JPH0254809B2 - - Google Patents

Info

Publication number
JPH0254809B2
JPH0254809B2 JP58137492A JP13749283A JPH0254809B2 JP H0254809 B2 JPH0254809 B2 JP H0254809B2 JP 58137492 A JP58137492 A JP 58137492A JP 13749283 A JP13749283 A JP 13749283A JP H0254809 B2 JPH0254809 B2 JP H0254809B2
Authority
JP
Japan
Prior art keywords
crystalline
reaction
hours
catalyst
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58137492A
Other languages
Japanese (ja)
Other versions
JPS6032720A (en
Inventor
Kazunori Kitagawa
Haruhito Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP58137492A priority Critical patent/JPS6032720A/en
Publication of JPS6032720A publication Critical patent/JPS6032720A/en
Publication of JPH0254809B2 publication Critical patent/JPH0254809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はプソイドキユメンあるいはデユレンの
製造方法に関し、詳しくは弗素を含有する特定の
結晶性シリケートを触媒として用いることによ
り、ベンゼン、トルエンあるいはキシレンから効
率よくプソイドキユメンあるいはデユレンを製造
する方法に関する。 従来からプソイドキユメンやデユレンを製造す
る方法としては、ルイス酸触媒を用いる方法や硫
酸などの酸型触媒を用いる方法が知られている。
しかし、前者の方法では装置として耐蝕性のもの
を用いる必要があるほか、生成物の選択性が充分
でない。また後者の方法では原料化合物の転化率
が低いという難点がある。 本発明者らは、上述の如き従来法の欠点を克服
すべく鋭意研究を重ねた結果、ベンゼン、トルエ
ンあるいはキシレンをメチル化するに際して、弗
素含有結晶性アルミノシリケト、弗素含有結晶性
ボロシリケートあるいは弗素含有結晶性ボロアル
ミノシリケートを触媒として用いることにより、
プソイドキユメンやデユレンを効率よく製造しう
ることを見出した。本発明はかかる知見に基いて
完成したものである。 すなわち本発明は、触媒の存在下でベンゼン、
トルエンあるいはキシレンをメチル化してプソイ
ドキユメンあるいはデユレンを製造するにあた
り、触媒として弗素含有結晶性アルミノシリケー
ト、弗素含有結晶性ボロシリケートあるいは弗素
含有結晶性ボロアルミノシリケートを用いること
を特徴とするプソイドキユメンあるいはデユレン
の製造方法を提供するものである。 本発明の方法に用いる触媒は、上述の如く弗素
を含有する結晶性アルミノシリケート、結晶性ボ
ロシリケートあるいは結晶性ボロアルミノシリケ
ートである。これらは一般に結晶性のアルミノシ
リケート、ボロシリケート、ボロアルミノシリケ
ートを弗素化処理することによつて得られる。 ここで結晶性アルミノシリケートとしては各種
のものを用いることができるが、具体的には
ZSM−5、ZSM−11、ZSM−12、ZSM−23、
ZSM−35、ZSM−38、ZSM−48などで代表され
る。このような結晶性アルミノシリケートを調製
するには種々の方法があるが、一般には各種シリ
カ源、アルミナ源および結晶化剤を水性媒体に加
えて、水熱反応することにより調製することがで
きる。例えばアンモニウム型の結晶性アルミノシ
リケートは次のように調製される。すなわち、ま
ず硫酸アルミニウム、濃硫酸およびテトラプロピ
ルアンモニウムブロマイドを含む水溶液(溶液
A)、酸化珪素、酸化ナトリウムおよび水からな
る水ガラスの水溶液(溶液B)、塩化ナトリウム
水溶液(溶液C)をそれぞれ調製し、この溶液A
およびBを溶液Cに滴下し、必要に応じて混合液
のPHを調製し、これをオートクレーブ中で加熱す
る。その後、冷却、洗浄、乾燥および焼成の過程
を経て、ナトリウム型の結晶性アルミノシリケー
トが得られる。さらに得られたナトリウム型の結
晶性アルミノシリケートを硝酸アンモニウム水溶
液で処理してアンモニウム型の結晶性アルミノシ
