JPH025480A - Semiconductor element and manufacture thereof - Google Patents
Semiconductor element and manufacture thereofInfo
- Publication number
- JPH025480A JPH025480A JP15612988A JP15612988A JPH025480A JP H025480 A JPH025480 A JP H025480A JP 15612988 A JP15612988 A JP 15612988A JP 15612988 A JP15612988 A JP 15612988A JP H025480 A JPH025480 A JP H025480A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- source
- drain
- gate electrode
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000005468 ion implantation Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 4
- 229920005591 polysilicon Polymers 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- -1 boron ions Chemical class 0.000 abstract description 3
- 238000001312 dry etching Methods 0.000 abstract description 2
- 229910052734 helium Inorganic materials 0.000 abstract description 2
- 239000001307 helium Substances 0.000 abstract description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000002513 implantation Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体装置とその製造方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device and a method for manufacturing the same.
(従来の技術)
大規模集積回路に使用する半導体装置はできるだけ微細
であることが望ましい。従来MIS構造トランジスタに
おいては、ソース及びドレインをゲート電極をマスクと
した自己整合イオン注入で形成する。しかし注入深さと
横方向の広がりは同程度であるためソース及びドレイン
端がゲーF /T%極下極下り込み、ゲートとソース・
ドレインの重なっている部分に寄生のオーバーラツプ容
量ができる。(Prior Art) It is desirable that semiconductor devices used in large-scale integrated circuits be as fine as possible. In a conventional MIS structure transistor, the source and drain are formed by self-aligned ion implantation using the gate electrode as a mask. However, since the implantation depth and lateral spread are about the same, the source and drain ends are at the bottom of the gate F/T%.
Parasitic overlap capacitance is created where the drains overlap.
素子の微細化に伴いこのオーバーランプ容量を同時にス
ケールダウンしなければ素子の動的特性は劣化する。こ
れに対し従来はソースおよびドレインを不純物を浅く注
入して相対的に横方向の広がりを小さくする技術、ゲー
ト電極側壁にスペーサーを設は回り込みを抑制する技術
などがある。If the overlamp capacitance is not scaled down at the same time as the device becomes finer, the dynamic characteristics of the device will deteriorate. Conventionally, there are techniques for shallowly implanting impurities into the source and drain to relatively reduce the lateral spread, and techniques for suppressing wraparound by providing spacers on the side walls of the gate electrode.
(発明が解決しようとする課題)
しかし横方向回り込みを抑えるために浅く注入した場合
はソース及びドレイン層の抵抗が大きくなってしまう。(Problems to be Solved by the Invention) However, when shallow implantation is performed to suppress lateral wraparound, the resistance of the source and drain layers increases.
またゲート電極側壁にスペーサを設は実効的なマスク長
を大きくする場合には製造プロセスが複雑になり歩留ま
りに悪影響を及ぼし、また製造時のばらつきによりゲー
ト端からソース端及びドレイン端が離れてしまうことも
ありこのオフセットの部分で抵抗が大きくなってしまう
という問題がある
そこで本発明の目的はオーバーラツプ容量を抑制でき、
かつソース及びドレイン層の抵抗の増加をも防ぐことの
できるMIS )ランジスタ、及びこの構造をセルファ
ラインで容易に製造する方法を提供することである。In addition, if spacers are provided on the side walls of the gate electrode, the manufacturing process will be complicated and the yield will be adversely affected if the effective mask length is increased, and the source and drain ends will be separated from the gate end due to manufacturing variations. Therefore, the purpose of the present invention is to suppress the overlap capacitance.
It is an object of the present invention to provide an MIS transistor which can also prevent an increase in the resistance of the source and drain layers, and a method for easily manufacturing this structure using a self-alignment line.
(課題を解決するための手段)
本発明のMIS構造半導体素子はソースおよびドレイン
領域の形状が、ゲート端位置における深さ方向寸法に比
較して、ゲート端からゲート下への横方向寸法が非常に
小さいことを特徴とする構造を有する。(Means for Solving the Problems) In the MIS structure semiconductor device of the present invention, the shape of the source and drain regions is such that the lateral dimension from the gate end to the bottom of the gate is very large compared to the depth direction dimension at the gate end position. It has a structure characterized by its small size.
