JPH0257578B2 - - Google Patents

Info

Publication number
JPH0257578B2
JPH0257578B2 JP56085699A JP8569981A JPH0257578B2 JP H0257578 B2 JPH0257578 B2 JP H0257578B2 JP 56085699 A JP56085699 A JP 56085699A JP 8569981 A JP8569981 A JP 8569981A JP H0257578 B2 JPH0257578 B2 JP H0257578B2
Authority
JP
Japan
Prior art keywords
foam
polyethylene
temperature
sheet
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56085699A
Other languages
Japanese (ja)
Other versions
JPS57202327A (en
Inventor
Toshihiro Yamane
Isamu Tamai
Shunji Ookubo
Koji Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SEKYU KAGAKU KOGYO KK
TORE KK
Original Assignee
MITSUI SEKYU KAGAKU KOGYO KK
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SEKYU KAGAKU KOGYO KK, TORE KK filed Critical MITSUI SEKYU KAGAKU KOGYO KK
Priority to JP8569981A priority Critical patent/JPS57202327A/en
Publication of JPS57202327A publication Critical patent/JPS57202327A/en
Publication of JPH0257578B2 publication Critical patent/JPH0257578B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、匷靭性、成圢加工性の改良されたシ
ヌト状架橋ポリ゚チレン発泡䜓に関するものであ
る。 近幎、クツシペン材・断熱材甚途にポリ゚チレ
ン発泡䜓が倚量に䜿甚されおおり、汚れにくく腐
敗しないこず、賊圢性が良いこず、倚皮倚サむズ
であり、安䟡矎麗であるこずなどがあげられる。 しかし甚途が拡倧されるに埓぀お芁求特性も倚
様化し、高玚化が必芁な分野が最近倚くな぀おき
おおり、特に匷靭で、か぀成圢性のすぐれた発泡
䜓の開発が埅たれおいた。 本発明者らは埓来のポリ゚チレン発泡䜓の優れ
た物性を維持し぀぀匷靭性ず成圢性が共に改良さ
れおおり、高床な特性が芁求される甚途分野にも
適甚可胜なシヌト状架橋ポリ゚チレン発泡䜓を開
発するこずを目的ずしお鋭意怜蚎した結果本発明
に到達したものである。 すなわち、本発明は、ゲル分率が20〜50であ
るポリ゚チレンから実質的になり、济䞊発泡法に
より埗られた発泡䜓であ぀お、匷靭性を瀺す係数
γが5.5以䞊、成圢性を瀺す係数が0.55以䞊の
倀を有するシヌト状攟射線架橋ポリ゚チレン発泡
䜓を特城ずするものである。 本発明の架橋ポリ゚チレン発泡䜓は埓来のポリ
゚チレン発泡䜓ずは栌段に優れた諞特性を有する
党く新しい架橋発泡䜓であ぀お、適甚甚途分野に
殆んど制限を受けない優れた発泡䜓玠材である。 䟋えば、建材甚断熱鋌板分野では埓来のポリ゚
チレン発泡䜓ではシダヌプな折り曲げ加工ではし
ばしばシダヌプ゚ツゞでフオヌムの砎断が起こ
り、たたスキン局がプレスロヌルのしごきに耐え
られず砎れるこずがしばしばである。 たた匱電甚クヌラヌ断熱材分野では匷靭性、ス
キン剥離トラブルから剥離匷床向䞊の芁求が起こ
぀おいる。 さらに建材甚断熱防氎分野では屋根材ず貌合せ
られ䜿甚されおいるが、台颚、匷颚時の匷靭性、
スキン剥離匷床向䞊の芁求がありポリ゚チレン発
泡䜓の埓来品ではこれらの芁求を満足できなくな
぀お来おいる。 さらに高い芁求特性ずしお自動車甚途では絞り
比絞り深さ絞り埄が0.7以䞊ずいう埓来の
ポリ゚チレン発泡䜓では䞍可胜な特性が芁求さ
れ、特にシヌトバツクポケツト分野では既存のポ
リ゚チレン発泡䜓では察応できない状況である。 本発明の発泡䜓を䜿甚すれば䞊蚘のような加工
トラブルを起すこずなく、あらゆる甚途に十分察
応しお行くこずが可胜になるのである。 本発明の発泡䜓の匷靭性を瀺す係数γは次匏に
より定矩される。 γ5z≧5.5 
(1) ここで 発泡䜓の長さ方向の匕匵匷床Kgcm2  〃 の 〃 の匕裂匷床Kgcm  〃 のスキン剥離匷床Kgcm ρ 〃 のみかけ密床cm3 ここで甚いた、倀は次の方法で枬定され
る。いずれも発泡䜓の日本工業芏栌JIS −6767
で枬定された倀X0、Y0を次匏に斌いお換算
したものである。 X0195ρ−0.025−241ρ−0.0252 Y092ρ−0.025−185ρ−0.0252 倀はZ0倀を換算した倀で次匏で衚わす。 Z013.6ρ−0.025 ここで、Z0倀はスキン剥離匷さを衚わし、発泡
䜓から長さ100mm、巟25mmの詊隓片を䜜成し、そ
の詊隓片の枬定面に、完党に接着可胜なもので枬
定䞭に䌞びないものたずえばPVCシヌトやガ
ムテヌムを貌り合わせ、オヌトグラフを甚いお
匕匵速床50mm分で180゜剥離を行ない、cm圓り
の匷床Kgで衚瀺する。 これらの、、倀は(1)匏を満足するず共に
次の(2)匏をも満足するこずが奜たしい。 ≧2.3、≧1.3、≧0.3 
(2) たた、本発明の発泡䜓の成圢性を瀺す係数は
次匏を満足しおいなければならない。 ≧0.55 ここで、 発泡䜓を成圢する際の絞り深さcm 発泡䜓を成圢する際の絞り埄cm 係数が0.55未満では高玚な粟床のあ
る成圢品を埗るこずは困難で、深絞り成圢では発
泡䜓が砎断したり、薄肉䞍均䞀化する。 は次の枬定法によ぀お定矩される。 発泡䜓を遠赀倖ヒヌタにお䞊䞋から加熱し、発
泡䜓の衚面枩床が150〜160℃内郚枩床100〜120
℃になるように蚭定し、円柱状メス型金型を甚
いお、真空成圢を行ない、その発泡䜓成圢品の成
圢時の深さず盎埄ずの比で衚瀺する。なお加
熱時、発泡䜓のひずみをなくし、平面状にしおか
ら成圢に入るこずが必芁である。 さらに、本発明の発泡䜓は、匕匵䌞床を瀺す係
数Sn、Stが次匏を満足しおいるこずが望たしい。 Sn≧2000ρ190 St≧2000ρ150 ここで、 Sn発泡䜓の長さ方向の匕匵䌞床 St発泡䜓の巟方向の匕匵䌞床 䞀般的に匷靭性ずは匷床が倧きく、䌞床が倧き