リケートが得られる。このようにして得られる結
晶性シリケートは粉末状のものであるが、これに
アルミナゾル等のバインダーを加えて成形するこ
ともできる。 一方、結晶性ボロシリケートについても各種の
ものを用いることができ、例えば特開昭53−
55500号公報、特開昭55−7598号公報、特開昭56
−84313号公報、特開昭57−123817号公報、特開
昭57−129820号公報などに記載の結晶性ボロシリ
ケートをあげることができる。このような結晶性
ボロシリケートを調製するには種々の方法がある
が、通常は前述した結晶性アルミノシリケートの
調製法に準じて行なえばよい。なおこの際硫酸ア
ルミニウム等のアルミナ源の代わりに硼酸等の硼
素源を用いればよい。 さらに、結晶性ボロアルミノシリケートに関し
ても様々なものを用いることができ、例えば特開
昭55−6752号公報に記載のものをあげることがで
きる。 このような結晶性ボロアルミノシリケートを調
製するにあたつても、種々の方法があるが、一般
には前述の結晶性アルミノシリケートの調製法に
準じて行ない、この際にシリカ源、アルミナ源と
共に硼酸等の硼素源を用いればよい。 上記方法等により得られた結晶性アルミノシリ
ケート、結晶性ボロシリケートあるいは結晶性ボ
ロアルミノシリケートをそのままの状態で触媒と
して用いても、高い選択率でプソイドキユメンや
デユレンを製造することができず、また反応中、
長期間にわたつて高い触媒活性を維持することが
できない。 そのため本発明の方法では、このような結晶性
のシリケート(結晶性アルミノシリケート、結晶
性ボロシリケート、結晶性ボロアルミノシリケー
ト)に弗素化処理を施して弗素を含有せしめたも
のを触媒として用いる。この弗素化処理は様々な
方法により行なうことができ、要するに結晶性の
シリケート(アルミノシリケート、ボロシリケー
ト、ボロアルミノシリケート)に弗素が導入され
て弗素を含有する結晶性シリケート(アルミノシ
リケート、ボロシリケート、ボロアルミノシリケ
ート)となるような処理であればよい。具体的に
は上記三種の結晶性のシリケートのいずれか一つ
を、フロンガスなどの有機弗素化合物と400〜600
℃にて接触処理したり、弗化水素、弗化ナトリウ
ム、三弗化硼素、モノフルオロ酢酸などと液相で
接触処理したりする方法が考えられる。なお、上
記フロンガスは種々のものがあり、フロン−11
(CFCl3)、フロン−12(CF2Cl2)、フロン−13
(CF3Cl)、フロン−21(CHFCl2)、フロン−22
(CHF2Cl)、フロン−23(CHF3)、フロン113
(CF2ClCFCl2)、フロン−114(CF2ClCF2Cl)など
をあげることができる。また、別法として結晶性
のシリケート(結晶性アルミノシリケート、結晶
性ボロシリケート、結晶性ボロアルミノシリケー
ト)を調製する際に、シリカ源、アルミナ源ある
いはホウ素源などと共に、水熱反応の段階で弗素
源を加えて、これらの結晶性のシリケートに弗素
を含有させることもできる。この場合、弗素源と
しては、弗化水素酸、弗化ナトリウム等の水溶性
の化合物が好ましい。 上述の処理にて得られた弗素を含有する結晶性
のシリケートは、そのままあるいはアルミナ等の
適当なバインダーを加えて成型し、さらに550〜
1000℃にて焼成したものを本発明の方法における
メチル化反応の触媒として用いる。 本発明の方法では、原料化合物としてベンゼ
ン、トルエン、キシレン(p−キシレン、o−キ
シレン、m−キシレンあるいはこれらの混合物)
を用いるが、そのうちキシレンが特に好ましく、
これを上記触媒の存在下でメチル化剤にてメチル
化してプソイドキユメンやデユレンを製造する。
ここで使用するメチル化剤は、メタノール、ジメ
チルエーテル、塩化メチル、臭化メチルなど様々
なものがあげられるが、特にメタノール、ジメチ
ルエーテルが好ましい。またこのメチル化剤の使
用量は反応条件、目的とする反応生成物の種類等
により適宜定めればよいが、通常は原料化合物で
あるベンゼン、トルエンあるいはキシレンとの割
合を、原料化合物/メチル化剤=4/1〜11/20(モ
ル比)、好ましくは1/1〜1/10(モル比)とすべき
である。 本発明の方法では、上述した以外の条件につい
ては特に制限はないが、一般的な条件を示せば、
反応温度250〜400℃、好ましくは280〜350℃、反
応圧力常圧〜100Kg/cm2G、好ましくは常圧〜10
Kg/cm2G、液時空間速度(LHSV)0.05〜
100hr-1、好ましくは0.1〜10hr-1である。 本発明の方法によれば、原料や生成物のトラン
スメチル化反応やメチル化剤の分解が抑制される
など副反応が少なく、その結果ベンゼン、トルエ
ンあるいはキシレンの転化率ならびにプソイドキ
ユメンやデユレンの選択率が向上する。また、同