また本発明のMIS構造半導体装置の製造方法は、低指
数表面を有する半導体単結晶基板上に、ゲート電極とな
る部分をマスクとしてソースおよびドレインを極低温状
態でほとんどのイオンがチャネリングするようにイオン
注入することによリセルファラインで形成することを特
徴とする製造方法である。Further, in the method for manufacturing a MIS structure semiconductor device of the present invention, ions are formed on a semiconductor single crystal substrate having a low index surface, using a portion that will become a gate electrode as a mask, and forming a source and a drain in an extremely low temperature state so that most of the ions are channeled. This manufacturing method is characterized in that it is formed in a reself line by injection.
(作用)
次に本発明の詳細な説明する。第1図は本発明のMIS
)ランジスタの構造の概略を示した図である。(Function) Next, the present invention will be explained in detail. Figure 1 shows the MIS of the present invention.
) is a diagram schematically showing the structure of a transistor.
図において1はゲート電極、2はゲート絶縁膜、3はソ
ース、ドレイン領域、4は半導体基板を示している。こ
の構造においてゲート電極1の端とソース・ドレイン3
の端の位置はほぼ一致し重なりが非常に小さいためオー
バーラツプ容量および、抵抗の増加が防げ高速動作が期
待できる。In the figure, 1 is a gate electrode, 2 is a gate insulating film, 3 is a source and drain region, and 4 is a semiconductor substrate. In this structure, the edge of the gate electrode 1 and the source/drain 3
Since the positions of the ends of the capacitors almost coincide and the overlap is very small, an increase in overlap capacitance and resistance can be prevented and high-speed operation can be expected.
また本発明の製造方法においてはイオン注入を低指数表
面結晶基板に垂直に極低温状態で行う。Further, in the manufacturing method of the present invention, ion implantation is performed perpendicularly to the low index surface crystal substrate at an extremely low temperature.
すなわち極低温にすることにより結晶格子振動が無くな
り、注入したほとんどのイオンは結晶の低指数軸方向ヘ
チャネリングする。このことにより深さ方向には充分な
注入ができるが横方向の広がりは抑制でき本発明の構造
を容易に実現することができる。第2図(a)−(b)
に結晶格子振動が無い場合にシリコン結晶にボロンをイ
オン注入したときのプロファイルのコンピューターシミ
ュレーションの結晶を示す。結晶面は(ioo)で注入
エネルギーは5kev、ドーズ量はI X 11015
a’の場合を示した。第2図(a)は深さ方向−次元プ
ロファイル、第2図(b)はマスク下の断面2次元等濃
度線表示である。注入層の形状は、マスク端下部におい
て深いが横方向の広がりは極めて少ないことがこれによ
り証明される。In other words, by lowering the temperature to an extremely low temperature, crystal lattice vibrations are eliminated, and most of the implanted ions are channeled in the direction of the low index axis of the crystal. This allows for sufficient implantation in the depth direction while suppressing the spread in the lateral direction, making it possible to easily realize the structure of the present invention. Figure 2 (a)-(b)
This figure shows a computer simulation of the profile when boron ions are implanted into a silicon crystal when there is no crystal lattice vibration. The crystal plane is (ioo), the implantation energy is 5kev, and the dose is I x 11015
The case of a' is shown. FIG. 2(a) is a depth direction-dimensional profile, and FIG. 2(b) is a cross-sectional two-dimensional isoconcentration line representation under the mask. This proves that the shape of the injection layer is deep below the mask edge but has very little lateral extent.
(実施例)
次に本発明のMIS l−ランジスタの典型的な一実施
例を第3図の(a)−(d)の一連の工程図を用いて述
べる。(Example) Next, a typical example of the MIS l-transistor of the present invention will be described using a series of process diagrams shown in FIGS. 3(a) to 3(d).