ければ倧きいほど、゚ネルギヌの吞収、加工時の
材料の远埓性が良いこずは呚知であるが、埓来の
垂販品の発泡䜓ではこの関係匏を満足するものは
ほずんどなく、本発明の発泡䜓が優れおいるこず
がよくわかる。 Sn、Stを枬定するには日本工業芏栌JIS −
6767を甚いれば良い。 ここで匷靭係数γ≧5.5でSn2000ρ±190、St
2000ρ150のずき、この発泡䜓は䞀般的には成
圢性0.55を瀺し成圢加工時特に深絞り成
圢時に発泡䜓の砎断を匕き起こす。 たずえ≧0.55を満足しおもやはり深絞り
成圢には厚み均䞀性䞍十分などの点から実甚には
䟛しえない。 このようにすぐれた物性を有する本発明のポリ
゚チレン発泡䜓は、原料玠材の少なくずも䞀郚に
次のようなポリ゚チレン以䞋ポリ゚チレンず
いうを甚いるこずにより補造するこずができ
る。 すなわち、ポリ゚チレンは、メルトフロヌレ
ヌトASTM D1238Eが0.1〜5010min、
奜たしくは0.5〜2010min、密床ASTM
D1505が0.910〜0.940cm3、奜たしくは0.915
〜0.935cm3および融点が110〜130℃、奜たし
くは115〜127℃の䞻ずしお゚チレンからなり、こ
れず炭玠数〜20、奜たしくは炭玠数〜20のα
−オレフむンずの共重合䜓である。又このポリ゚
チレンは分子量分垃重量平均分子量数平均
分子量の倀が以䞋であるこずがさらに奜たし
い。 このポリ゚チレンの代りに゚チレンプロピレ
ン共重合䜓や、いわゆる高圧法ポリ゚チレンを甚
いおも架橋ポリ゚チレンの成圢加工性ず匷靭性の
䞡方が改良された架橋ポリ゚チレン発泡䜓を埗る
こずはできない。 たた、ポリ゚チレンは、メルトフロヌレヌト
が0.110min未満のものは溶融粘床が高く、
発泡剀を添加しお成圢する堎合成圢し難く、メル
トフロヌレヌトが5010minを越えたものは溶
融粘床が䜎く、発泡剀を添加しお成圢する堎合に
成圢品の圢状が䞍安定になるので奜たしくない。 密床が0.910cm3未満のものは埗られた発泡
䜓の衚面がべた぀き易く、0.940cm3の越えた
ものは、発泡䜓の柔軟性が損われ、か぀匕匵䌞床
が小さくなるので奜たしくない。 融点が110℃未満のものは発泡䜓の耐熱性が䞍
足し、130℃を越えたものは発泡剀を添加しお成
圢する堎合の成圢枩床を高くする必芁があるこず
から架橋前に発泡する恐れがあるので奜たしくな
い。 さらに、分子量分垃重量平均分子量数平均
分子量の倀が、以䞋のものを䜿甚すれば発泡
䜓の匕匵䌞床が倧きいものを埗るこずができる。 本発明に甚いるポリ゚チレンの構成成分であ
る炭玠数ないし20のα−オレフむンずしおは䟋
えば−ブテン、−ペンテン、−ヘキセン、
−ゞメチル−−ブテン、−メチル−
−ペンテン、−ゞメチル−−ペンテン、
−オクテン、−デセン、−ドデセン、−
テトラデセン、−オクタデセンなどから遞ばれ
る皮又は皮以䞊のものを挙げるこずができ
る。なお、これらα−オレフむンを構成成分ずす
る限り、少量のプロピレン成分が含有されおもよ
いが、その堎合には、α−オレフむンの含有量よ
りもかなり少なくする必芁がある。 ポリ゚チレン党䜓の密床が前蚘範囲のものず
なるためには、α−オレフむンの皮類によ぀おも
異なるが、゚チレンが88ないし97重量皋床含有
されおいればよい。 本発明で甚いる前蚘性状のポリ゚チレンは、
遷移金属觊媒を甚いる、いわゆる䞭、䜎圧法によ
぀お゚チレンずα−オレフむンずを所芁密床ずな
るような割合で重合させるこずによ぀お埗られ
る。その際、所望のメルトフロヌレヌトのものを
埗るには氎玠の劂き分子量調節剀を甚いればよ
い。重合はスラリヌ重合、気盞重合、高枩溶解重
合などの皮々の方法によ぀お行いうる。 前蚘重合䜓の融点は瀺差走査型熱量蚈DSC
を甚い、詊料を200℃で、分間溶融埌、20℃
minの速床で宀枩たで冷华結晶化させ、宀枩に
分間保぀た埌、10℃minの昇枩速床で吞熱曲線
を枬定した堎合のピヌク枩床である。 本発明に甚いるポリ゚チレンは吞熱ピヌクが
個のみでも、たた、あるいは耇数個怜出される
ものでもよいが、埌者の堎合は最高ピヌク枩床を
融点ずする。 たた、分子量分垃重量平均分子量数平均分
子量は、ゲルパヌミ゚ヌシペンクロマトグラフ
枬定装眮りオヌタヌスア゜シ゚むツ瀟米囜
補、Model150C−LCGPC、カラム東掋曹達
(æ ª)補、GMH−103〜107Åミツクスゲル、溶
媒、−ゞクロルベンれン、枬定枩床135℃
を甚いお、分子量分垃曲線を求め、ポリスチレン
をスタンダヌドずしたナニバヌサルキダリブレヌ
シペン法により重量平均分子量以䞋、wず略
すず数平均分子量以䞋、oず略すを算出
するこずにより求めた。 本発明で甚いるポリ゚チレンは、本発明の目
的を損なわない範囲で、他のポリオレフむン、䟋
えば高圧法䜎密床ポリ゚チレン、高密床ポリ゚チ
レン、ポリプロピレン等の䞀皮もしくは二皮を混
合しお甚いおもよい。 䞀䟋を䞊げるず、混合するポリ゚チレンずしお
は、メルトフロヌレヌトが0.1〜5010min、
奜たしくは0.5〜2010min、密床が0.935
cm3以䞋、奜たしくは0.910〜0.930cm3である䜎
密床ポリ゚チレンで、溶融枩床における粘床がほ
が接近しおいるポリ゚チレンが奜たしい。なお、
混合量は、90重量郚以䞋、奜たしくは80重量郚以
䞋である。 圓然のこずながら、本発明のポリ゚チレンに
他の熱可塑性暹脂を添加するこずも可胜であり、
たた、難燃剀、充填情、安定剀、垯電防止剀など
の任意の添加剀を添加するこずもできる。 本発明の発泡䜓補造方法に぀いお説明する。 たず、ポリ゚チレンを少なくずもその䞀郚に
含む原料玠材ず発泡剀および必芁なら架橋促進剀
その他の添加剀ずを混合機で均䞀に混合し、該混
合物を抌出機に䟛絊し、発泡剀が分解しない条件
䞋で、溶融混緎しお任意の圢状、奜たしくはシヌ
ト状に成圢する。 次に、該成圢品に電離性攟射線を照射しお任意
のゲル分率に達するたで架橋せしめる。 次に該発泡性成圢物を济䞊発泡法により発泡さ
せ、冷华する。ここで、济䞊発泡法ずは、発泡剀
の分解枩床以䞊の枩床に加熱された熱媒济、䟋え
ば溶融金属、溶融無機塩、シリコヌンオむル、ポ
リ゚チレングリコヌル等の熱媒济の䞊に浮かべ
フロヌテむングさせながら発泡させる方法で
ある。なお、この济䞊発泡法においおは、発泡さ
せるシヌトの䞋面が盎接熱媒により加熱される
が、䞊面は赀倖線ヒヌタヌや熱颚等で補助加熱し
おもよい。 架橋促進剀ずしおは、特に次のような倚官胜性
化合物が適する。 ゞビニルベンれン、ゞアリルベンれン、ゞビニ
ルナフタレン、ゞビニビプニル、ゞビニルカル
バゟヌル、ゞビニルビリゞンおよびこれらの栞眮
換化合物や近瞁同族䜓、゚チレングリコヌルゞメ
タクリレヌト、ヒドロキノンゞメタクリレヌトな
どの芳銙族倚䟡アルコヌルのポリアクリレヌトや
