JP3565791B2 - Method for producing heat-resistant polyethylene foam - Google Patents

Method for producing heat-resistant polyethylene foam Download PDF

Info

Publication number
JP3565791B2
JP3565791B2 JP2001121831A JP2001121831A JP3565791B2 JP 3565791 B2 JP3565791 B2 JP 3565791B2 JP 2001121831 A JP2001121831 A JP 2001121831A JP 2001121831 A JP2001121831 A JP 2001121831A JP 3565791 B2 JP3565791 B2 JP 3565791B2
Authority
JP
Japan
Prior art keywords
foam
heating
foaming
weight
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001121831A
Other languages
Japanese (ja)
Other versions
JP2002317068A (en
Inventor
智良 柴田
善雄 宮野
和良 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Kako Co Ltd
Original Assignee
Sanwa Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Kako Co Ltd filed Critical Sanwa Kako Co Ltd
Priority to JP2001121831A priority Critical patent/JP3565791B2/en
Publication of JP2002317068A publication Critical patent/JP2002317068A/en
Application granted granted Critical
Publication of JP3565791B2 publication Critical patent/JP3565791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れるポリエチレン系発泡体の製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレン系発泡体は、その優れた断熱性、クッション性、耐薬品性、耐候性等の特性を生かして、包装材、土木建築資材、断熱材料、結露防止材、スポーツ用品、雑貨等広範な用途に使用されている。しかし、ポリエチレン系樹脂は、耐熱性に劣るため、耐熱性を求められる用途には、使用できなかった。
【0003】
ポリエチレン系発泡体の耐熱性を向上する為に、(1)発泡プラスチックに、気相の、アセチレン系化合物、アレン系化合物から選ばれる連鎖架橋剤、または架橋型高分子に属するビニル系重合体の単量体、もしくは、前記連鎖架橋剤と架橋型、崩壊型高分子に属するビニル系重合体の単量体との混合体の存在下に電離性放射線を照射する耐熱化方法(特公昭49−28902号公報)、(2)発泡処理後の熱可塑性樹脂発泡体に電離性放射線又は紫外光、可視光等を照射し、架橋化することにより、耐熱性を向上させることを特徴とする改質方法(特開昭48−43059号公報)、(3)無架橋ポリエチレン系フォームにイオン化放射線照射を行い、ゲル分率を3〜80%になるように架橋させる易成形性架橋ポリエチエレン系フォームの製造方法(特開昭54−102367号公報)、(4)架橋ポリオレフィン発泡体に電離性放射線を照射する非熱収縮性架橋ポリオレフィン発泡体の製造方法(特開昭56−14539号公報)が提案されている。
【0004】
その後、本出願人は、ポリエチレン系連続気泡体に電離性放射線を照射する改質方法を提案した(特開平2−22345号公報)。
【0005】
しかし、上記先行技術は、市販のポリエチレン系フォームを使用しており、発泡剤に関して具体的に開示されておらず、また、十分な耐熱性を得ることが出来なかった。特公昭49−28902号公報に記載の特定の気相の存在下に電子線を照射することは、研究室でのみ可能な方法であり、工業的には到底実施できるものではなかった。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、前記従来技術の欠点を解消し、耐熱性に優れたポリエチレン系発泡体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の耐熱性ポリエチレン系発泡体の製造方法は、ポリエチレン系樹脂に、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を添加した発泡性組成物を整形する工程、整形した発泡性組成物を常圧下で加熱発泡して発泡体を成形する工程、該発泡体に電子線を照射して耐熱性を付与する工程とから成ることを特徴とする耐熱性ポリエチレン系発泡体の製造方法である。