時に触媒寿命が非常に長いため、長時間にわたつ
て高い触媒活性を維持した状態で連続運転を行な
うことができる。さらに本発明の方法では、反応
条件や反応時間を適当に選択することによつて、
プソイドキユメンやデユレンのどちらか一方ある
いは両方を所望する割合で製造することができ
る。例えばキシレンを原料とする場合には、反応
条件を比較的穏やかにして、また短時間の反応を
行なえば、メチル化があまり進行せず、プソイド
キユメンが多量に得られ、逆に条件を厳しく、ま
た反応時間を長くすれば、デユレンの生成割合が
増大することとなる。さらに、プソイドキユメン
をメチル化してデユレンを得ることができる。 従つて、本発明の方法は、プソイドキユメンや
デユレンの工業的な製造方法として極めて有利で
あり、かつ利用価値の高いものである。 次に本発明を実施例および比較例によりさらに
詳しく説明する。 参考例 1(結晶性ボロシリケートの調製) 硼酸0.67g、濃硫酸17.68gおよびテトラプロ
ピルアンモニウムブロマイド26.32gを水250mlに
加えた溶液Aと、水ガラス(組成:酸化珪素
28.95重量%、酸化ナトリウム9.40重量%、水
61.65重量%)211.1gを水250mlに加えた溶液B
をそれぞれ調製した。 次いで溶液AおよびBを塩化ナトリウム79.0g
を水122mlに加えてなる溶液に室温で60分間にわ
たつて同時に滴下した。得られた混合液は硫酸を
用いてPH9.5に調整し、この溶液をオートクレー
ブに入れて反応温度170℃で20時間加熱処理した。
冷却下、オートクレーブ内容物を濾過し、得られ
た固形物を水で洗浄した後、1規定硝酸アンモニ
ウム水溶液300mlを加えて90℃8時間の条件で3
回イオン交換を行ないアンモニウム型の結晶性ボ
ロシリケートを得た。その後内容物を濾過、水で
洗浄し、120℃で24時間乾燥しついで550℃で6時
間焼成してH型の結晶性ボロシリケート58gを得
た。この結晶性ボロシリケートの組成はSiO2
B2O3=100(モル比)であつた。このようにして
得られた粉末状H型結晶性ボロシリケートにバイ
ンダー含量が20重量%となるようにアルミナゾル
を加えて成形し、120℃で3時間乾燥した後、550
℃で6時間空気中にて焼成してペレツト状に成形
されたH型結晶性ボロシリケートを得た。 実施例 1 参考例1で得られたペレツト状の結晶性ボロシ
リケートを、触媒調製管に充填し、500℃におい
てフロン−114(1,1,2,2−テトラフルオロ
−1,2−ジクロルエタン)を70ml/分で1時間
供給して弗素化処理を行ない、弗素含有結晶性ボ
ロシリケートを得た。このボロシリケートを流通
型反応器に充填し、原料のp−キシレンとメチル
アルコールのモル比を1:4の割合で混合して供
給し、反応温度300℃、常圧下において
LHSV1hr-1として反応を行なつた。反応経過4
時間後の結果を第1表に示す。 比較例 1 実施例1において、参考例1で得られた結晶性
ボロシリケートをそのまま反応器に充填し、反応
温度を330℃としたこと以外は実施例1と同様に
して反応を行なつた。反応経過4時間後の結果を
第1表に示す。 参考例 2 (結晶性アルミノシリケート(ZSM−5)の
調製) 硫酸アルミニウム(18水塩)6.2g、濃硫酸
17.68gおよびテトラプロピルアンモニウムブロ
マイド26.32gを水250mlに加えた溶液Aおよび水
ガラス(組成:酸化珪素28.95wt%、酸化ナトリ
ウム9.40wt%、水61.65wt%)211.1gを水250ml
に加えた溶液Bをそれぞれ調製した。次いで、溶
液AおよびBを塩化ナトリウム79.0gを水122ml
に加えてなる溶液に室温にて60分間にわたつて同
時に滴下した。得られた混合物は硫酸を用いてPH
9.5に調整した。この溶液をオートクレーブに入
れて、反応温度170℃で20時間加熱処理した。冷
却下、オートクレーブ内容物を濾過し、得られた
固形物を水で洗浄した後、1規定硝酸アンモニウ
ム水溶液300mlを加えて、90℃8時間の条件で3
回イオン交換を行ない、アンモニウム型の結晶性
アルミノシリケートを得た。この後、内容物を濾
過水洗し120℃で24時間乾燥して、ついで550℃で
6時間焼成してH型結晶性アルミノシリケートを
得た。得られたH型結晶性アルミノシリケートゼ
オライトの組成はSiO2/Al2O3=100(モル比)で
あつた。このH型結晶性アルミノシリケートにバ
インダー含量が20重量%となるようにアルミナゾ
ルを加えて成形し、120℃で3時間乾燥しさらに
550℃で6時間空気中で焼成して触媒を得た。 実施例 2 実施例1において、参考例2で得られた触媒を
用いたこと以外は実施例1と同様にして触媒の弗
素化処理およびp−キシレンのメチル化反応を行