ポリメタクリレヌト、ゞビニルフタレヌト、ゞア
リルフタレヌト、ゞアリルマレヌト、ビスアクリ
ロむルオキシ゚チルテレフタレヌトなどの脂肪族
および芳銙族倚䟡カルボン酞のポリビニル゚ステ
ル、ポリアリル゚ステル、ポリアクリロむルオキ
シアルキル゚ステル、ポリメタクリロむルオキシ
アルキル゚ステル、ゞ゚チレングリコヌルゞビニ
ル゚ヌテル、ヒドロキノンゞビニル゚ヌテル、ビ
スプノヌルゞアリル゚ヌテルなどの脂肪族お
よび芳銙族倚䟡アルコヌルのポリビニル゚ヌテル
−ポリアリル゚ヌテル、トリアリルシアヌレヌ
ト、トリアリルホスプヌト、トリスアクロリル
オキシ゚チルホスプヌトおよびポリブタゞ゚ン
のような䞍飜和結合を有する重合䜓も適甚でき
る。添加量ずしおは0.1〜10重量郚が奜たしい。 䞊蚘においお甚いられる発泡剀は、分解型発泡
剀であ぀お、原料ポリ゚チレンの溶融枩床よりも
高い分解枩床を有するものであれば䜕でもよい
が、奜たしくはアゟゞカルボンアミドであり、特
にその分解点が196℃以䞊のものが望たしい。こ
こでいう分解点ずは、日本工業芏栌JIS −
8004にお定められた融点枬定装眮を甚い、毛现
管に詊料を玄mm緊密に充填し、枩床が190℃に
達したずき、詊料の充填された毛现管を挿入し、
196℃たで毎分℃の速床で昇枩、その埌毎分
℃の速床で昇枩させ、詊料の黄色が完党に脱色し
たずきの枩床をいう。さらに、アゟゞカルボンア
ミドず同等もしくは高枩の分解点を有するヒドラ
ゟゞカルボンアミド、アゟゞカルボン酞バリりム
塩、ゞニトロ゜ペンタメチレンテトラミン、ニト
ログアニゞン、P′−オキシビスベンれンスル
ホニルセミカルバゞドなどを単独もしくは混合、
特にアゟゞカルボンアミドに混合しお甚いるこず
もできる。 たた、奜たしい架橋発泡䜓を䞎える架橋床は、
ゲル分率で20〜50である。架橋床が少なすぎる
ず発泡時の気泡が保持されないで凝集しやすく、
倧気泡のフオヌムになりやすく、たた系倖ぞのガ
スの逃散により発泡倍率も䞊りにくい。架橋床が
高すぎるず発泡䜓の膚匵が劚げられ、発泡倍率が
䞊りにくく、加熱時の䌞匵性が䜎䞋し、熱成圢性
が䜎䞋する。ここでいうゲル分率は詊料0.2を
50mlのテトラリン䞭に135℃で時間浞挬したず
きの䞍溶郚分の重量である。 以䞊述べたように、本発明はゲル分率が20〜50
であるポリ゚チレンから実質的になり、γが
5.5以䞊、が0.55以䞊である济䞊発泡法により
埗られたシヌト状攟射線架橋ポリ゚チレン発泡䜓
ずしたので、匷靭性ず成圢性がずもに改良される
ずいう優れた効果を埗るこずができた。さらに、
発泡䜓を䜿甚するに際しお匷靭性や成圢性の高い
ものを倚品皮準備しおいたものが、匷靭性、成圢
性がずもに優れおいる本発明の発泡䜓では、少な
い品皮を準備するだけで枈むので準備䜜業の省力
化ず品皮の適甚誀りによるミスが軜枛されるずい
う優れた効果も埗るこずができた。 以䞋本発明の䞀実斜態様に぀いお説明する。 実斜䟋、比范䟋 ポリ゚チレン〔密床0.920cm3、メルトフ
ロヌレヌト9.010min、融点120℃以
䞋、密床を、メルトフロヌレヌトをMI、融点
をMPず略称する〕100重量郚に察しお発泡剀ア
ゟゞカルボン酞アミドを15重量郚、架橋促進剀ゞ
ビニルベンれン重量郚を加え、䞡者を混合し、
単軞抌出機で混緎し、厚さ3.0mmのシヌトを䜜぀
た。この発泡性シヌトに線量6Mradの攟射線を
電子線加速機を甚いお照射した。 この照射シヌトを230℃の溶融金属液面䞊に浮
べ䞊面から260℃の熱颚で加熱発泡させるこずに
より正垞な発泡䜓を埗た。この発泡䜓の物性を枬
定し、第衚に実斜䟋ずしお瀺した。 比范サンプルずしお0.925cm3、MI4.0
10min、MP100℃の高圧法䜎密床ポリ゚チ
レン暹脂ミラ゜ン16䞉井ポリケミカル補を
甚いお同条件䞋での発泡䜓を䜜り、その物性を枬
定し第衚に比范䟋ずしお瀺した。 埗られた発泡䜓は、第衚に瀺すごずく、極め
おすぐれた匷靭性ず高い匕匵䌞床をもち、良奜な
成圢加工性をもち、建材甚、断熱鋌板分野に䜿甚
できた。 実斜䟋  ポリ゚チレン〔0.924cm3、MI3.0
10min、MP122℃〕50重量郚ず高圧法䜎密
床ポリ゚チレン暹脂ミラ゜ン16䞉井ポリケミ
カル補50重量郚を混合し、さらに発泡剀アゟゞ
カルボン酞アミドを18重量郚を加えお混合し、単
軞抌出機で混緎し、厚さ4.0mmのシヌトを䜜぀た。
この発泡性シヌトに6Mradの攟射線を電子線加
速機を甚いお照射した。 この照射シヌトを実斜䟋ず同法で発泡させ、
良奜な発泡䜓を埗た。 その物性を枬定し、第衚に実斜䟋ずしお瀺
した。 埗られた発泡䜓は非垞に匷靭で、塩ビシヌトず
貌り合わせお折り曲げ加工したずき、その加工性
は極めお良奜であ぀た。
The present invention relates to a sheet-shaped crosslinked polyethylene foam with improved toughness and moldability. In recent years, polyethylene foams have been used in large quantities for cushioning and insulation materials, and their properties include being stain-resistant and rot-resistant, having good shapeability, being available in a wide variety of sizes, and being inexpensive and beautiful. However, as the uses have expanded, the required properties have also diversified, and there has recently been an increase in the number of fields that require higher quality foams, and the development of particularly strong and moldable foams has been awaited. The present inventors have developed a sheet-shaped crosslinked polyethylene foam that maintains the excellent physical properties of conventional polyethylene foam, has improved toughness and moldability, and can be applied to application fields