【0008】
本発明において、ポリエチレン系樹脂100重量部に対し、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を1〜40重量部添加することが好ましい。4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を40重量部超添加すると、発泡圧が強すぎてガス抜けを起こす。
【0009】
本発明の整形工程は、組成物の形を整えて最終製品の表面を平滑にすれば良く、その方法は特に限定されないが、例えば、加圧下密閉金型中での加熱、押出機による押出しが、作業性の面で好ましい。
【0010】
本発明の常圧下での加熱発泡において、粉末物質を敷いたプレート上に発泡性シートを載置することが、発泡をスムーズに行わせることが出来て好ましい。
【0011】
本発明は、発泡剤として4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を使用した発泡体に電子線を照射することにより、他の発泡剤を使用した発泡体の照射後に較べて、耐熱性が顕著に改善されると共に自己消火性を有することに着目したものである。
【0012】
本発明において、ポリエチレン系樹脂としては、メタロセン化合物を重合触媒として得られたポリエチレン系樹脂、高圧法低密度ポリエチレン、エチレン酢酸ビニル共重合体等が好適に使用できる。
【0013】
【発明の実施の形態】
以下、本発明に係る発泡体の製造方法についてその好適な態様を具体的に説明する。
まず、ポリエチレン系樹脂100重量部に、発泡剤として4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を、好ましくは、1〜40重量部、及び必要に応じて充填剤、顔料等を添加し、これを加熱したミキシングロール、加圧式ニーダー、押出機等によって練和する。
【0014】
本発明においては、使用する組成物の物性の改良、核形成剤としての作用(気泡の均一化、微細化)、脱泡性の向上、あるいは価格の低下を目的として、発泡剤の分解反応に著しい悪影響を与えず、且つ、樹脂を架橋結合しない添加剤(充填剤)、例えば酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化ケイ素等の金属酸化物、炭酸マグネシウム、炭酸カルシウム等の炭酸塩、あるいはパルプ等の繊維物質、または各種染料、顔料並びに蛍光物質、その他常用のゴム配合剤等を必要に応じて添加することができる。
【0015】
上記のように練和して得られた発泡性組成物を金型に仕込み、プレスにて加圧下で樹脂の融点以上に加熱して整形する。この加熱整形は、所望の形状に整形する工程であり、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)は実質的には、分解しない。この加熱整形工程において、非常に微量の発泡剤が初期分解を生じ、整形品を金型から取り出した場合に2倍程度まで膨張しうるが、これは発泡という概念からは程遠く、本発明にとって何ら差し支えない。この整形工程は、押出機又はカレンダーロールにかけて整形してもよい。
【0016】
上記のようにして整形された発泡性組成物は、次いで、常圧下にて加熱することによって、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を分解する。常圧下での加熱の方法としては、例えば、熱風恒温槽、金属板外表面にヒーターを密着させて加熱するか、あるいは金属板に熱媒の流路を設け、ジャケット方式で蒸気、加熱オイル等によって加熱する方法、オイルバス、メタルバス、ソルトバス等の熱浴がある。
【0017】
加熱温度は、使用する樹脂の種類に応じて好ましくは140〜180℃、特に好ましくは145〜175℃の範囲に設定する。加熱時間は、好ましくは5〜60分、さらに好ましくは10〜50分である。4,4’―オキシビス(ベンゼンスルホニルヒドラジド)の分解残渣は、高温下長時間で黒変する為、この発泡条件の範囲より高温、長時間では、得られる気泡体が黒変してしまう。
【0018】
上記の様な方法によって製造された連続気泡体に電離性放射線を照射させる。電離性放射線としては、α線、β線、γ線、X線、加速化された陽子線、電子線、中性子線等があり、一般的には高エネルギー電子線照射機が使用される。例えば、該気泡体に好ましくは0〜50℃で1〜2x10rad/秒の線量率で1〜50Mradの線量を照射することにより、該気泡体の耐熱性を向上せしめる。
【0019】
【実施例】
以下、実施例を示して本発明を更に具体的に説明するが、本発明は下記実施例により何等限定されるものではない。
【0020】
実施例1