なつた。反応経過4時間後の結果を第1表に示す 比較例 2 実施例1において、参考例2で得られた触媒を
そのまま用いたほかは、実施例1と同様に反応を
行なつた。反応経過4時間後の結果を第1表に示
す。 参考例 3 (結晶性ボロアルミノシリケートの調製) 硼酸素3.35g、硫酸アルミニウム(18水塩)
6.2g、濃硫酸17.68gおよびテトラプロピルアン
モニウムブロマイド26.32gを水250mlに加えた溶
液Aと、水ガラス(組成:酸化珪素28.95重量%
酸化ナトリウム9.40重量%、水61.65重量%)
211.1gを水250mlに加えた溶液Bをそれぞれ調製
した。 次いで溶液AおよびBを塩化ナトリウム79.0g
を水122mlに加えてなる溶液に室温で60分間にわ
たつて同時に滴下した。得られた混合液は硫酸を
用いてPH9.5に調整し、この溶液をオートクレー
ブに入れて反応温度170℃で20時間加熱処理した。
冷却下、オートクレーブ内容物を濾過し、得られ
た固形物を水で洗浄した後、1規定硝酸アンモニ
ウム水溶液300mlを加えて90℃8時間の条件で3
回イオン交換を行ないアンモニウム型の結晶性ボ
ロアルミノシリケートを得た。その後内容物を濾
過、水で洗浄し、120℃で24時間乾燥しついで550
℃で6時間焼成してH型の結晶性ボロアルミノシ
リケート58gを得た。得られたH型結晶性ボロア
ルミノシリケートの組成はSiO2/Al2O3/B2O3
=100/1/5(モル比)であつた。 このようにして得られた粉末状H型結晶性ボロ
アルミノシリケートにバインダー含量が20重量%
となるようにアルミナゾルを加えて成形し、120
℃で3時間乾燥した後、550℃で6時間空気中で
焼成して触媒を得た。 実施例 3 実施例1において、参考例3で得られた触媒を
用いたこと以外は実施例1と同様に触媒の弗素化
処理およびp−キシレンのメチル化反応を行なつ
た。反応経過4時間後の結果を第1表に示す。 比較例 3 実施例1において、参考例3で得られた触媒を
そのまま用いたこと以外は、実施例1と同様にし
て反応を行なつた。反応経過4時間後の結果を第
1表に示す。 参考例 4 アルミン酸ソーダ(Al2O335wt%および
Na2O30wt%を含有)0.12g、水酸化ナトリウム
1.5gおよび弗化アンモニウム0.80gを水185mlに
溶解し、さらにこれにテトラプロピルアンモニウ
ムブロマイド14.2gを溶解させた溶液Aおよびシ
リカの固型含量30wt%のシリカゾル水溶液38.0g
の溶液Bを調製した。これら溶液AとBを室温に
おいて水20mlを入れた容器に30分間にわたつて同
時に滴下した。得られた混合液は硫酸を用いてPH
9.5に調整し、この溶液をオートクレーブに入れ
て反応温度170℃で20時間加熱処理した。冷却下、
オートクレーブ内容物を濾過し、得られた固形物
を水で洗浄した後、1規定硝酸アンモニウム水溶
液300mlを加えて90℃、8時間の条件で3回イオ
ン交換を行ない、アンモニウム型の弗素含有結晶
性アルミノシリケートを得た。ついで、内容物を
濾過水洗し、120℃で24時間乾燥し、550℃で6時
間焼成してH型の弗素含有結晶性アルミノシリケ
ートを得た。次にこの弗素含有結晶性アルミノシ
リケートにバインダー含量が20wt%となるよう
にアルミナゾルを加えて成形し、120℃で3時間
乾燥し、さらに550℃で6時間空気中で焼成して
触媒を得た。 実施例 4 実施例1において、参考例4で得られた触媒を
用いたこと以外は実施例1と同様にしてp−キシ
レンのメチル化反応を行なつた。反応経過4時間
後の結果を第1表に示す。 実施例 5 実施例1における反応原料のp−キシレンに代
えてトルエンを用い、かつ反応温度を330℃とし
たほかは、実施例1と同様にして反応を行なつ
た。反応経過4時間後の結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pseudokyumene or duurene, and more specifically, a method for efficiently producing pseudokyumene or duurene from benzene, toluene, or xylene by using a specific crystalline silicate containing fluorine as a catalyst. Regarding the method. Conventionally, methods using a Lewis acid catalyst and methods using an acid type catalyst such as sulfuric acid are known as methods for producing pseudokyumene and duurene.