that require advanced properties. The present invention was arrived at as a result of intensive studies aimed at developing the following. That is, the present invention is a foam made essentially of polyethylene with a gel fraction of 20 to 50%, obtained by an over-bath foaming method, with a coefficient γ indicating toughness of 5.5 or more and moldability. It is characterized by a sheet-shaped radiation-crosslinked polyethylene foam having a coefficient R of 0.55 or more. The cross-linked polyethylene foam of the present invention is a completely new cross-linked foam material that has various properties that are significantly superior to conventional polyethylene foams, and is an excellent foam material that has almost no limitations in the field of application. . For example, in the field of insulating steel sheets for building materials, with conventional polyethylene foam, the foam often breaks at the sharp edge during sharp bending, and the skin layer often cannot withstand the straining of press rolls and breaks. In addition, in the field of insulation materials for coolers for light electrical appliances, there is a demand for toughness and improved peel strength due to problems with skin peeling. Furthermore, in the field of insulation and waterproofing for building materials, it is used by laminating it with roofing materials, but its toughness during typhoons and strong winds,
There is a demand for improved skin peel strength, and conventional polyethylene foam products are no longer able to meet these demands. Automotive applications require even higher characteristics, such as a drawing ratio (drawing depth/diameter) of 0.7 or higher, which is impossible with conventional polyethylene foams, and especially in the seat back pocket field, existing polyethylene foams cannot meet these requirements. It's a situation. If the foam of the present invention is used, it will be possible to fully meet all kinds of uses without causing the above-mentioned processing troubles. The coefficient γ indicating the toughness of the foam of the present invention is defined by the following equation. γ=x+y+5z≧5.5
(1) where x: Tensile strength in the longitudinal direction of the foam (Kg/cm 2 ) y: Tear strength of 〃 (Kg/cm) z: Skin peel strength of 〃 (Kg/cm 2 ) /cm) ρ: Apparent density (g/cm 3 ) The x and y values used here are measured by the following method. Both are Japanese Industrial Standards JIS K-6767 for foams.
The values (X 0 , Y 0 ) measured in are converted using the following formula. x=X 0 +195(ρ−0.025)−241(ρ−0.025) 2 y=Y 0 +92(ρ−0.025)−185(ρ−0.025) 2 The z value is the value converted from the Z 0 value and is calculated by the following formula. represent z = Z 0 + 13.6 (ρ - 0.025) Here, the Z 0 value represents the skin peel strength. A test piece with a length of 100 mm and a width of 25 mm is prepared from the foam, and on the measurement surface of the test piece, A completely adhesive material