第3図(a)において低面指数表面、ここでは(100
)面を有するシリコン単結晶基板14の表面にゲート酸
化膜12を成長させその上にゲート電極となるポリシリ
コン膜13を0.5pmの厚さに成長させた。次に第3
図(b)に示すようにポリシリコン膜13とゲート酸化
膜12をドライエツチングによりパターニングした。こ
こで単結晶基板14の表面は露出させている。次にこれ
を液体ヘリウム温度にまで冷却し、同時にゲート電極1
3をマスクとしボロンイオン(1113+)を基板(1
00)表面に垂直に、ドーズ量I X 11015a’
、加速エネルギー5kevで注入しソース・ドレイン領
域11を形成した。ここまでを第3図(c)に示す。次
にこれに層間絶縁膜15を成長させたあとりフローとソ
ース・ドレインの不純物の活性化を兼ねて1000°C
で10秒間ランプアニールを行い、コンタクトホールを
開けて配線16を施した。これを第3図(d)に示す。In Figure 3(a), the low index surface, here (100
) A gate oxide film 12 was grown on the surface of a silicon single crystal substrate 14 having a surface, and a polysilicon film 13 to be a gate electrode was grown thereon to a thickness of 0.5 pm. Then the third
As shown in Figure (b), the polysilicon film 13 and gate oxide film 12 were patterned by dry etching. Here, the surface of the single crystal substrate 14 is exposed. Next, this is cooled to liquid helium temperature, and at the same time the gate electrode 1
3 as a mask, boron ions (1113+) are applied to the substrate (1
00) perpendicular to the surface, dose I x 11015a'
, the source/drain regions 11 were formed by implantation at an acceleration energy of 5 keV. The steps up to this point are shown in FIG. 3(c). Next, an interlayer insulating film 15 is grown on this, and then heated to 1000°C for both flow and activation of source/drain impurities.
Lamp annealing was performed for 10 seconds, contact holes were opened, and wiring 16 was provided. This is shown in FIG. 3(d).
以上の工程でソース・ドレイン拡散層11の深さは0.
3pm、ゲート端からゲート下への横方向の広がりは0
.05pmが得られ、深さに比べて充分小さい。この第
3図(d)が本発明の構造を有する典型的なM工Sトラ
ンジスタである。In the above steps, the depth of the source/drain diffusion layer 11 is 0.
3pm, lateral spread from gate edge to bottom of gate is 0
.. 05pm was obtained, which is sufficiently small compared to the depth. FIG. 3(d) shows a typical M-type S transistor having the structure of the present invention.
(発明の効果)
本発明のMIS )ランジスタの構造によれば、ゲート
とシース・ドレイン間オーバーラツプ容量が従来と比較
してほとんど無いにもかかわらず深さは実施例では0.
3pmと深い。したがって従来の横方向の広がりを極力
抑えた浅接合ソース・ドレインに比較してソーんドレイ
ンの抵抗が小さく動作速度の劣化が防げる。(Effects of the Invention) According to the structure of the MIS transistor of the present invention, although there is almost no overlap capacitance between the gate and the sheath/drain as compared to the conventional one, the depth is 0.5 mm in the embodiment.
Deep at 3pm. Therefore, compared to the conventional shallow junction source/drain whose lateral spread is minimized, the resistance of the source/drain is small and deterioration in operating speed can be prevented.
本発明の製造方法によれば本発明の構造上の特徴である
ソースおよびドレイン領域の形状、すなわちゲート端位
置における深さ方向寸法に比較して、ゲート端からゲー
ト下への横方向寸法が非常に小さくゲート端オーバーラ
ンプの無いソース件レインをゲート電極とセルファライ
ンで容易に作ることができる。すなわち従来の、歩留ま
りに影響する程製造プロセスが複雑化する工程すなわち
マスクとなるゲート電極にスペーサーを設けるような技
術を必要としない二とに本発明の効果が現れている。According to the manufacturing method of the present invention, the shape of the source and drain regions, which is a structural feature of the present invention, is that the lateral dimension from the gate edge to the bottom of the gate is very large compared to the depth dimension at the gate edge position. It is possible to easily create a small source line with no gate end overlamp using the gate electrode and self-alignment line. That is, the effect of the present invention is manifested in that it does not require the conventional process of complicating the manufacturing process to the extent that it affects the yield, that is, the technique of providing a spacer on the gate electrode serving as a mask.
第1図は本発明のM工Sトランジスタの概略断面図、第
2図(a)−(b)は本発明製造方法の効果を立証する
ためのコンピューターシミュレーションの結果を示す図
、第3図(a)−(d)は本発明の典型的な実施例を工
程順に示す断面図、である。
1.11・・・ソース・ドレイン拡散層、2,12・・
・ゲート絶縁膜、3.13’・・・ゲート電極、13・
・・ポリシリコン膜、4・・・半導体基板、14・・・
シリコン単結晶基板、15・・・層間絶縁膜、16・、
・配線。FIG. 1 is a schematic cross-sectional view of the M/S transistor of the present invention, FIGS. 2(a)-(b) are diagrams showing the results of computer simulation to prove the effects of the manufacturing method of the present invention, and FIG. a)-(d) are cross-sectional views showing a typical embodiment of the present invention in the order of steps; 1.11...source/drain diffusion layer, 2,12...