メタロセン触媒を用いて重合されたポリエチレン系樹脂(商品名:カーネルKS240,密度(D):0.880g/cm 、MFR: 2.2g/10分、融点:60℃、日本ポリケム株式会社製)100重量部に4,4’―オキシビス(ベンゼンスルホニルヒドラジド)(商品名:ネオセルボン N#5000、分解温度159℃、永和化成工業株式会社製)10重量部から成る組成物を85℃のミキシングロールにて練和して得られた組成物を、110℃に加熱されたプレス内の金型(5x200x200mm)に充填し、上記温度で2分間密閉して加熱し、発泡性シートを整形した。
【0021】
次いで、得られた発泡性シートを、タルク粉末を薄く敷いた金属プレート上に置き、160℃の循環式エアーオーブン中で20分間加熱して発泡体を得た。得られた発泡体をコンベアの上の載置し、室温でコッククロフトウォルトン型加速器により、800keV、16mA、線量率4.6x10rad/秒の電子線を10Mradを2回照射した。
【0022】
得られた発泡体は、サイズ:11x470x470mm、見掛け密度0.073g/cm 、エアーオーブン中、100℃で15分間加熱したときの収縮率は0%、160℃で22時間加熱した後の収縮率はー4%で、先行技術である特公昭49−28902号公報の表1に記載の窒素雰囲気中での照射後の100℃、15分間加熱したときの収縮率32%より顕著に少なく、耐熱性に優れていた。
【0023】
実施例2
実施例1において、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を20重量部に変えた以外は、実施例1と同じ配合及び同じ条件で発泡、電子線を照射し、耐熱性の発泡体を得た。
得られた発泡体は、サイズ:12x550x550mm、見掛け密度0.049g/cm 、実施例1と同じ方法で収縮率を測定した結果、100℃、15分間加熱後の収縮率はー1%、160℃、22時間加熱後の収縮率はー4%であり、耐熱性に優れていた。
【0024】
実施例3
実施例1において、樹脂を高圧法低密度ポリエチレン(商品名:ノバテック LD LE425,密度0.923g/cm,MFR 2.0g/10分、日本ポリケム株式会社製)100重量部に変えた以外は、実施例1と同じ配合及び同じ発泡条件で発泡、電子線を照射し、耐熱性発泡体を得た。
得られた発泡体は、サイズ:14x400x400mm、見掛け密度0.072g/cm 、実施例1と同じ方法で収縮率を測定した結果、100℃、15分間加熱後の収縮率はー1%、160℃、22時間加熱後の収縮率はー5%であり、耐熱性に優れていた。
【0025】
実施例4
実施例1において、樹脂をエチレン酢酸ビニル共重合体(商品名:ノバテックEVA LV540、密度0.942g/cm3,MFR2.5g/10分、酢酸ビニル含有量20wt%)100重量部に変えた以外は、実施例1と同じ配合及び同じ発泡条件で、発泡、電子線を照射し、発泡体を得た。
得られた発泡体は、サイズ:20x360x360mm、見掛け密度0.075g/cm 、100℃、15分間加熱後の収縮率はー1%、160℃、22時間加熱後の収縮率はー3%であり、耐熱性に優れていた。
【0026】
実施例5
実施例1で得られた組成物をスクリュー径40mmの単軸押出機(電気ヒーターの加熱温度100℃)のホッパーに投入し、ダイスより押出して、5x220mmのシートに押出した。得られたシートを5x200x200mmに裁断して、実施例1と同じ条件で常圧発泡、電子線を照射して、実施例1と同じ耐熱性発泡体を得た。
【0027】
比較例1
実施例1において、発泡体に電子線を照射せずに、100℃、15分間加熱後の収縮率は0%、160℃、22時間加熱すると、溶融し、耐熱性が不足していた。
【0028】
比較例2
実施例3において、発泡体に電子線を照射せずに、100℃、15分間加熱後の収縮率は0%、160℃、22時間加熱すると、溶融し、耐熱性が不足していた。
【0029】
比較例3
実施例4において、発泡体の電子線を照射せずに、100℃、15分間加熱後の収縮率は0%、160℃、22時間加熱すると、溶融し、耐熱性が不足していた。
【0030】
比較例4
メタロセン触媒を用いて重合されたポリエチレン系樹脂(前述)100重量部にアゾジカルボンアミド5重量部、亜鉛華1重量部から成る組成物を85℃のミキシングロールにて練和して得られた組成物を、実施例1と同じ条件で発泡体を製造し、電子線を照射した。得られた発泡体は、サイズ:11x320x320mm、見掛け密度0.118g/cm であったが、100℃で15分間加熱したときの収縮率は0.5%、160℃で22時間加熱すると溶融し、耐熱性が不足していた。
【0031】
比較例5
メタロセン触媒を用いて重合されたポリエチレン系樹脂(前述)100重量部に重炭酸ナトリウム10重量部から成る組成物を85℃のミキシングロールにて練和して得られた組成物を、実施例1と同じ条件で発泡体を製造し、電子線を照射した。得られた発泡体は、サイズ:11x320x320mm、見掛け密度0.092g/cm であったが、100℃で15分間加熱したときの収縮率は0.5%、160℃で22時間加熱すると溶融し、耐熱性が不足していた。
【0032】
【表1】