that does not stretch during the measurement (for example, PVC sheet or gum tape) is pasted together, and using an autograph, peeling is performed at 180 degrees at a tensile speed of 50 mm/min, and the strength is expressed in kg per 1 cm. do. It is preferable that these x, y, and z values satisfy equation (1) as well as the following equation (2). x≧2.3, y≧1.3, z≧0.3 (2) Furthermore, the coefficient R indicating the moldability of the foam of the present invention must satisfy the following formula. R=H/L≧0.55 where, H: Depth of drawing when forming the foam (cm) L: Diameter of drawing when forming the foam (cm) If the coefficient R=H/L is less than 0.55, it is high grade. It is difficult to obtain molded products with high precision, and deep drawing may cause the foam to break or become thin and uneven. H/L is defined by the following measurement method. The foam is heated from above and below with a far-infrared heater until the surface temperature of the foam reaches 150-160℃ (internal temperature 100-120℃).
℃), vacuum forming is performed using a cylindrical female mold, and the ratio of the depth H to the diameter L of the foam molded product is expressed. During heating, it is necessary to eliminate distortion of the foam and make it flat before molding. Further, in the foam of the present invention, it is desirable that the coefficients S n and S t indicating the tensile elongation satisfy the following formula. S n ≧2000ρ190 S t ≧2000ρ150 where, S n : Tensile elongation in the length direction of the foam (%) S t : Tensile elongation in the width direction of the foam (%) In general, toughness refers to strength. It is well known that the larger the , and the greater the elongation, the better the energy absorption and conformability of the material during processing, but there are almost no conventional commercially available foams that satisfy this relationship. It is clearly seen that the foam of the present invention is excellent. To measure S n and S t, follow the Japanese Industrial Standard JIS K-
You can use 6767. Here, with toughness coefficient γ≧5.5, S n <2000ρ±190, S t
When <2000ρ+150, the foam generally exhibits a formability H/L<0.55, leading to fracturing of the foam during molding, particularly during deep drawing. Even if H/L≧0.55 is satisfied, it cannot be put to practical use in deep drawing due to insufficient thickness uniformity. The polyethylene foam of the present invention having such excellent physical properties can be produced by using the following polyethylene (hereinafter referred to as polyethylene A) as at least a part of the raw material. That is, polyethylene A has a melt flow rate (ASTM D1238E) of 0.1 to 50 g/10 min,
Preferably 0.5-20g/10min, density (ASTM
D1505) is 0.910 to 0.940g/cm 3 , preferably 0.915
~0.935g/cm 3 and a melting point of 110-130°C, preferably 115-127°C, consisting mainly of ethylene and α having 4-20 carbon atoms, preferably 5-20 carbon atoms.
