (A) and polyethylene (B) is more than 50 parts but less than 80 parts for the former and less than 50 parts for the latter.
Polyethylene (B) accounts for 20 parts or more, that is, 20% or more and less than 50% of the sum of both. Within this range, a polyethylene foam can be obtained that maintains the good melt-kneading properties of low-density polyethylene (A) and has high performance, particularly high tensile elongation at break.

ここにいう融点とは示差走査型熱量計(DSC)
によつて測定された一旦融解再結晶後(第2段)
の融解の吸収ピークを示す温度である。密度はA
STM D1505で規定された密度勾配管法で測定
される。
The melting point referred to here is a differential scanning calorimeter (DSC).
After melting and recrystallization (second stage) measured by
This is the temperature at which the absorption peak of melting occurs. Density is A
Measured using the density gradient tube method specified in STM D1505.

低密度ポリエチレン(A)とポリエチレン(B)の合計
量100部に対して他の樹脂たとえば高密度ポリエ
チレン、ポリプロプレン、エチレン酢酸ビニルコ
ポリマ、ポリブタジエンなどが30部以下、本発明
の効果を損わない範囲で混合されても差し支えな
い。
If the amount of other resins such as high density polyethylene, polypropylene, ethylene vinyl acetate copolymer, polybutadiene, etc. is 30 parts or less per 100 parts of the total amount of low density polyethylene (A) and polyethylene (B), the effect of the present invention is not impaired. There is no problem even if they are mixed within a range.

本発明で用いる加熱によりガスを発生する発泡
剤は、分解温度がポリエチレン(B)の融点よりも高
いものが用いられ、アゾジカルボンアミド、ヒド
ラゾジカルボンアミド、アゾジカルボン酸バリウ
ム塩、ジニトロソペンタメチレンテトラミン、ニ
トログアニジン、P,P′−オキシビスベンゼンス
ルホニルセミカルバジドなどが単独もしくは混合
されて用いられるが、これらに限定されるもので
はない。
The blowing agents that generate gas when heated are those whose decomposition temperature is higher than the melting point of polyethylene (B), such as azodicarbonamide, hydrazodicarbonamide, barium azodicarboxylate salt, dinitrosopentamethylene, etc. Tetramine, nitroguanidine, P,P'-oxybisbenzenesulfonyl semicarbazide, and the like may be used alone or in combination, but are not limited to these.

架橋方法は、放射線架橋法によつて行う。 The crosslinking method is carried out by a radiation crosslinking method.

放射線架橋の場合は、成形されたシートに電離
性放射線たとえば電子線、β線、γ線などを照射
する方法、紫外線増感剤たとえばベンゾフエノン
をあらかじめ混合しておいて紫外線を照射する方
法が採用される。
In the case of radiation crosslinking, a method is used in which the formed sheet is irradiated with ionizing radiation such as electron beams, β rays, or γ rays, or a method in which an ultraviolet sensitizer such as benzophenone is mixed in advance and irradiated with ultraviolet rays. Ru.

電離性放射線によつて架橋させる場合、低密度
ポリエチレン(A)、ポリエチレン(B)の合計量100部
に対し0.1〜10部の架橋促進剤を添加してもよく、
特に次のような多官能性化合物が適する。
When crosslinking is carried out by ionizing radiation, 0.1 to 10 parts of a crosslinking accelerator may be added to 100 parts of the total amount of low density polyethylene (A) and polyethylene (B),
In particular, the following polyfunctional compounds are suitable.