Figure 0003565791
【表2】
Figure 0003565791
【表3】
Figure 0003565791
【0033】
【発明の効果】
上述の様に、本発明によれば、発泡剤として4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を使用して得られたポリエチレン系発泡体に電子線を照射することにより、耐熱性に優れる発泡体を製造することが出来ると共に自己消火性を有しており、自動車の内装材、断熱材、吸音材等として好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyethylene foam having excellent heat resistance.
[0002]
[Prior art]
Polyethylene foams are used in a wide range of applications such as packaging materials, civil engineering and building materials, heat insulating materials, anti-condensation materials, sporting goods, and miscellaneous goods, taking advantage of their excellent properties such as heat insulation, cushioning, chemical resistance, and weather resistance. Used in However, polyethylene resins are inferior in heat resistance and cannot be used for applications requiring heat resistance.
[0003]
In order to improve the heat resistance of the polyethylene foam, (1) the foamed plastic is made of a gaseous acetylene-based compound, a chain cross-linking agent selected from an allene-based compound, or a vinyl-based polymer belonging to a cross-linked polymer. A method for improving heat resistance by irradiating with ionizing radiation in the presence of a monomer or a mixture of the above-mentioned chain crosslinking agent and a monomer of a vinyl polymer belonging to a crosslinkable or collapsible polymer (Japanese Patent Publication No. No. 28902), (2) Modification characterized by improving heat resistance by irradiating ionizing radiation, ultraviolet light, visible light, or the like to the thermoplastic resin foam after foaming treatment to crosslink. Method (JP-A-48-43059), (3) Irradiation of non-crosslinked polyethylene foam with ionizing radiation to crosslink so that the gel fraction becomes 3 to 80%. A production method (JP-A-54-102367) and (4) a method for producing a non-heat-shrinkable cross-linked polyolefin foam by irradiating the cross-linked polyolefin foam with ionizing radiation (JP-A-56-14539) are proposed. Have been.
[0004]
Thereafter, the present applicant has proposed a modification method of irradiating the polyethylene-based open cell with ionizing radiation (Japanese Patent Laid-Open No. 22345/1990).
[0005]
However, the prior art uses a commercially available polyethylene foam, does not specifically disclose a foaming agent, and fails to obtain sufficient heat resistance. Irradiating an electron beam in the presence of a specific gaseous phase described in JP-B-49-28902 is a method that can be performed only in a laboratory, and has never been industrially feasible.
[0006]
[Problems to be solved by the invention]
Accordingly, it is an object of the present invention to provide a method for producing a polyethylene foam excellent in heat resistance, which solves the above-mentioned disadvantages of the prior art.
[0007]
[Means for Solving the Problems]
The method for producing a heat-resistant polyethylene foam of the present invention comprises the steps of: shaping a foamable composition obtained by adding 4,4′-oxybis (benzenesulfonylhydrazide) to a polyethylene resin; A method for producing a heat-resistant polyethylene-based foam, comprising: a step of forming a foam by heating and foaming under pressure; and a step of imparting heat resistance by irradiating the foam with an electron beam.
[0008]
In the present invention, it is preferable to add 1 to 40 parts by weight of 4,4′-oxybis (benzenesulfonyl hydrazide) based on 100 parts by weight of the polyethylene resin. When 4,4'-oxybis (benzenesulfonyl hydrazide) is added in an amount exceeding 40 parts by weight, the foaming pressure is too strong and gas escape occurs.
[0009]
In the shaping step of the present invention, the shape of the composition may be adjusted to smooth the surface of the final product, and the method is not particularly limited.For example, heating in a closed mold under pressure, extrusion by an extruder may be used. It is preferable in terms of workability.
[0010]
In the heat foaming under normal pressure of the present invention, it is preferable to place a foamable sheet on a plate on which a powdery substance is laid because foaming can be performed smoothly.
[0011]
According to the present invention, a foam using 4,4′-oxybis (benzenesulfonylhydrazide) as a foaming agent is irradiated with an electron beam so that the foam has a higher heat resistance than that of a foam using another foaming agent. It focuses on being significantly improved and having self-extinguishing properties.
[0012]
In the present invention, as the polyethylene resin, a polyethylene resin obtained by using a metallocene compound as a polymerization catalyst, a high-pressure low-density polyethylene, an ethylene-vinyl acetate copolymer, or the like can be suitably used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the method for producing a foam according to the present invention will be specifically described.