・Gate insulating film, 3.13'...Gate electrode, 13・
...Polysilicon film, 4...Semiconductor substrate, 14...
Silicon single crystal substrate, 15... interlayer insulating film, 16...
·wiring.
Claims (2)
イン領域の形状が、ゲート端位置における深さ方向寸法
に比較して、ゲート端からゲート下への横方向寸法が非
常に小さいことを特徴とする半導体素子。(1) A MIS structure semiconductor device characterized in that the shape of the source and drain regions is such that the lateral dimension from the gate end to the bottom of the gate is extremely small compared to the depth dimension at the gate end position. .
ート電極となる部分をマスクとして極低温状態でほとん
どのイオンがチャネリングするようにイオン注入してソ
ースおよびドレインを形成することを特徴とする半導体
素子の製造方法。(2) The source and drain are formed by ion implantation into a semiconductor single crystal substrate having a low surface index surface using the portion that will become the gate electrode as a mask in an extremely low temperature state so that most of the ions are channeled. A method for manufacturing a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63156129A JP2508194B2 (en) | 1988-06-23 | 1988-06-23 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63156129A JP2508194B2 (en) | 1988-06-23 | 1988-06-23 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH025480A true JPH025480A (en) | 1990-01-10 |
JP2508194B2 JP2508194B2 (en) | 1996-06-19 |
Family
ID=15620959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63156129A Expired - Lifetime JP2508194B2 (en) | 1988-06-23 | 1988-06-23 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508194B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514904A (en) * | 1993-08-26 | 1996-05-07 | Kabushiki Kaisha Toshiba | Semiconductor device with monocrystalline gate insulating film |
JP2004260132A (en) * | 2003-02-05 | 2004-09-16 | Nec Electronics Corp | Method for fabricating semiconductor device |
-
1988
- 1988-06-23 JP JP63156129A patent/JP2508194B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514904A (en) * | 1993-08-26 | 1996-05-07 | Kabushiki Kaisha Toshiba | Semiconductor device with monocrystalline gate insulating film |
JP2004260132A (en) * | 2003-02-05 | 2004-09-16 | Nec Electronics Corp | Method for fabricating semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2508194B2 (en) | 1996-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2929291B2 (en) | Method of manufacturing insulated gate field effect transistor | |
JPH05160396A (en) | Mos field effect transistor | |
JP2017011262A (en) | Method of manufacturing high resistivity semiconductor on insulator substrate | |
JPS6112077A (en) | Method of producing semiconductor structure | |
CA1154543A (en) | Mesh gate v-mos power fet | |
JPH05102480A (en) | Semiconductor device and manufacture thereof | |
JPH025480A (en) | Semiconductor element and manufacture thereof | |
US5523605A (en) | Semiconductor device and method for forming the same | |
JPH10144922A (en) | Field-effect transistor (fet) and method for forming semiconductor field-effect transistor | |
JPH07183528A (en) | Thin film transistor | |
JPH0552069B2 (en) | ||
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
JPH02306665A (en) | Semiconductor device and manufacture thereof | |
KR100217899B1 (en) | Method of manufacturing transistor of semiconductor device | |
JPH0472770A (en) | Manufacture of semiconductor device | |
JPH04294585A (en) | Manufacture of vertical type mos semiconductor device | |
KR100205310B1 (en) | A semiconductor device and a method of the same | |
JPH03153081A (en) | Field effect transistor and its manufacture | |
JPS5928993B2 (en) | Semiconductor device and its manufacturing method | |
KR940002836B1 (en) | Semiconductor memory device having a buried capacitor and fabricating method thereof | |
KR0130626B1 (en) | Structure and fabrication of mosfet | |
JPH0529624A (en) | Thin film transistor and manufacture thereof | |
CN117316960A (en) | Semiconductor device and manufacturing method thereof | |
JP2610423B2 (en) | Insulated gate field effect transistor and method of manufacturing insulated gate field effect transistor | |
JPH02220471A (en) | Manufacture of semiconductor device |