すなわち、ジビニルベンゼン、ジアリルベンゼ
ン、ジビニルナフタレン、ジビニルビフエニル、
ジビニルカルバゾール、ジビニルピリジンおよび
これらの核置換化合物や近縁同族体、エチレング
リコールジメタクリレート、ヒドロキシノンジメ
タクリレートなどの芳香族多価アルコールのポリ
アクリレートやポリメタクリレート、ジビニルフ
タレート、ジアリルフタレート、ジアリルマレー
ト、ビスアクリロイルオキシエチルテレフタレー
トなどの脂肪族および芳香族多価カルボン酸のポ
リビニルエステル、ポリアリルエステル、ポリア
クリロイルオキシアルキルエステル、ポリメタク
リロイルオキシアルキルエステル、ジエチレング
リコールジビニルエーテル、ヒドロキシノンビニ
ルエーテル、ビスフエノールAジアリルエーテル
などの脂肪族および芳香族多価アルコールのポリ
ビニルエーテルやポリアリルエーテル、トリアリ
ルシアヌレート、トリアリルホスフエート、トリ
スアクリロリルオキシエチルホスフエートおよび
ポリブタジエンのような不飽和結合を有する重合
体も適用できる。
That is, divinylbenzene, diallylbenzene, divinylnaphthalene, divinylbiphenyl,
Divinylcarbazole, divinylpyridine and their nuclear substituted compounds and close analogs, polyacrylates and polymethacrylates of aromatic polyhydric alcohols such as ethylene glycol dimethacrylate, hydroxy nondimethacrylate, divinyl phthalate, diallyl phthalate, diallyl maleate, bis Polyvinyl esters of aliphatic and aromatic polycarboxylic acids such as acryloyloxyethyl terephthalate, polyallyl esters, polyacryloyloxyalkyl esters, polymethacryloyloxyalkyl esters, diethylene glycol divinyl ether, hydroxy nonvinyl ether, bisphenol A diallyl ether, etc. Polymers having unsaturated bonds such as polyvinyl ethers and polyallyl ethers of aliphatic and aromatic polyhydric alcohols, triallyl cyanurate, triallyl phosphate, trisacrylolyloxyethyl phosphate and polybutadiene are also applicable.

なお、本発明で用いるポリエチレン(B)は特に次
のようなものを用いることによつてさらに優れた
効果を示す。
In addition, the polyethylene (B) used in the present invention exhibits even more excellent effects when the following polyethylenes are used.

すなわち、メルトフローレート(ASTM
D1238Eが0.1ないし50g/10min、密度(ASTM
D1505)が好ましくは0.915ないし0.935g/cm3
融点が好ましくは115ないし127℃および分子量分
布(重量平均分子量/数平均分子量の値)が6以
下のエチレンと炭素数4ないし20、好ましくは炭
素数5ないし20のα−オレフインとからなるポリ
エチレン(B)である。
That is, the melt flow rate (ASTM
D1238E is 0.1 to 50g/10min, density (ASTM
D1505) is preferably 0.915 to 0.935 g/cm 3 ,
A polyethylene (polyethylene ( B).

上記ポリエチレン(B)の代わりにエチレン・プロ
ピレン共重合体を用いても発泡体の引張破断強度
及び引張破断伸度の改良効果は小さい。
Even if an ethylene-propylene copolymer is used in place of the above-mentioned polyethylene (B), the effect of improving the tensile strength at break and tensile elongation at break of the foam is small.

ポリエチレン(B)のメルトフローレートは0.1な
いし50g/10minである。0.1g/10min未満のも
のは溶解粘度が高く、50g/10minを超えるもの
は溶解粘度が低いので発泡剤及び低密度ポリエチ
レン(A)と混合後、予備成形する場合の成形性を損
う恐れがある。密度が0.915g/cm3未満のものは
得られた発泡体の表面をべたつき易くする恐れが
あり、0.935g/cm3を越えるものは発泡体の引張
破断伸度を改良する効果が小さい。融点が115℃
未満のものは発泡体の引張破断強度の改良効果が
少なく、また127℃を越えるものは発泡剤及び低
密度ポリエチレン(A)と混合して成形する場合の成
形温度を高くする必要があることから架橋前に発
泡する恐れがあるので好ましくない。分子量分布
(重量平均分子量/数平均分子量の値)が6を越
えるものは発泡体の引張破断伸度の改良効果が小
さい。
The melt flow rate of polyethylene (B) is 0.1 to 50 g/10 min. If it is less than 0.1g/10min, the melt viscosity is high, and if it is more than 50g/10min, the melt viscosity is low, so there is a risk of impairing the moldability when preforming after mixing with the blowing agent and low density polyethylene (A). be. If the density is less than 0.915 g/cm 3 , the surface of the obtained foam may become sticky, and if it exceeds 0.935 g/cm 3 , the effect of improving the tensile elongation at break of the foam is small. Melting point is 115℃
If the temperature is less than 127°C, the effect of improving the tensile strength at break of the foam will be small, and if it exceeds 127°C, it will be necessary to increase the molding temperature when molding by mixing with a foaming agent and low density polyethylene (A). This is not preferred because there is a risk of foaming before crosslinking. When the molecular weight distribution (value of weight average molecular weight/number average molecular weight) exceeds 6, the effect of improving the tensile elongation at break of the foam is small.