First, 4,4′-oxybis (benzenesulfonylhydrazide) as a foaming agent, preferably 1 to 40 parts by weight, and if necessary, a filler, a pigment, and the like are added to 100 parts by weight of a polyethylene resin. Is kneaded with a heated mixing roll, a pressure kneader, an extruder or the like.
[0014]
In the present invention, in order to improve the physical properties of the composition to be used, to act as a nucleating agent (uniform and uniform air bubbles), to improve the defoaming property, or to reduce the price, the decomposition reaction of the foaming agent is performed. Additives (fillers) that do not have a significant adverse effect and do not crosslink the resin, for example, metal oxides such as zinc oxide, titanium oxide, calcium oxide, magnesium oxide, and silicon oxide, and carbonates such as magnesium carbonate and calcium carbonate. Alternatively, fiber materials such as pulp, or various dyes, pigments, fluorescent materials, and other commonly used rubber compounding agents can be added as necessary.
[0015]
The foamable composition obtained by kneading as described above is charged into a mold, and is heated to a temperature equal to or higher than the melting point of the resin under pressure by a press to be shaped. This heating shaping is a step of shaping into a desired shape, and 4,4′-oxybis (benzenesulfonylhydrazide) does not substantially decompose. In this heating shaping step, a very small amount of the foaming agent undergoes initial decomposition, and when the shaped article is taken out of the mold, it can expand to about twice, but this is far from the concept of foaming, and is not considered for the present invention. No problem. In this shaping step, shaping may be performed by using an extruder or a calender roll.
[0016]
The foamable composition shaped as described above is then heated under normal pressure to decompose 4,4'-oxybis (benzenesulfonylhydrazide). As a method of heating under normal pressure, for example, a hot air thermostat, a heater is closely attached to the outer surface of a metal plate, or heating is performed, or a flow path of a heat medium is provided in a metal plate, and steam, heating oil, or the like is provided by a jacket method. And a heat bath such as an oil bath, a metal bath, and a salt bath.
[0017]
The heating temperature is preferably set in the range of 140 to 180 ° C, particularly preferably in the range of 145 to 175 ° C, depending on the type of the resin used. The heating time is preferably 5 to 60 minutes, more preferably 10 to 50 minutes. Since the decomposition residue of 4,4'-oxybis (benzenesulfonyl hydrazide) turns black at high temperature for a long time, the foam obtained at a temperature higher than the range of the foaming conditions for a long time turns black.
[0018]
The open cell produced by the above method is irradiated with ionizing radiation. Examples of ionizing radiation include α-rays, β-rays, γ-rays, X-rays, accelerated proton beams, electron beams, neutron beams, and the like. Generally, a high energy electron beam irradiator is used. For example, by irradiating the foam with a dose of 1 to 50 Mrad at a dose rate of preferably 1 to 2 × 10 6 rad / sec at 0 to 50 ° C., the heat resistance of the foam is improved.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
[0020]
Example 1
Polyethylene resin polymerized using a metallocene catalyst (trade name: Kernel KS240, density (D): 0.880 g / cm 3 , MFR: 2.2 g / 10 minutes, melting point: 60 ° C., manufactured by Nippon Polychem Co., Ltd.) A composition comprising 10 parts by weight of 4,4'-oxybis (benzenesulfonylhydrazide) (trade name: Neoservon N # 5000, decomposition temperature: 159 ° C., manufactured by Eiwa Chemical Co., Ltd.) in 100 parts by weight was mixed on a 85 ° C. mixing roll. The composition obtained by kneading the mixture was filled in a mold (5 × 200 × 200 mm) in a press heated to 110 ° C., sealed at the above temperature for 2 minutes, and heated to shape a foamable sheet.
[0021]
Next, the obtained foamable sheet was placed on a metal plate on which talc powder was thinly spread, and heated in a circulating air oven at 160 ° C. for 20 minutes to obtain a foam. The obtained foam was placed on a conveyor and irradiated with an electron beam of 800 KeV, 16 mA, and a dose rate of 4.6 × 10 5 rad / sec twice at 10 Mrad by a Cockcroft-Walton accelerator at room temperature.
[0022]
The obtained foam had a size of 11 × 470 × 470 mm, an apparent density of 0.073 g / cm 3 , a shrinkage of 0% when heated at 100 ° C. for 15 minutes in an air oven, and a shrinkage after heating at 160 ° C. for 22 hours. -4%, which is significantly less than the shrinkage of 32% when heated at 100 ° C. for 15 minutes after irradiation in a nitrogen atmosphere as described in Table 1 of Japanese Patent Publication No. 49-28902. It was excellent.
[0023]
Example 2