- It is a copolymer with olefin. Further, it is more preferable that this polyethylene A has a molecular weight distribution (value of weight average molecular weight/number average molecular weight) of 6 or less. Even if an ethylene propylene copolymer or so-called high-pressure polyethylene is used instead of polyethylene A, a crosslinked polyethylene foam with improved moldability and toughness cannot be obtained. In addition, polyethylene A has a high melt viscosity when the melt flow rate is less than 0.1 g/10 min.
When molding with a blowing agent added, it is difficult to mold, and if the melt flow rate exceeds 50g/10min, the melt viscosity is low, and when molded with a blowing agent added, the shape of the molded product becomes unstable. Undesirable. If the density is less than 0.910 g/cm 3 , the surface of the resulting foam will become sticky, and if it exceeds 0.940 g/cm 3 , the flexibility of the foam will be impaired and the tensile elongation will be reduced. Undesirable. If the melting point is less than 110℃, the heat resistance of the foam will be insufficient, and if it exceeds 130℃, it is necessary to add a blowing agent and raise the molding temperature, so there is a risk of foaming before crosslinking. I don't like it because there is. Further, if a foam having a molecular weight distribution (value of weight average molecular weight/number average molecular weight) of 6 or less is used, a foam having a high tensile elongation can be obtained. Examples of α-olefins having 4 to 20 carbon atoms, which are constituents of polyethylene A used in the present invention, include 1-butene, 1-pentene, 1-hexene,
3,3-dimethyl-1-butene, 4-methyl-1
-pentene, 4,4-dimethyl-1-pentene,
1-octene, 1-decene, 1-dodecene, 1-
One or more types selected from tetradecene, 1-octadecene, etc. can be mentioned. In addition, as long as these α-olefins are used as constituent components, a small amount of propylene component may be contained, but in that case, the content needs to be considerably smaller than the content of α-olefins. In order for the density of the entire polyethylene A to be within the above range, it is sufficient that the ethylene content is approximately 88 to 97% by weight, although this varies depending on the type of α-olefin. The polyethylene A having the above properties used in the present invention is:
It is obtained by polymerizing ethylene and α-olefin in a ratio that provides the required density by a so-called medium-low pressure method using a transition metal catalyst. In this case, a molecular weight regulator such as hydrogen may be used to obtain a desired melt flow rate. Polymerization can be carried out by various methods such as slurry polymerization, gas phase polymerization, and high temperature solution polymerization. The melting point of the polymer was measured using a differential scanning calorimeter (DSC).
After melting the sample at 200℃ for 5 minutes using
Cool to room temperature at a rate of min to crystallize, and cool to room temperature for 1
This is the peak temperature when the endothermic curve was measured at a heating rate of 10°C/min after the temperature was maintained for 1 minute. The polyethylene A used in the present invention may have only one endothermic peak or may have a plurality of endothermic peaks, but in the latter case, the highest peak temperature is taken as the melting point. In addition, the molecular weight distribution (weight average molecular weight/number average molecular weight) can be measured using a gel permeation chromatograph (measuring device: Waters Associates (USA)).
Model 150C-LC/GPC, Column: Toyo Soda
Co., Ltd., GMH-6 (10 3 - 10 7 Å mix gel), solvent, 0-dichlorobenzene, measurement temperature: 135°C}
was used to obtain a molecular weight distribution curve, and the weight average molecular weight (hereinafter abbreviated as w ) and number average molecular weight (hereinafter abbreviated as o ) were determined by the universal calibration method using polystyrene as a standard. The polyethylene A used in the present invention may be used in combination with one or two of other polyolefins such as high-pressure low density polyethylene, high density polyethylene, and polypropylene, as long as the purpose of the present invention is not impaired. To give an example, the polyethylene to be mixed has a melt flow rate of 0.1 to 50g/10min,
Preferably 0.5-20g/10min, density 0.935g/
Preferred are low density polyethylenes of less than cm 3 , preferably from 0.910 to 0.930 g/cm 3 , and whose viscosities at the melting temperature are approximately similar. In addition,
The mixing amount is 90 parts by weight or less, preferably 80 parts by weight or less. Naturally, it is also possible to add other thermoplastic resins to the polyethylene A of the present invention,
Further, optional additives such as flame retardants, fillers, stabilizers, antistatic agents, etc. can also be added. The foam manufacturing method of the present invention will be explained. First, a raw material containing at least a portion of polyethylene A, a blowing agent and, if necessary, a crosslinking accelerator and other additives are uniformly mixed in a mixer, and the mixture is fed to an extruder so that the blowing agent does not decompose. The mixture is melt-kneaded and molded into any shape, preferably a sheet, under the following conditions. Next, the molded article is irradiated with ionizing radiation to crosslink it until a desired gel fraction is reached. Next, the foamable molded product is foamed by a bath foaming method and cooled. Here, the above-bath foaming method refers to a heating medium bath heated to a temperature higher than the decomposition temperature of the blowing agent, such as molten metal, molten inorganic salt, silicone oil, polyethylene glycol, etc. This is a method in which the foam is foamed while the foam is being foamed. In this bath foaming method, the lower surface of the sheet to