本発明に用いるポリエチレン(B)の構成成分であ
る炭素数4ないし20のα−オレフインとしては例
えば1−ブテン、1−ペンテン、1−ヘキセン、
3,3−ジメチル−1−ブテン、4−メチル−1
−ペンテン、4,4−ジメチル−1−ペンテン、
1−オクテン、1−デセン、1−ドデゼン、1−
テトラデセン、1−オクタデセンなどから選ばれ
る1種又は2種以上のものを挙げることができ
る。尚これらα−オレフインを構成成分とする限
り少量のプロピレン成分が含有されてもよいが、
その場合にはα−オレフインの含有量よりもかな
り少なくする必要がある。ポリエチレン(B)全体の
密度が前記範囲のものとなるためには、α−オレ
フインの種類によつても異なるが、エチレンが88
ないし97重量%程度含有されていればよい。
Examples of the α-olefin having 4 to 20 carbon atoms, which is a component of the polyethylene (B) used in the present invention, include 1-butene, 1-pentene, 1-hexene,
3,3-dimethyl-1-butene, 4-methyl-1
-pentene, 4,4-dimethyl-1-pentene,
1-octene, 1-decene, 1-dodezene, 1-
One or more types selected from tetradecene, 1-octadecene, etc. can be mentioned. A small amount of propylene component may be contained as long as these α-olefins are used as constituent components, but
In that case, the content needs to be much lower than the α-olefin content. In order for the density of the entire polyethylene (B) to be within the above range, it is necessary for ethylene to be 88
It is sufficient that the content is between about 97% and 97% by weight.

本発明で用いる前記性状のポリエチレン(B)は遷
移金属触媒を用いるいわゆる中・低圧法によつて
エチレンとα−オレフインとを所要密度となるよ
うな割合で重合させることによつて得られる。そ
の際所望のメルトフローレートのものを得るには
水素の如き分子量調節剤を用いればよい。重合は
スリラー重合、気相重合、高温溶解重合などの
種々の方法によつて行ないうる。
The polyethylene (B) having the above-mentioned properties used in the present invention can be obtained by polymerizing ethylene and α-olefin in a ratio that provides the required density by a so-called medium-low pressure method using a transition metal catalyst. In this case, a molecular weight regulator such as hydrogen may be used to obtain the desired melt flow rate. Polymerization can be carried out by various methods such as thriller polymerization, gas phase polymerization, and high temperature solution polymerization.

前記ポリエチレン(B)の融点は示差走査型熱量計
(DSC)を用い、試量を200℃で5分間溶融後20
℃/minの速度で室温迄冷却結晶化させ、室温に
1分間保つた後、10℃/minの昇温速度で吸熱曲
線を測定した場合のピーク温度である。本発明に
用いるポリエチレン(B)は吸熱ピークが1個のみで
もまた、あるいは複数個検出されるものでもよい
が、後者の場合は最高ピーク温度を融点とする。
The melting point of the polyethylene (B) was determined using a differential scanning calorimeter (DSC), after melting a sample amount at 200℃ for 5 minutes.
This is the peak temperature when the endothermic curve is measured at a heating rate of 10°C/min after cooling to room temperature for crystallization at a rate of 10°C/min and keeping at room temperature for 1 minute. The polyethylene (B) used in the present invention may have only one endothermic peak or may have a plurality of endothermic peaks; in the latter case, the highest peak temperature is taken as the melting point.

また、平均分子量(重量平均分子量/数平均分
子量)はケルパーミエーシヨンクロマトグラフ
〔測定装置:ウオータースアソシエイツ社(米国)
製Model150C−LC/GPC、カラム:東洋曹達(株)
製GMH−6(103〜107Åミツクスゲル)、溶媒:
o−ジクロルベンゼン、測定温度:135℃〕を用
いて分子量分布曲線を求め、ポリエチレンをスタ
ンダードしたユニバーサルキヤリブレーシヨン法
により重量平均分子量(以下wと略す)と数平
均分子量(以下oと略す)を算出することによ
り求めた。
In addition, the average molecular weight (weight average molecular weight/number average molecular weight) is measured using a Kölper permeation chromatograph [measuring device: Waters Associates (USA)].
Model 150C-LC/GPC, column: Toyo Soda Co., Ltd.
GMH-6 (10 3 - 10 7 Å mix gel), solvent:
o-dichlorobenzene, measurement temperature: 135°C], and the weight average molecular weight (hereinafter abbreviated as w ) and number average molecular weight (hereinafter abbreviated as o ) using the universal calibration method using polyethylene as the standard. It was obtained by calculating.

本発明の発泡体の製造方法について説明する。 The method for manufacturing the foam of the present invention will be explained.

まず、低密度ポリエチレン(A)、ポリエチレン
(B)、発泡剤および必要なら架橋促進剤その他の添
加剤を混合機で均一に混合し、該混合物を押出機
に供給し、発泡剤が分解せぬように溶融混練し
て、任意の形状好ましくはシート状に成形する。
次に該成形品に電離性放射線を照射し。ポリエチ
レンを架橋せしめる。次に該発泡性成形物を発泡
機中で発泡剤の分解温度以上に加熱して発泡さ
せ、発泡機から取り出して冷却する。
First, low-density polyethylene (A), polyethylene
(B), the blowing agent and, if necessary, a crosslinking accelerator and other additives are mixed uniformly in a mixer, the mixture is fed to an extruder, and the mixture is melt-kneaded without decomposition of the blowing agent to form a desired shape. Preferably, it is formed into a sheet.
Next, the molded article is irradiated with ionizing radiation. Crosslink polyethylene. Next, the foamable molded product is heated in a foaming machine to a temperature higher than the decomposition temperature of the foaming agent to cause foaming, and then taken out from the foaming machine and cooled.

本発明は上記したごとく、低密度ポリエチレン
(A)とポリエチレン(B)を混合し、これを架橋発泡せ
しめるポリエチレン発泡体の製造方法としたの
で、製造された発泡体は次のごとき優れた効果を
示す。
As mentioned above, the present invention is based on low density polyethylene.
Since the method for producing polyethylene foam was to mix (A) and polyethylene (B) and crosslink and foam the mixture, the produced foam exhibits the following excellent effects.

(1) 発泡体は広範囲の発泡倍率について極めて優
れた引張破断伸度を有するものである。したが
つて、従来のポリエチレン発泡体に比べて優れ
た常温加工性と耐衝撃特性を示す。
(1) The foam has extremely excellent tensile elongation at break over a wide range of expansion ratios. Therefore, it exhibits superior room temperature processability and impact resistance properties compared to conventional polyethylene foams.

(2) 真空成形機を用いて、直径D、深さHの垂直
カツプ状の型で、最適加熱条件において加熱
し、ストレート成形したとき、発泡体が破れる
ことなくカツプ状に伸長される限界のH/Dを
求めると、次の式を満足するようなものが得ら
れる。ただし、カツプのDは50mmで一定とす
る。
(2) When a vertical cup-shaped mold with a diameter D and a depth H is heated and straight-formed using a vacuum forming machine under optimal heating conditions, the limit at which the foam can be stretched into a cup shape without tearing is reached. When H/D is determined, one that satisfies the following equation is obtained. However, the D of the cup is constant at 50mm.

H/D>6d+0.30,0.02<d≦0.06 H/D>4d+0.42,0.06<d<0.15 ただし、d:みかけ密度(g/cm3)0.02<d
<0.15 たとえば、上記の式によれば、40倍発泡品
(密度0.025g/cm3)のH/Dは0.45以上、30倍
発泡品(密度0.033g/cm3)のH/Dは0.5以
上、10倍発泡品(密度0.1g/cm3)のH/Dは
0.82以上となり、このような性能は本発明によ
つてはじめて達成できたものであり、優れた真
空成形性を示す。
H/D>6d+0.30,0.02<d≦0.06 H/D>4d+0.42,0.06<d<0.15 where d: apparent density (g/cm 3 )0.02<d
<0.15 For example, according to the above formula, the H/D of a 40 times foamed product (density 0.025 g/cm 3 ) is 0.45 or more, and the H/D of a 30 times foamed product (density 0.033 g/cm 3 ) is 0.5 or more. , H/D of 10 times foamed product (density 0.1g/cm 3 ) is
0.82 or more, such performance was achieved for the first time by the present invention, and exhibits excellent vacuum formability.

以下、実施例に基づいて本発明の一実施例様を
説明する。
Hereinafter, one embodiment of the present invention will be described based on examples.

実施例 1 融点109℃、密度0.923g/cm3、メルトフローレ
ート3.7g/10minの低密度ポリエチレン(A)80部、
融点122℃、密度0.922g/cm3、メルトフローレー
ト2.5g/10minヘキセンを9%共重合したポリ
エチレン(B)を20部、発泡剤としてアゾジカルボン
アミド12部、架橋促進剤としてエチレングリコー
ルジメタクリレート3部を40mmφ押出機で160℃
で混練し、厚さ2.5mmのシート状に成形した。こ
のシートに加速電圧750kVの電子線を吸収線量が
6Mradになるように照射し、該シートを220℃の
シリコーン浴中に浸漬し、発泡剤がほぼ完全に分
解するまで加熱して発泡させた。
Example 1 80 parts of low density polyethylene (A) with a melting point of 109°C, a density of 0.923 g/cm 3 and a melt flow rate of 3.7 g/10 min,
Melting point 122℃, density 0.922g/cm 3 , melt flow rate 2.5g/10min 20 parts of polyethylene (B) copolymerized with 9% hexene, 12 parts of azodicarbonamide as a blowing agent, ethylene glycol dimethacrylate as a crosslinking accelerator. 3 parts at 160℃ using a 40mmφ extruder
The mixture was kneaded and formed into a sheet with a thickness of 2.5 mm. This sheet absorbs an electron beam with an accelerating voltage of 750kV.
The sheet was irradiated to 6 Mrad, immersed in a silicone bath at 220° C., and heated until the foaming agent was almost completely decomposed to cause foaming.

得られた発泡体をシリコーン浴中から取り出
し、アセトンおよび水で洗浄後乾燥させた。得ら
れた発泡体は、みかけは密度0.035g/cm3、長さ
の方向の引張破断伸度250%、巾方向の引張破断
伸度220%、真空成形テストによるH/D0.65で
あつた。
The resulting foam was removed from the silicone bath, washed with acetone and water, and then dried. The obtained foam had an apparent density of 0.035 g/cm 3 , a tensile elongation at break in the length direction of 250%, a tensile elongation at break in the width direction of 220%, and an H/D of 0.65 in the vacuum forming test. .

比較例 1 実施例1において、ポリエチレン(B)を用いず、
低密度ポリエチレン(A)を100部用いて、同一条件
で発泡体を製造した。
Comparative Example 1 In Example 1, polyethylene (B) was not used,
A foam was produced under the same conditions using 100 parts of low density polyethylene (A).

得られた発泡体は、みかけ密度0.034g/cm3
長さ方向の引張破断伸度190%、巾方向の引張破
断伸度150%、真空成形テストによるH/D0.46
にすぎなかつた。
The obtained foam had an apparent density of 0.034 g/cm 3 ,
Tensile elongation at break in length direction: 190%, tensile elongation at break in width direction: 150%, H/D0.46 by vacuum forming test
It was nothing more than a simple thing.