In Example 1, foaming and electron beam irradiation were carried out under the same composition and under the same conditions as in Example 1, except that 4,4′-oxybis (benzenesulfonylhydrazide) was changed to 20 parts by weight to obtain a heat-resistant foam. Obtained.
The obtained foam had a size of 12 × 550 × 550 mm, an apparent density of 0.049 g / cm 3 , and was measured for shrinkage by the same method as in Example 1. As a result, the shrinkage after heating at 100 ° C. for 15 minutes was −1%, 160 The shrinkage after heating at 22 ° C. for 22 hours was -4%, and the heat resistance was excellent.
[0024]
Example 3
In Example 1, except that the resin was changed to 100 parts by weight of a high-pressure method low-density polyethylene (trade name: Novatec LD LE425, density 0.923 g / cm 3 , MFR 2.0 g / 10 min, manufactured by Nippon Polychem Co., Ltd.) Under the same composition and the same foaming conditions as in Example 1, foaming and electron beam irradiation were performed to obtain a heat-resistant foam.
The obtained foam had a size of 14 × 400 × 400 mm, an apparent density of 0.072 g / cm 3 , and was measured for shrinkage by the same method as in Example 1. As a result, the shrinkage after heating at 100 ° C. for 15 minutes was −1%, 160 The shrinkage after heating at 22 ° C. for 22 hours was -5%, and the heat resistance was excellent.
[0025]
Example 4
In Example 1, except that the resin was changed to 100 parts by weight of ethylene vinyl acetate copolymer (trade name: Novatec EVA LV540, density 0.942 g / cm3, MFR 2.5 g / 10 min, vinyl acetate content 20 wt%) Under the same composition and the same foaming conditions as in Example 1, foaming and electron beam irradiation were performed to obtain a foam.
The obtained foam had a size of 20 × 360 × 360 mm, an apparent density of 0.075 g / cm 3 , a shrinkage after heating at 100 ° C. for 15 minutes of −1%, and a shrinkage after heating at 160 ° C. for 22 hours of −3%. There was excellent heat resistance.
[0026]
Example 5
The composition obtained in Example 1 was put into a hopper of a single screw extruder having a screw diameter of 40 mm (heating temperature of an electric heater of 100 ° C.), extruded from a die, and extruded into a sheet of 5 × 220 mm. The obtained sheet was cut into a size of 5 × 200 × 200 mm and subjected to normal pressure foaming and electron beam irradiation under the same conditions as in Example 1 to obtain the same heat-resistant foam as in Example 1.
[0027]
Comparative Example 1
In Example 1, the shrinkage after heating at 100 ° C. for 15 minutes was 0%, and the foam was heated at 160 ° C. for 22 hours without irradiating the foam with an electron beam.
[0028]
Comparative Example 2
In Example 3, the shrinkage after heating at 100 ° C. for 15 minutes was 0% and the foam was heated at 160 ° C. for 22 hours without irradiating the foam with an electron beam.
[0029]
Comparative Example 3
In Example 4, when the foam was heated at 100 ° C. for 15 minutes and shrunk after heating for 15 minutes at 0 ° C. and 160 ° C. for 22 hours without being irradiated with an electron beam, the foam melted and lacked heat resistance.
[0030]
Comparative Example 4
Composition obtained by kneading a composition comprising 5 parts by weight of azodicarbonamide and 1 part by weight of zinc white with 100 parts by weight of a polyethylene resin (described above) polymerized using a metallocene catalyst using a mixing roll at 85 ° C. The product was foamed under the same conditions as in Example 1 and irradiated with an electron beam. The obtained foam had a size of 11 × 320 × 320 mm and an apparent density of 0.118 g / cm 3 , but had a shrinkage of 0.5% when heated at 100 ° C. for 15 minutes, and melted when heated at 160 ° C. for 22 hours. , Lacked heat resistance.
[0031]
Comparative Example 5
Example 1 A composition obtained by kneading a composition comprising 10 parts by weight of sodium bicarbonate with 100 parts by weight of a polyethylene-based resin (described above) polymerized using a metallocene catalyst using a mixing roll at 85 ° C. Under the same conditions as described above, a foam was produced and irradiated with an electron beam. The obtained foam had a size of 11 × 320 × 320 mm and an apparent density of 0.092 g / cm 3 , but had a shrinkage of 0.5% when heated at 100 ° C. for 15 minutes, and melted when heated at 160 ° C. for 22 hours. , Lacked heat resistance.
[0032]
[Table 1]
Figure 0003565791
[Table 2]
Figure 0003565791
[Table 3]
Figure 0003565791
[0033]
【The invention's effect】
As described above, according to the present invention, a polyethylene foam obtained by using 4,4′-oxybis (benzenesulfonylhydrazide) as a foaming agent is irradiated with an electron beam to form a foam having excellent heat resistance. It is capable of producing a body and has self-extinguishing properties, and is suitable as an interior material for automobiles, a heat insulating material, a sound absorbing material, and the like.