be foamed is directly heated by a heating medium, but the upper surface may be auxiliary heated by an infrared heater, hot air, or the like. As the crosslinking accelerator, the following polyfunctional compounds are particularly suitable. Divinylbenzene, diallylbenzene, divinylnaphthalene, divinibiphenyl, divinylcarbazole, divinylpyridine and their nuclear substituted compounds and close analogs, polyacrylates and polymethacrylates of aromatic polyhydric alcohols such as ethylene glycol dimethacrylate and hydroquinone dimethacrylate, Polyvinyl esters of aliphatic and aromatic polycarboxylic acids such as divinyl phthalate, diallyl phthalate, diallyl maleate, bisacryloyloxyethyl terephthalate, polyallyl esters, polyacryloyloxyalkyl esters, polymethacryloyloxyalkyl esters, diethylene glycol divinyl ether, Polyvinyl ethers of aliphatic and aromatic polyhydric alcohols such as hydroquinone divinyl ether, bisphenol A diallyl ether-polyallyl ethers, triallyl cyanurate, triallyl phosphate, trisacryloxyethyl phosphate and polybutadiene. Polymers having saturated bonds are also applicable. The amount added is preferably 0.1 to 10 parts by weight. The blowing agent used in the above may be any decomposition type blowing agent as long as it has a decomposition temperature higher than the melting temperature of the raw material polyethylene, but is preferably azodicarbonamide, especially its decomposition point is 196 Temperatures above ℃ are desirable. The decomposition point here refers to the Japanese Industrial Standards (JIS K-
8004), fill the capillary tube tightly with the sample by approximately 5 mm, and when the temperature reaches 190℃, insert the capillary tube filled with the sample,
Increase temperature to 196℃ at a rate of 2℃ per minute, then 1℃ per minute
This is the temperature at which the yellow color of the sample is completely decolored by increasing the temperature at a rate of ℃. In addition, hydrazodicarbonamide, azodicarboxylic acid barium salt, dinitrosopentamethylenetetramine, nitroguanidine, P,P'-oxybisbenzenesulfonyl semicarbazide, etc., which have a decomposition point equivalent to or at a high temperature as azodicarbonamide, may be used singly or in combination.
In particular, it can also be used by mixing with azodicarbonamide. Further, the degree of crosslinking that gives a preferable crosslinked foam is
The gel fraction is 20-50%. If the degree of crosslinking is too low, the bubbles during foaming will not be retained and will tend to aggregate.
It tends to form large bubbles, and it is difficult to increase the foaming ratio due to the escape of gas to the outside of the system. If the degree of crosslinking is too high, the expansion of the foam will be hindered, the expansion ratio will be difficult to increase, the extensibility during heating will decrease, and the thermoformability will decrease. The gel fraction here refers to 0.2g of sample.
This is the weight percent of the insoluble portion when immersed in 50 ml of tetralin at 135°C for 3 hours. As mentioned above, the present invention has a gel fraction of 20 to 50.
% of polyethylene A, with γ of
Since the sheet-like radiation-crosslinked polyethylene foam obtained by the bath foaming method had an R of 5.5 or more and an R of 0.55 or more, excellent effects were obtained in that both toughness and moldability were improved. moreover,
When using foam, a wide variety of products with high toughness and moldability were prepared, but with the foam of the present invention, which has both excellent toughness and moldability, only a small number of products need to be prepared. We were also able to obtain the excellent effects of saving labor in preparation work and reducing errors caused by incorrectly applying varieties. An embodiment of the present invention will be described below. Example 1, Comparative Example 1 Polyethylene A [density = 0.920 g/cm 3 , melt flow rate = 9.0 g/10 min, melting point = 120°C (hereinafter abbreviated as density P, melt flow rate as MI, and melting point as MP) )] 15 parts by weight of the blowing agent azodicarboxylic acid amide and 2 parts by weight of the crosslinking accelerator divinylbenzene were added to 100 parts by weight, and the two were mixed,
The mixture was kneaded using a single-screw extruder to produce a sheet with a thickness of 3.0 mm. This foam sheet was irradiated with radiation at a dose of 6 Mrad using an electron beam accelerator. This irradiated sheet was floated on the surface of the molten metal at 230°C and heated and foamed from the top with hot air at 260°C to obtain a normal foam. The physical properties of this foam were measured and are shown in Table 1 as Example 1. As a comparison sample, P=0.925g/cm 3 , MI=4.0
g/10min, MP=100℃ using high pressure low density polyethylene resin Mirason #16 (manufactured by Mitsui Polychemicals) to make a foam under the same conditions and measure its physical properties. Table 1 shows Comparative Example 1. Indicated. As shown in Table 1, the obtained foam had extremely excellent toughness, high tensile elongation, and good formability, and could be used in the fields of building materials and heat-insulating steel plates. Example 2 Polyethylene A [P=0.924g/cm 3 , MI=3.0
g/10min, MP=122°C] 50 parts by weight and 50 parts by weight of high-pressure low density polyethylene resin Mirason #16 (Mitsui Polychemical Co., Ltd.) were mixed, and 18 parts by weight of the blowing agent azodicarboxylic acid amide was added and mixed. The mixture was then kneaded using a single-screw extruder to produce a sheet with a thickness of 4.0 mm.
This foam sheet was irradiated with 6 Mrad radiation using an electron beam accelerator. This irradiated sheet was foamed by the same method as in Example 1,
A good foam was obtained. The physical properties were measured and shown in Table 1 as Example 2. The obtained foam was very strong and had extremely good workability when it was laminated with a PVC sheet and bent.