実施例 2 融点110℃、密度0.926g/cm3、メルトフローレ
ート21g/10minの低密度ポリエチレン(A)を20
部、融点109℃、密度0.923g/cm3、メルトフロー
レート3.7g/10min低密度ポリエチレン(A′)
を40部、融点125℃、密度0.929g/cm3、メルトフ
ローレート2.3g/10min、ヘキセンを6%共重
合したポリエチレン(B)を40部、発泡剤アゾジカル
ボンアミド17部、架橋促進剤ジビニルベンゼン3
部を実施例1と同様な方法で押出成形し、電子線
を吸収線量4Mradになるように照射し、実施例
1と同様な方法で発泡した。
Example 2 20% of low density polyethylene (A) with a melting point of 110°C, a density of 0.926g/cm 3 and a melt flow rate of 21g/10min
, melting point 109℃, density 0.923g/cm 3 , melt flow rate 3.7g/10min low density polyethylene (A')
40 parts, melting point 125℃, density 0.929g/cm 3 , melt flow rate 2.3g/10min, 40 parts polyethylene (B) copolymerized with 6% hexene, 17 parts azodicarbonamide blowing agent, divinyl crosslinking accelerator benzene 3
The sample was extruded in the same manner as in Example 1, irradiated with an electron beam at an absorbed dose of 4 Mrad, and foamed in the same manner as in Example 1.

得られた発泡体は、みかけ密度0.026g/cm3
長さ方向の引張破断伸度250%、巾方向の引張破
断伸度210%、真空成形テストによるH/Dは
0.05であつた。
The obtained foam had an apparent density of 0.026 g/cm 3 ,
The tensile elongation at break in the length direction is 250%, the tensile elongation at break in the width direction is 210%, and the H/D according to the vacuum forming test is
It was 0.05.

比較例 2 実施例2において、ポリエチレン(B)を用いず、
(A)を33部、(A′)を67部用いて、実施例2と同一
条件で発泡体をつくつた。
Comparative Example 2 In Example 2, polyethylene (B) was not used,
A foam was produced under the same conditions as in Example 2 using 33 parts of (A) and 67 parts of (A').

得られた低密度ポリエチレン発泡体は、みかけ
密度0.025g/cm3、長さ方向の引張破断伸度140
%、巾方向の引張破断伸度110%、真空成形テス
トによるH/Dは0.42にすぎなかつた。
The obtained low-density polyethylene foam has an apparent density of 0.025 g/cm 3 and a tensile elongation at break in the longitudinal direction of 140.
%, the tensile elongation at break in the width direction was 110%, and the H/D in the vacuum forming test was only 0.42.

比較例 3 実施例3において、ポリエチレン(B)を用いず、
低密度ポリエチレン(A)のみ100部用いて実施例3
と同様な方法で発泡体を作成した。
Comparative Example 3 In Example 3, polyethylene (B) was not used,
Example 3 using only 100 parts of low density polyethylene (A)
A foam was made in a similar manner.

得られた発泡体はみかけ密度0.083g/cm3、引
張破断伸度180%、真空成形テストによるH/
D0.60にすぎなかつた。
The obtained foam had an apparent density of 0.083 g/cm 3 , a tensile elongation at break of 180%, and an H/
It was only D0.60.

Claims (1)

【特許請求の範囲】[Claims] 1 融点115℃未満、密度0.935g/cm3以下の低密
度ポリエチレン(A)50部超過80部以下、および共重
合成分として炭素数4〜20のα−オレフインを共
重合したポリエチレンであつて融点115℃〜130
℃、密度0.940g/cm3以下、メルトフローレート
0.1〜50g/10min、分子量分布6以下のポリエ
チレン(B)50部未満20部以上を樹脂主成分とし、こ
れに加熱によりガスを発生する発泡剤を添加して
発泡剤の分解温度よりも低い温度で溶融混練し成
形後、該成形物を放射線架橋法により架橋せし
め、ついで発泡剤の分解温度以上に加熱して発泡
せしめることを特徴とするポリエチレン発泡体の
製造法。
1 Polyethylene copolymerized with more than 50 parts but not more than 80 parts of low-density polyethylene (A) with a melting point of less than 115°C and a density of 0.935 g/cm 3 or less, and an α-olefin having 4 to 20 carbon atoms as a copolymerization component, which has a melting point 115℃~130
°C, density 0.940g/ cm3 or less, melt flow rate
0.1 to 50g/10min, less than 50 parts of polyethylene (B) with a molecular weight distribution of 6 or less The main component is 20 parts or more, and a blowing agent that generates gas when heated is added to this to a temperature lower than the decomposition temperature of the blowing agent. 1. A method for producing a polyethylene foam, which comprises melt-kneading and molding the molded product, crosslinking the molded product using a radiation crosslinking method, and then foaming the product by heating it to a temperature higher than the decomposition temperature of a foaming agent.
JP8569881A 1981-06-05 1981-06-05 Preparation of foamed polyethylene Granted JPS57202326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8569881A JPS57202326A (en) 1981-06-05 1981-06-05 Preparation of foamed polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8569881A JPS57202326A (en) 1981-06-05 1981-06-05 Preparation of foamed polyethylene

Publications (2)

Publication Number Publication Date
JPS57202326A JPS57202326A (en) 1982-12-11
JPH0257577B2 true JPH0257577B2 (en) 1990-12-05

Family

ID=13866043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8569881A Granted JPS57202326A (en) 1981-06-05 1981-06-05 Preparation of foamed polyethylene

Country Status (1)

Country Link
JP (1) JPS57202326A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853929A (en) * 1981-09-28 1983-03-30 Sekisui Chem Co Ltd Crosslinked polyethylene resin foam
JPS59135236A (en) * 1983-01-21 1984-08-03 Sekisui Chem Co Ltd Crosslinked synthetic resin foam
JPS60188430A (en) * 1984-03-08 1985-09-25 Sekisui Chem Co Ltd Crosslinked polyethylene foam for folded plate
JPS63501220A (en) * 1985-07-02 1988-05-12 ビーピー ケミカルズ フォームズ ビジネス エスエイ Linear low density polyethylene foam and its manufacturing method
JPS62149737A (en) * 1985-12-25 1987-07-03 Toray Ind Inc Electron beam-crosslinked polyolefin resin foam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144469A (en) * 1978-05-02 1979-11-10 Asahi Chem Ind Co Ltd Production of crosslinked and formed article of ethylene resin
JPS56155232A (en) * 1980-05-02 1981-12-01 Nippon Oil Co Ltd Blowing composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144469A (en) * 1978-05-02 1979-11-10 Asahi Chem Ind Co Ltd Production of crosslinked and formed article of ethylene resin
JPS56155232A (en) * 1980-05-02 1981-12-01 Nippon Oil Co Ltd Blowing composition

Also Published As

Publication number Publication date
JPS57202326A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
EP0738294B1 (en) Process for making cross-linked ethylenic polymer foam structures
US5288762A (en) Cross-linked ethylenic polymer foam structures and process for making
JPS5975929A (en) Production of polyolefin foam
JPS6236435A (en) Crosslinked vinyl chloride resin foam excellent in heat resistance
JPH0257577B2 (en)
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JPH0257576B2 (en)
JP2663559B2 (en) Radiation-crosslinked polyolefin resin foam and method for producing the same
JPH03103449A (en) Foamed low-density polyethylene resin and production thereof
JPS612741A (en) Manufacture of polypropylene resin expanded beads
JP2663598B2 (en) Method for producing polyolefin resin foam
JP4325020B2 (en) Polyolefin resin composition for cross-linked foam, cross-linked polyolefin resin foam and method for producing the same
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JP3257897B2 (en) Expandable polyolefin resin composition and crosslinked polyolefin resin foam
JPH11279315A (en) Polyolefinic resin foamed body and preparation thereof
JPH05214143A (en) Polypropylene-based resin crosslinked foam
JP2000351865A (en) Polyolefin resin composition for crosslinking and foaming, and crosslinked foam prepared therefrom
JP3565791B2 (en) Method for producing heat-resistant polyethylene foam
JP2003002999A (en) Polyolefin resin foam
JPH0257578B2 (en)
JPS61188431A (en) Crosslinked polyethylene resin foam of high expansion ratio
JPH0625275B2 (en) High-performance crosslinked polyethylene resin foam
JP4291613B2 (en) Cross-linked polyolefin resin foam
JPH07113018A (en) Production of crosslinked foamed product of polyolefin resin
JPH04248847A (en) Foaming polyolefin-based rein composition