Claims (5)

ポリエチレン系樹脂に、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を添加した発泡性組成物を整形する工程、整形した発泡性組成物を常圧下で加熱発泡して発泡体を成形する工程、該発泡体に電子線を照射して耐熱性を付与する工程とから成ることを特徴とする耐熱性ポリエチレン系発泡体の製造方法。A step of shaping a foamable composition obtained by adding 4,4′-oxybis (benzenesulfonylhydrazide) to a polyethylene resin, a step of heating and foaming the shaped foamable composition under normal pressure to form a foam; Irradiating the foam with an electron beam to impart heat resistance. ポリエチレン系樹脂100重量部に対し、4,4’―オキシビス(ベンゼンスルホニルヒドラジド)を1〜40重量部添加することを特徴とする請求項1記載の製造方法。The method according to claim 1, wherein 1 to 40 parts by weight of 4,4'-oxybis (benzenesulfonylhydrazide) is added to 100 parts by weight of the polyethylene resin. 整形工程が、加圧下密閉金型中で加熱されることを特徴とする請求項1又は2記載の製造方法。3. The method according to claim 1, wherein the shaping step is performed by heating in a closed mold under pressure. 整形工程が、押出機による整形である請求項1又は2記載の製造方法。The manufacturing method according to claim 1 or 2, wherein the shaping step is shaping by an extruder. 常圧下での加熱発泡において、粉末物質を敷いたプレート上に発泡性シートを載置することを特徴とする請求項1,2、3又は4記載の製造方法。5. The production method according to claim 1, wherein the foaming sheet is placed on a plate on which a powdered substance is laid during heating and foaming under normal pressure.
JP2001121831A 2001-04-20 2001-04-20 Method for producing heat-resistant polyethylene foam Expired - Fee Related JP3565791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121831A JP3565791B2 (en) 2001-04-20 2001-04-20 Method for producing heat-resistant polyethylene foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121831A JP3565791B2 (en) 2001-04-20 2001-04-20 Method for producing heat-resistant polyethylene foam