【衚】 実斜䟋  実斜䟋および比范䟋で埗られた発泡䜓を厚
み方向に半分にスラむスしお流し台シンクカバヌ
を真空成圢した。この流し台のシンクカバヌは、
たお40cm、よこ30cm、深さ15cmのものである。 埓来の汎甚品比范䟋で埗られた発泡䜓を
甚いたものは、コヌナヌ郚の砎れ、立䞊り郚の偏
肉による肉厚枛少が著しか぀た。 しかし、実斜䟋で埗られた発泡䜓を甚いたも
のは砎れがた぀たく認められず、偏肉も比范的少
なく良奜な成圢品が埗られた。
[Table] Example 3 The foams obtained in Example 1 and Comparative Example 1 were sliced in half in the thickness direction to vacuum form a sink cover. This sink cover is
It is 40cm tall, 30cm wide, and 15cm deep. In the conventional general-purpose product (Comparative Example 1) using the foam, the wall thickness was significantly reduced due to breakage at the corners and uneven thickness at the rising parts. However, in the case of using the foam obtained in Example 1, no tearing was observed, and a good molded product with relatively little thickness deviation was obtained.

Claims (1)

【特蚱請求の範囲】  ゲル分率が20〜50であるポリ゚チレンから
実質的になり、济䞊発泡法により埗られた発泡䜓
であ぀お、匷靭性を瀺す係数γが5.5以䞊、成圢
性を瀺す係数が0.55以䞊の倀を有するこずを特
城ずするシヌト状攟射線架橋ポリ゚チレン発泡
䜓。 ただし、γ5z  発泡䜓の長さ方向の匕匵匷床Kgcm2  〃 の長さ方向の匕裂匷床Kgcm  〃 のスキン剥離匷床Kgcm 成圢時の絞り深さcm  〃 の絞り埄cm
[Scope of Claims] 1. A foam made essentially of polyethylene with a gel fraction of 20 to 50%, obtained by an over-bath foaming method, with a coefficient γ indicating toughness of 5.5 or more, and moldability. 1. A sheet-shaped radiation-crosslinked polyethylene foam having a coefficient R of 0.55 or more. However, γ=x+y+5z R=H/L x: Tensile strength in the longitudinal direction of the foam (Kg/cm 2 ) y: Tear strength in the longitudinal direction of 〃 (Kg/cm) z: Skin peel strength of 〃 ( Kg/cm) H: Depth of drawing during molding (cm) L: Diameter of drawing (cm)
JP8569981A 1981-06-05 1981-06-05 Crosslinked polyethylene foam sheet Granted JPS57202327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8569981A JPS57202327A (en) 1981-06-05 1981-06-05 Crosslinked polyethylene foam sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8569981A JPS57202327A (en) 1981-06-05 1981-06-05 Crosslinked polyethylene foam sheet

Publications (2)

Publication Number Publication Date
JPS57202327A JPS57202327A (en) 1982-12-11
JPH0257578B2 true JPH0257578B2 (en) 1990-12-05

Family

ID=13866069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8569981A Granted JPS57202327A (en) 1981-06-05 1981-06-05 Crosslinked polyethylene foam sheet

Country Status (1)

Country Link
JP (1) JPS57202327A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501220A (en) * 1985-07-02 1988-05-12 ビヌピヌ ケミカルズ フォヌムズ ビゞネス ゚ス゚む Linear low density polyethylene foam and its manufacturing method
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155232A (en) * 1980-05-02 1981-12-01 Nippon Oil Co Ltd Blowing composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155232A (en) * 1980-05-02 1981-12-01 Nippon Oil Co Ltd Blowing composition

Also Published As

Publication number Publication date
JPS57202327A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US5387620A (en) Cross-linked ethylenic polymer foam structures and process for making
WO1991013933A1 (en) Polypropylene foam sheets
JPS6236435A (en) Crosslinked vinyl chloride resin foam excellent in heat resistance
JPS59215329A (en) Crosslinked synthetic resin foam
JPS6259640A (en) Foaming of butyral resin composition
JPH0257578B2 (en)
JPH04278340A (en) Laminated foamed sheet suitable for vacuum molding
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JPH0257576B2 (en)
JPH07173317A (en) Polypropylene-based and electron radiation-cross-linked foam excellent in moldability
JP2001098101A (en) Polyethylene-based crosslinked foam
JPH0257577B2 (en)
JP3346027B2 (en) Polyethylene-based electron beam cross-linked foam
JPH03103449A (en) Foamed low-density polyethylene resin and production thereof
JP4325020B2 (en) Polyolefin resin composition for cross-linked foam, cross-linked polyolefin resin foam and method for producing the same
JP3311106B2 (en) Method for producing crosslinked polypropylene resin foam sheet
JPS599571B2 (en) Method for producing polyolefin foam
JPS6249303B2 (en)
JP3279456B2 (en) Crosslinked polyolefin resin foam
JPH06143401A (en) Method of molding laminate of polypropylene resin foam
JPH0423898B2 (en)
JPH05247247A (en) Crosslinked polyolefin resin foam
JPS6234929A (en) Crosslinked polyethylene resin foam having excellent formability
JPS5898341A (en) Foamable composite resin sheet
JPH0859872A (en) Crosslinked polyolefin resin foam