However, in the former method, it is necessary to use a corrosion-resistant device, and the selectivity of the product is not sufficient. Furthermore, the latter method has the disadvantage that the conversion rate of the raw material compound is low. As a result of extensive research to overcome the drawbacks of the conventional methods as described above, the present inventors have discovered that when methylating benzene, toluene or xylene, fluorine-containing crystalline aluminosilicate, fluorine-containing crystalline borosilicate, or fluorine-containing crystalline borosilicate, By using crystalline boroaluminosilicate as a catalyst,
It was discovered that pseudokyumene and duurene can be produced efficiently. The present invention was completed based on this knowledge. That is, the present invention provides benzene in the presence of a catalyst,
Production of pseudokyumene or duurene, which is characterized in that a fluorine-containing crystalline aluminosilicate, a fluorine-containing crystalline borosilicate, or a fluorine-containing crystalline boroaluminosilicate is used as a catalyst in producing pseudokyumene or duurene by methylating toluene or xylene. The present invention provides a method. The catalyst used in the method of the present invention is a fluorine-containing crystalline aluminosilicate, crystalline borosilicate, or crystalline boroaluminosilicate as described above. These are generally obtained by subjecting crystalline aluminosilicate, borosilicate, or boroaluminosilicate to a fluorination treatment. Various types of crystalline aluminosilicate can be used here, but specifically,
ZSM-5, ZSM-11, ZSM-12, ZSM-23,
Representative examples include ZSM-35, ZSM-38, and ZSM-48. There are various methods for preparing such crystalline aluminosilicate, but generally it can be prepared by adding various silica sources, alumina sources, and crystallizing agents to an aqueous medium and carrying out a hydrothermal reaction. For example, ammonium type crystalline aluminosilicate is prepared as follows. That is, first, an aqueous solution containing aluminum sulfate, concentrated sulfuric acid, and tetrapropylammonium bromide (solution A), an aqueous solution of water glass consisting of silicon oxide, sodium oxide, and water (solution B), and an aqueous sodium chloride solution (solution C) were prepared, respectively. , this solution A
and B are added dropwise to solution C, the pH of the mixture is adjusted as necessary, and this is heated in an autoclave. Thereafter, a sodium type crystalline aluminosilicate is obtained through a process of cooling, washing, drying and calcination. Further, the obtained sodium type crystalline aluminosilicate is treated with an aqueous ammonium nitrate solution to obtain an ammonium type crystalline aluminosilicate. The crystalline silicate thus obtained is in powder form, but it can also be molded by adding a binder such as alumina sol. On the other hand, various types of crystalline borosilicate can be used, such as JP-A-53-
55500, JP 55-7598, JP 56
Examples thereof include crystalline borosilicates described in Japanese Patent Application Laid-open No. 84313, Japanese Patent Application Laid-open No. 57-123817, and Japanese Patent Application Laid-open No. 129820-1984. Although there are various methods for preparing such a crystalline borosilicate, it is usually carried out in accordance with the method for preparing the crystalline aluminosilicate described above. In this case, a boron source such as boric acid may be used instead of an alumina source such as aluminum sulfate. Furthermore, various crystalline boroaluminosilicates can be used, such as those described in JP-A-55-6752. There are various methods for preparing such crystalline boroaluminosilicate, but it is generally carried out in accordance with the method for preparing crystalline aluminosilicate described above, in which boric acid is added together with a silica source and an alumina source. A boron source such as the following may be used. Even if the crystalline aluminosilicate, crystalline borosilicate, or crystalline boroaluminosilicate obtained by the above method is used as a catalyst as it is, it is not possible to produce pseudokyumene or durene with high selectivity, and the reaction During,
It is not possible to maintain high catalytic activity over a long period of time. Therefore, in the method of the present invention, such a crystalline silicate (crystalline aluminosilicate, crystalline borosilicate, crystalline boroaluminosilicate) is subjected to a fluorination treatment to contain fluorine and used as a catalyst. This fluorination treatment can be carried out by various methods, and in short, fluorine is introduced into a crystalline silicate (aluminosilicate, borosilicate, boroaluminosilicate) to form a crystalline silicate containing fluorine (aluminosilicate, borosilicate, borosilicate). Any treatment that results in a boroaluminosilicate (boroaluminosilicate) may be used. Specifically, one of the three types of crystalline silicates mentioned above is mixed with an organic fluorine compound such as chlorofluorocarbon gas at a concentration of 400 to 600%.
Possible methods include contact treatment at ℃ or contact treatment with hydrogen fluoride, sodium fluoride, boron trifluoride, monofluoroacetic acid, etc. in a liquid phase. There are various types of chlorofluorocarbon gases mentioned above, including chlorofluorocarbon-11.
(CFCl 3 ), Freon-12 (CF 2 Cl 2 ), Freon-13
(CF 3 Cl), Freon-21 (CHFCl 2 ), Freon-22
(CHF 2 Cl), Freon-23 (CHF 3 ), Freon 113
(CF 2 ClCFCl 2 ), Freon-114 (CF 2 ClCF 2 Cl), etc. Alternatively, when preparing crystalline silicates (crystalline aluminosilicate, crystalline borosilicate, crystalline boroaluminosilicate), fluorine is added in the hydrothermal reaction stage along with the silica source, alumina source, or boron source. These crystalline silicates can also contain fluorine by adding a source. In this case, the fluorine source is preferably a water-soluble compound such as hydrofluoric acid or sodium fluoride. The fluorine-containing crystalline silicate obtained by the above treatment is molded as it is or with the addition of a suitable binder such as alumina, and further
The product calcined at 1000°C is used as a catalyst for the methylation reaction in the method of the present invention. In the method of the present invention, benzene, toluene, xylene (p-xylene, o-xylene, m-xylene or a mixture thereof) is used as a raw material compound.
of which xylene is particularly preferred;
This is methylated with a methylating agent in the presence of the above catalyst to produce pseudokyumene and duurene.
The methylating agent used here includes various agents such as methanol, dimethyl ether, methyl chloride, and methyl bromide, but methanol and dimethyl ether are particularly preferred. The amount of this methylating agent to be used may be determined as appropriate depending on the reaction conditions, the type of desired reaction product, etc., but usually the ratio of the raw material compound benzene, toluene, or xylene to the raw material compound/methylation The agent should be between 4/1 and 11/20 (molar ratio), preferably between 1/1 and 1/10 (molar ratio). In the method of the present invention, there are no particular restrictions on conditions other than those described above, but general conditions are as follows:
Reaction temperature: 250-400°C, preferably 280-350°C, reaction pressure: normal pressure - 100Kg/ cm2G , preferably normal pressure - 10
Kg/cm 2 G, liquid hourly space velocity (LHSV) 0.05~
100 hr −1 , preferably 0.1 to 10 hr −1 . According to the method of the present invention, there are few side reactions such as suppressing the transmethylation reaction of raw materials and products and the decomposition of the methylating agent, and as a result, the conversion rate of benzene, toluene or xylene, and the selectivity of pseudokyumene and duurene are reduced. will improve. Furthermore, since the catalyst has a very long life, continuous operation can be performed while maintaining high catalytic activity for a long period of time. Furthermore, in the method of the present invention, by appropriately selecting reaction conditions and reaction time,
Either or both of pseudokyumene and duurene can be produced in desired proportions. For example, when using xylene as a raw material, if the reaction conditions are relatively mild and the reaction is carried out for a short time, methylation will not proceed much and a large amount of pseudokyumene will be obtained; If the reaction time is increased, the production rate of duurene will increase. Furthermore, pseudokyumene can be methylated to obtain duurene. Therefore, the method of the present invention is extremely advantageous and has high utility value as an industrial method for producing pseudokyumene and durene. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Reference Example 1 (Preparation of crystalline borosilicate) Solution A in which 0.67 g of boric acid, 17.68 g of concentrated sulfuric acid, and 26.32 g of tetrapropylammonium bromide were added to 250 ml of water, and water glass (composition: silicon oxide)
28.95% by weight, sodium oxide 9.40% by weight, water
Solution B in which 211.1g (61.65% by weight) was added to 250ml of water
were prepared respectively. Then solutions A and B were added with 79.0 g of sodium chloride.
were simultaneously added dropwise to a solution of 122 ml of water at room temperature over 60 minutes. The resulting mixed solution was adjusted to pH 9.5 using sulfuric acid, and the solution was placed in an autoclave and heat-treated at a reaction temperature of 170° C. for 20 hours.
While cooling, the contents of the autoclave were filtered, and the resulting solid was washed with water. After adding 300 ml of a 1N ammonium nitrate aqueous solution, the mixture was incubated at 90°C for 8 hours.
Ammonium type crystalline borosilicate was obtained by performing ion exchange twice. Thereafter, the contents were filtered, washed with water, dried at 120°C for 24 hours, and calcined at 550°C for 6 hours to obtain 58 g of H-type crystalline borosilicate. The composition of this crystalline borosilicate is SiO 2 /
B 2 O 3 =100 (molar ratio). Alumina sol was added to the powdered H-type crystalline borosilicate thus obtained so that the binder content was 20% by weight, and after drying at 120°C for 3 hours,
C. for 6 hours in air to obtain H-type crystalline borosilicate shaped into pellets. Example 1 The pellet-like crystalline borosilicate obtained in Reference Example 1 was charged into a catalyst preparation tube, and Flon-114 (1,1,2,2-tetrafluoro-1,2-dichloroethane) was heated at 500°C. was supplied at a rate of 70 ml/min for 1 hour to carry out the fluorination treatment to obtain a fluorine-containing crystalline borosilicate. This borosilicate was packed into a flow-type reactor, and the raw materials p-xylene and methyl alcohol were mixed at a molar ratio of 1:4 and fed, and the reaction temperature was 300°C and the mixture was heated under normal pressure.
The reaction was carried out as LHSV1hr -1 . Reaction progress 4
The results after hours are shown in Table 1. Comparative Example 1 In Example 1, the reaction was carried out in the same manner as in Example 1, except that the crystalline borosilicate obtained in Reference Example 1 was directly charged into a reactor and the reaction temperature was set at 330°C. Table 1 shows the results after 4 hours of reaction. Reference example 2 (Preparation of crystalline aluminosilicate (ZSM-5)) 6.2 g of aluminum sulfate (18 hydrate), concentrated sulfuric acid
Solution A in which 17.68 g and 26.32 g of tetrapropylammonium bromide were added to 250 ml of water and 211.1 g of water glass (composition: silicon oxide 28.95 wt%, sodium oxide 9.40 wt%, water 61.65 wt%) in 250 ml of water
A solution B was prepared in which each solution was added to the following. Next, add solutions A and B to 79.0 g of sodium chloride and 122 ml of water.
were simultaneously added dropwise over 60 minutes at room temperature. The resulting mixture was PHed using sulfuric acid.
Adjusted to 9.5. This solution was placed in an autoclave and heated at a reaction temperature of 170°C for 20 hours. While cooling, the contents of the autoclave were filtered, and the resulting solid was washed with water. After adding 300 ml of a 1N ammonium nitrate aqueous solution, the mixture was incubated at 90°C for 8 hours.
After performing ion exchange twice, ammonium type crystalline aluminosilicate was obtained. Thereafter, the contents were filtered, washed with water, dried at 120°C for 24 hours, and then calcined at 550°C for 6 hours to obtain H-type crystalline aluminosilicate. The composition of the obtained H-type crystalline aluminosilicate zeolite was SiO 2 /Al 2 O 3 =100 (molar ratio). Alumina sol was added to this H-type crystalline aluminosilicate so that the binder content was 20% by weight, molded, dried at 120°C for 3 hours, and further
A catalyst was obtained by calcining in air at 550°C for 6 hours. Example 2 In Example 1, the fluorination treatment of the catalyst and the methylation reaction of p-xylene were carried out in the same manner as in Example 1, except that the catalyst obtained in Reference Example 2 was used. The results after 4 hours of reaction are shown in Table 1. Comparative Example 2 The reaction was carried out in the same manner as in Example 1, except that the catalyst obtained in Reference Example 2 was used as it was. Table 1 shows the results after 4 hours of reaction. Reference example 3 (Preparation of crystalline boroaluminosilicate) Boron oxygen 3.35g, aluminum sulfate (18 hydrate)
6.2 g of concentrated sulfuric acid, 17.68 g of tetrapropylammonium bromide, and 26.32 g of tetrapropylammonium bromide in 250 ml of water, and water glass (composition: 28.95% by weight of silicon oxide).
Sodium oxide 9.40% by weight, water 61.65% by weight)
Solution B was prepared by adding 211.1 g to 250 ml of water. Then solutions A and B were added with 79.0 g of sodium chloride.
were simultaneously added dropwise to a solution of 122 ml of water at room temperature over 60 minutes. The resulting mixed solution was adjusted to pH 9.5 using sulfuric acid, and the solution was placed in an autoclave and heat-treated at a reaction temperature of 170° C. for 20 hours.
While cooling, the contents of the autoclave were filtered, and the resulting solid was washed with water. After adding 300 ml of a 1N ammonium nitrate aqueous solution, the mixture was incubated at 90°C for 8 hours.
Ammonium type crystalline boroaluminosilicate was obtained by performing ion exchange twice. The contents were then filtered, washed with water, dried at 120°C for 24 hours, and heated to 550°C.
C. for 6 hours to obtain 58 g of H-type crystalline boroaluminosilicate. The composition of the obtained H-type crystalline boroaluminosilicate is SiO 2 /Al 2 O 3 /B 2 O 3
=100/1/5 (molar ratio). The powdered H-type crystalline boroaluminosilicate thus obtained has a binder content of 20% by weight.
Add alumina sol and mold to give 120
After drying at ℃ for 3 hours, it was calcined in air at 550 ℃ for 6 hours to obtain a catalyst. Example 3 In Example 1, the fluorination treatment of the catalyst and the methylation reaction of p-xylene were carried out in the same manner as in Example 1, except that the catalyst obtained in Reference Example 3 was used. Table 1 shows the results after 4 hours of reaction. Comparative Example 3 In Example 1, a reaction was carried out in the same manner as in Example 1, except that the catalyst obtained in Reference Example 3 was used as it was. Table 1 shows the results after 4 hours of reaction. Reference example 4 Sodium aluminate (Al 2 O 3 35wt% and
Contains 30wt% Na 2 O) 0.12g, sodium hydroxide
Solution A in which 1.5 g of ammonium fluoride and 0.80 g of ammonium fluoride were dissolved in 185 ml of water, and 14.2 g of tetrapropylammonium bromide was further dissolved therein, and 38.0 g of an aqueous silica sol solution with a solid content of silica of 30 wt%.
Solution B was prepared. These solutions A and B were simultaneously dropped over 30 minutes into a container containing 20 ml of water at room temperature. The resulting mixture was PHed using sulfuric acid.
9.5, and this solution was placed in an autoclave and heat-treated at a reaction temperature of 170°C for 20 hours. Under cooling,
After filtering the contents of the autoclave and washing the obtained solid with water, 300 ml of 1N ammonium nitrate aqueous solution was added and ion exchange was performed three times at 90°C for 8 hours to obtain ammonium-type fluorine-containing crystalline aluminium. Obtained silicate. The contents were then filtered, washed with water, dried at 120°C for 24 hours, and calcined at 550°C for 6 hours to obtain H-type fluorine-containing crystalline aluminosilicate. Next, alumina sol was added to this fluorine-containing crystalline aluminosilicate so that the binder content was 20 wt%, and the mixture was molded, dried at 120°C for 3 hours, and further calcined in air at 550°C for 6 hours to obtain a catalyst. . Example 4 In Example 1, the methylation reaction of p-xylene was carried out in the same manner as in Example 1 except that the catalyst obtained in Reference Example 4 was used. Table 1 shows the results after 4 hours of reaction. Example 5 A reaction was carried out in the same manner as in Example 1, except that toluene was used in place of p-xylene as the reaction raw material in Example 1, and the reaction temperature was 330°C. Table 1 shows the results after 4 hours of reaction. 【table】

Claims (1)

【特許請求の範囲】 1 触媒の存在下でベンゼン、トルエンあるいは
キシレンをメチル化してプソイドキユメンあるい
はデユレンを製造するにあたり、触媒として弗素
含有結晶性アルミノシリケート、弗素含有結晶性
ボロシリケートあるいは弗素含有結晶性ボロアル
ミノシリケートを用いることを特徴とするプソイ
ドキユメンあるいはデユレンの製造方法。 2 メチル化剤としてメチルアルコールまたはジ
メチルエーテルを用いる特許請求の範囲第1項記
載の方法。
[Claims] 1. In producing pseudokyumene or duurene by methylating benzene, toluene, or xylene in the presence of a catalyst, a fluorine-containing crystalline aluminosilicate, a fluorine-containing crystalline borosilicate, or a fluorine-containing crystalline borosilicate is used as a catalyst. A method for producing pseudokyumene or durene, characterized by using aluminosilicate. 2. The method according to claim 1, wherein methyl alcohol or dimethyl ether is used as the methylating agent.
JP58137492A 1983-07-29 1983-07-29 Production of pseudocumene or durene Granted JPS6032720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137492A JPS6032720A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137492A JPS6032720A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Publications (2)

Publication Number Publication Date
JPS6032720A JPS6032720A (en) 1985-02-19
JPH0254809B2 true JPH0254809B2 (en) 1990-11-22

Family

ID=15199913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137492A Granted JPS6032720A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Country Status (1)

Country Link
JP (1) JPS6032720A (en)

Also Published As

Publication number Publication date
JPS6032720A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
US4548913A (en) Catalyst, a process for its preparation and an isomerization process in the presence of this catalyst
JPH0437737B2 (en)
JPS6132294B2 (en)
US4520219A (en) Process for the production of pseudocumene or durene
JPS593932B2 (en) Method for producing crystalline aluminosilicate
JPS6241574B2 (en)
US4721825A (en) Process for the production of xylene
US4503164A (en) Zeolite-type catalyst and process for preparing same
EP0129239B1 (en) Method for the synthesis of zsm-5 zeolite, at atmospheric pressure and at low temperature
JPH0254809B2 (en)
JPS6229536A (en) Production of 2,6-and 2,7-dimethylnaphthalene
JPH07247114A (en) Production of zeolite beta
JPH0376296B2 (en)
JPH0513933B2 (en)
JPH0246012B2 (en)
JP2571200B2 (en) Method for producing dialkylbenzene
JPH0375536B2 (en)
JPH0667761B2 (en) Method for producing fluorine-containing crystalline aluminosilicate
JPH0246077B2 (en)
JPH01213242A (en) Production of dialkylbenzene
JPH04342539A (en) Isomerization of dichlorotoluene
JPH0516415B2 (en)
JPH0339495B2 (en)
JPS6372640A (en) Production of diphenyl ethers
JPH0480855B2 (en)