Publications (2)

Publication Number Publication Date
JP2002317068A JP2002317068A (en) 2002-10-31
JP3565791B2 true JP3565791B2 (en) 2004-09-15

Family

ID=18971626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121831A Expired - Fee Related JP3565791B2 (en) 2001-04-20 2001-04-20 Method for producing heat-resistant polyethylene foam

Country Status (1)

Country Link
JP (1) JP3565791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084148A (en) * 2018-11-30 2020-06-04 株式会社ジェイエスピー Expanded particle molded body and method for producing expanded particle molded body

Also Published As

Publication number Publication date
JP2002317068A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US3709806A (en) Process for the preparation of radiation-crosslinkable foamable polyolefin particles
JPS5975929A (en) Production of polyolefin foam
US4424293A (en) Crosslinkable polypropylene composition
JPS6236435A (en) Crosslinked vinyl chloride resin foam excellent in heat resistance
JP3565791B2 (en) Method for producing heat-resistant polyethylene foam
US6517764B2 (en) Method of making polyethylene resinous open cell cellular bodies
JPH059325A (en) Production of crosslinked foam of olefinic elastomer composition
JP3516731B2 (en) Flame retardant polyolefin resin foam
JP3792371B2 (en) Method for producing polyolefin resin foam
US4766159A (en) Process for producing polypropylene foam
JPH03143932A (en) Crosslinked high-density polyethylene foam
JP3565764B2 (en) Method for producing heat-resistant polyethylene-based open cell foam
JPH05214143A (en) Polypropylene-based resin crosslinked foam
JPH059326A (en) Production of crosslinked foam of olefinic elastomer composition
JPH08109277A (en) Cross-linked polyolefin resin foam
JPH05295149A (en) Resin composition for crosslinked polyolefin foamed body
JP3337960B2 (en) Olefin resin crosslinked foam
JPH05247247A (en) Crosslinked polyolefin resin foam
JPH04363338A (en) Production of polyolefin-crosslinked foamed product
JPH10310654A (en) Production of open-celled polyolefin-based resin foam
JPH044236A (en) Polyolefin composition for crosslinked foam
JPS6281429A (en) Crosslinked polyolefin resin foam
JPH0480237A (en) Polyolefin resin composition for crosslinked foam
JPH05220857A (en) Foamable polyolefinic resin composition, crosslinked polyolefinic resin foam and production of said foam
JPS63159450A (en) Production of expandable ethylene resin bead

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees