JPH0375536B2 - - Google Patents

Info

Publication number
JPH0375536B2
JPH0375536B2 JP58107890A JP10789083A JPH0375536B2 JP H0375536 B2 JPH0375536 B2 JP H0375536B2 JP 58107890 A JP58107890 A JP 58107890A JP 10789083 A JP10789083 A JP 10789083A JP H0375536 B2 JPH0375536 B2 JP H0375536B2
Authority
JP
Japan
Prior art keywords
catalyst
zsm
aluminosilicate
toluene
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58107890A
Other languages
Japanese (ja)
Other versions
JPS601141A (en
Inventor
Yoshihiro Oda
Haruhito Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP58107890A priority Critical patent/JPS601141A/en
Priority to US06/618,461 priority patent/US4721825A/en
Priority to GB08414865A priority patent/GB2144447B/en
Publication of JPS601141A publication Critical patent/JPS601141A/en
Publication of JPH0375536B2 publication Critical patent/JPH0375536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はキシレンの製造方法に関し、詳しくは
特定の弗素化アルミノシリケートを触媒として用
いることにより、トルエンやベンゼンから高い選
択率にてキシレンを製造する方法に関する。 従来からトルエンまたはベンゼンをメチル化し
てキシレンを製造することが行なわれており、そ
の際に用いる触媒としてZSM−5、ZSM−11な
どの結晶性アルミノシリケートが知られている
(特開昭51−57688号公報および同52−120292号公
報など)。 しかしながら、これらZSM−5などの結晶性
アルミノシリケートをそのまま触媒として用いて
トルエンのメチル化反応を行なうと、不均化反応
などが起りやすく、その結果、キシレンの選択率
が低下するという欠点があつた。また、触媒寿命
についても実用触媒としては充分なものとは言え
なかつた。 そこで本発明者らは、上記従来技術の欠点を克
服し、キシレンを高い選択率で製造することがで
き、また高い触媒活性を長時間維持することので
きる方法を開発すべく鋭意研究を重ねた。 その結果、ZSM−5、ZSM−11などの特定の
結晶性アルミノシリケートを弗素処理したものを
触媒として用いると、トルエンやベンゼンからキ
シレンを効率よく製造しうることを見出し、本発
明を完成するに至つた。 すなわち本発明は、触媒の存在下でトルエンま
たはベンゼンをメチル化剤でメチル化してキシレ
ンを製造するにあたり、シリカ/アルミナモル比
が12以上でありかつ制御指数が1〜12のアルミノ
シリケートを弗素処理して得られる弗素化アルミ
ノシリケートを触媒として用いることを特徴とす
るキシレンの製造方法を提供するものである。 本発明に用いるアルミノシリケートは、シリ
カ/アルミナモル比が12以上、好ましくは20〜
400であり、しかも制御指数が1〜12、好ましく
は5〜10のものである。ここでシリカ/アルミナ
モル比は、従来の分析法によつて測定されるもの
であるが、制御指数についてはJ.CATAL.67
218(1981)に記載された定義に従つて測定され
る。 この制御指数は、対象とするアルミノシリケー
トがn−パラフインより大きな断面の分子の進入
を制御する必要な特性を有するか否かを判断する
基準となるものであつて、一定の手順に従つて大
気圧下でアルミノシリケートのサンプル上にn−
ヘキサンと3−メチルペンタンとの等重量混合物
を連続的に通すことによつて簡単に決定される。
この手順はJ.CATAL.67,218(1981)に記載され
ているとおりである。ここに記載された手順にし
たがつて制御指数は、下記の如く定義される。 制御指数=log10(残存くるn−ヘキサンの割合)/l
og10(残存する3−メチルペンタンの割合) 本発明に用いるアルミノシリケートは、前述し
たように制御指数が1〜12の範囲のものでなけれ
ばならない。制御指数が1未満のものでは細孔径
が大きくなりすぎて、トリメチルベンゼンなどの
生成を伴なうため、キシレンの選択率の低下を招
く。一方、12を超えるものでは細孔径が小さくな
りすぎて、トルエン、ベンゼンのメチル化反応が
進行しなくなる。 本発明に用いるアルミノシリケートは上述した
範囲のシリカ/アルミナモル比および制御指数を
有するものであれば特に制限なく様々なものがあ
げられるが、具体的にはペンタシルフアミリーと
呼ばれる一群のアルミノシリケートでZSM−5,
ZSM−11、ZSM−12、ZSM−23、ZSM−35、
ZSM−38、ZSM−48などで代表される。 本発明では、このようなアルミノシリケートに
弗素処理を施して弗素化アルミノシリケートとし
たものを触媒として用いる。この弗素処理は、
様々な方法により行なうことができ、要するにア
ルミノシリケート中に弗素が導入されて弗素化ア
ルミノシリケートとなるような処理であればよ
い。具体的にはアルミノシリケートを、フロンガ
スなどの有機弗素化合物と400〜600℃にて接触処
理したり、弗化水素酸、弗化ナトリウム、三弗化
硼素、モノフルオロ酢酸などと液相で接触処理し
たりする方法が考えられる。なお、上記フロンガ
スは種々のものがあり、フロン−11(CFCl3)、フ
ロン−12(CF2Cl2)、フロン−13(CF3Cl)、フロン
−21(CHFCl2)、フロン−22(CHF2Cl)、フロン
−23(CHF3)、フロン113(CF2ClCFCl2)、フロン
−114(CF2ClCF2Cl)などをあげることができる。 本発明ではこのようにして得られた弗素化アル
ミノシリケートを触媒として用いるわけである
が、ここでアルミノシリケートを弗素処理するこ
となく、そのまま触媒として用いてトルエンやベ
ンゼンのメチル化反応を行なうと、キシレンの選
択率が充分に高くならず、また触媒寿命も短く実
用に耐えないものとなる。 上述の弗素化アルミノシリケートは、そのまま
あるいはアルミナ等の適当なバインダーを加えて
成型し、さらに550〜1000℃にて焼成したものを
メチル化反応の触媒として用いる。このメチル化
反応に用いる原料化合物はトルエン、ベンゼンあ
るいはこれらの混合物であり、一方、メチル化剤
としては特に制限はないが、例えばメタノール、
ジメチルエーテル、塩化メチル、臭化メチルなど
があげられ、特にメタノールが好ましい。またこ
のメチル化剤の使用量は原料化合物の種類あるい
は反応条件等により適宜定めればよいが、通常は
原料化合物であるトルエン、ベンゼンとメチル化
剤の割合を、前者:後者=1:10〜20:1(モル
比)、好ましくは1:2〜5:1(モル比)とす
る。 本発明の方法は、トルエンあるいはベンゼンを
原料とし、また適当なメチル化剤を使用し、さら
に上述した触媒を用いて行なえばよく、その他の
条件は特に制限はない。一般的な条件を示せば、
反応温度200〜650℃、好ましくは400〜600℃、反
応圧力常圧〜10Kg/cm2G、重量空間速度
(WHSV)0.1〜20hr-1、好ましくは0.5〜10hr-1
である。 叙上の如き本発明の方法によれば、キシレンを
高い選択率ならびに収率にて得ることができると
同時に、触媒寿命が非常に長いため、長時間にわ
たつて高い触媒活性を維持した状態で連続運転を
行なうことができる。 従つて、本発明の方法は、キシレンの工業的な
製造方法として極めて有利であり、かつ利用価値
の高いものである。 次に本発明を実施例および比較例によりさらに
詳しく説明する。 実施例 1 (1) 触媒の調製 硫酸アルミニウム7.5gを水250mlに溶解させ、
さらにこれに濃硫酸17.6gおよびテトラーn−プ
ロピルアンモニウムプロマイド26.3gを溶解させ
てこれをA液とし、水ガラス(J珪酸ソーダ3
号:日本化学工業(株)製)211.0gを水250mlに溶解
させてB液とし、さらに塩化ナトリウム79.0gを
水122mlに溶解させてC液とした。 次いで、上記のA液とB液を、室温にて10分間
にわたり同時にC液に滴下した。得られた混合液
をオートクレーブに入れ、170℃で20時間加熱処
理した。冷却後、内容物を濾過水洗し、120℃で
12時間乾燥させた。生成物をX線回折分析したと
ころZSM−5であることが確認された。得られ
たZSM−5を550℃で6時間焼成することにより
ナトリウム型ZSM−5を56.5g得た。このナトリ
ウム型ZSM−5を5倍重量の1規定硝酸アンモ
ニウム水溶液に加えて、8時間還流した。その
後、冷却して静置し上澄をデカンテーシヨンによ
り除去した。さらに、還流・デカンテーシヨンの
操作を3回繰り返したのち、内容物を濾過・水洗
し、120℃で12時間乾燥し、アンモニウム型ZSM
−5を得た。このアンモニウム型ZSM−5を600
℃で焼成したものの組成はSi/Al=90(モル比)、
制御指数(CI値)=8であつた。次いでこのアン
モニウム型ZSM−5に焼成後のアルミナ含量が
20重量%となるようにバインダーとしてアルミナ
ゾルを加えてペレツトに成形し、120℃で16時間
乾燥したのち、550℃で6時間焼成した。得られ
たペレツト6.5gを反応管に充填し、550℃におい
てフロン−114(1,1,2,2−テトラフルオロ
−1,2−ジクロルエタン)を70ml/分で1時間
供給して、弗素処理をして触媒を得た。 (2) トルエンのメチル化 上記(1)で得られた触媒2gを常圧固定床流通式
反応管に充填し、600℃において原料仕込比(モ
ル比)をトルエン:メタノール=4:1とし、原
料のWHSV=9hr-1として反応を行なつた。反応
結果を第1表に示す。 実施例 2 (1) 触媒の調製 硫酸アルミニウム7.5gを水250mlに溶解させ、
さらに濃硫酸17.6gおよびテトラーn−ブチルア
ンモニウムプロマイド31.3gを溶解させてこれを
A液とし、水ガラス(実施例1と同一)211.0gを
水250mlに溶解させてこれをB液とした。次いで、
A液とB液を室温にて10分間にわたり水122ml中
に同時に滴下した。 得られた混合液をオートクレーブに入れて、
170℃で20時間加熱処理した。ついで冷却後、内
容物を濾過・水洗し、120℃で12時間乾燥させた。
生成物をX線回折分析した結果、ZSM−11であ
ることを確認した。このZSM−11を550℃におい
て6時間焼成し、ナトリウム型ZSM−11を57.7g
得た。さらに、ナトリウム型ZSM−11を5倍重
量の1規定硝酸アンモニウム水溶液に加えて8時
間還流した。その後、冷却して静置し上澄をデカ
ンテーシヨンにより除去した。さらに還流・デカ
ンテーシヨンの操作を3回繰り返した後、内容物
を濾過水洗し、120℃で12時間乾燥し、アンモニ
ウム型ZSM−11を得た。このアンモニウム型
ZSM−11を600℃で焼成したものの組成はSi/Al
=90(モル比)、制御指数(CI値)=8であつた。
次いで得られたアンモニウム型ZSM−11に焼成
後のアルミナ含量が20重量%となるようにバイン
ダーとしてアルミナゾルを加えて成形し、120℃
で16時間乾燥後、550℃で6時間焼成した。得ら
れた焼成ペレツト6.5gを反応管に充填し、500℃
において、フロン−13(トリフルオロクロルメタ
ン)を70ml/分で1時間供給して弗素処理し、触
媒を得た。 (2) トルエンのメチル化 実施例1(2)において、触媒として上記(1)で得ら
れたものを用いたこと以外は、実施例1(2)と同様
に反応を行なつた。反応結果を第1表に示す。 比較例 (1) 触媒の調製 実施例1(1)においてフロン−114による弗素処
理を行なわなかつたこと以外は実施例1(1)と同様
に触媒を調製した。 (2) トルエンのメチル化 実施例1(2)において、触媒として、上記(1)で得
られたものを用いたこと以外は実施例1(2)と同様
に反応を行なつた。反応結果を第1表に示す。
The present invention relates to a method for producing xylene, and more particularly to a method for producing xylene from toluene or benzene with high selectivity by using a specific fluorinated aluminosilicate as a catalyst. Conventionally, xylene has been produced by methylating toluene or benzene, and crystalline aluminosilicates such as ZSM-5 and ZSM-11 are known as catalysts used in this process (Japanese Patent Application Laid-Open No. 1979-1999). Publication No. 57688 and Publication No. 52-120292, etc.). However, when crystalline aluminosilicate such as ZSM-5 is used directly as a catalyst to carry out the methylation reaction of toluene, disproportionation reactions are likely to occur, resulting in a decrease in xylene selectivity. Ta. In addition, the catalyst life could not be said to be sufficient as a practical catalyst. Therefore, the present inventors have conducted extensive research in order to overcome the drawbacks of the above-mentioned conventional techniques and to develop a method that can produce xylene with high selectivity and maintain high catalytic activity for a long time. . As a result, it was discovered that xylene can be efficiently produced from toluene and benzene by using fluorine-treated specific crystalline aluminosilicate such as ZSM-5 and ZSM-11 as a catalyst.This led to the completion of the present invention. I've reached it. That is, in the present invention, when producing xylene by methylating toluene or benzene with a methylating agent in the presence of a catalyst, an aluminosilicate having a silica/alumina molar ratio of 12 or more and a control index of 1 to 12 is treated with fluorine. The present invention provides a method for producing xylene, characterized in that a fluorinated aluminosilicate obtained by the above method is used as a catalyst. The aluminosilicate used in the present invention has a silica/alumina molar ratio of 12 or more, preferably 20 to
400 and a control index of 1 to 12, preferably 5 to 10. Here, the silica/alumina molar ratio is measured by conventional analytical methods, but the control index is determined by J.CATAL. 67 ,
218 (1981). This control index serves as a standard for determining whether the target aluminosilicate has the necessary characteristics to control the entry of molecules with a cross section larger than that of n-paraffin. n- on the aluminosilicate sample under atmospheric pressure.
It is simply determined by successively passing an equal weight mixture of hexane and 3-methylpentane.
This procedure is as described in J.CATAL. 67 , 218 (1981). According to the procedure described herein, the control index is defined as follows. Control index = log 10 (proportion of residual n-hexane)/l
og 10 (proportion of remaining 3-methylpentane) The aluminosilicate used in the present invention must have a control index in the range of 1 to 12, as described above. If the control index is less than 1, the pore diameter becomes too large and trimethylbenzene is produced, resulting in a decrease in xylene selectivity. On the other hand, if it exceeds 12, the pore diameter becomes too small and the methylation reaction of toluene and benzene will not proceed. The aluminosilicate used in the present invention is not particularly limited and may include various aluminosilicates as long as they have the silica/alumina molar ratio and control index within the ranges described above, but specifically ZSM -5,
ZSM-11, ZSM-12, ZSM-23, ZSM-35,
Representative examples include ZSM-38 and ZSM-48. In the present invention, a fluorinated aluminosilicate obtained by subjecting such aluminosilicate to fluorine treatment is used as a catalyst. This fluorine treatment is
This can be carried out by various methods, and in short, any treatment may be used as long as fluorine is introduced into the aluminosilicate to form a fluorinated aluminosilicate. Specifically, aluminosilicate is contacted with an organic fluorine compound such as chlorofluorocarbon gas at 400 to 600°C, or contacted with hydrofluoric acid, sodium fluoride, boron trifluoride, monofluoroacetic acid, etc. in the liquid phase. There are ways to do this. There are various kinds of fluorocarbon gases, including fluorocarbon-11 (CFCl 3 ), fluorocarbon-12 (CF 2 Cl 2 ), fluorocarbon-13 (CF 3 Cl), fluorocarbon-21 (CHFCl 2 ), and fluorocarbon-22 (fluorocarbon-22). CHF 2 Cl), Freon-23 (CHF 3 ), Freon-113 (CF 2 ClCFCl 2 ), Freon-114 (CF 2 ClCF 2 Cl), and the like. In the present invention, the fluorinated aluminosilicate thus obtained is used as a catalyst, but if the aluminosilicate is used as a catalyst as it is without fluorine treatment, the methylation reaction of toluene or benzene will be carried out. The selectivity of xylene is not sufficiently high, and the catalyst life is also short, making it impractical. The above-mentioned fluorinated aluminosilicate is used as a catalyst for the methylation reaction, either as it is or after being molded with a suitable binder such as alumina and then calcined at 550 to 1000°C. The raw material compound used in this methylation reaction is toluene, benzene, or a mixture thereof, while the methylating agent is not particularly limited, but for example, methanol,
Examples include dimethyl ether, methyl chloride, methyl bromide, and methanol is particularly preferred. The amount of the methylating agent to be used may be determined as appropriate depending on the type of raw material compound or reaction conditions, but usually the ratio of the raw material compounds such as toluene or benzene to the methylating agent is 1:10 to 1:1. The molar ratio is 20:1, preferably 1:2 to 5:1 (molar ratio). The method of the present invention may be carried out using toluene or benzene as a raw material, an appropriate methylating agent, and the above-mentioned catalyst, and other conditions are not particularly limited. If we show the general conditions,
Reaction temperature: 200 to 650°C, preferably 400 to 600°C, reaction pressure: normal pressure to 10 Kg/cm 2 G, weight hourly space velocity (WHSV): 0.1 to 20 hr -1 , preferably 0.5 to 10 hr -1
It is. According to the method of the present invention as described above, xylene can be obtained with high selectivity and yield, and at the same time, the catalyst life is extremely long, so that xylene can be obtained while maintaining high catalytic activity for a long period of time. Continuous operation is possible. Therefore, the method of the present invention is extremely advantageous and has high utility value as an industrial method for producing xylene. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 (1) Preparation of catalyst Dissolve 7.5 g of aluminum sulfate in 250 ml of water,
Furthermore, 17.6 g of concentrated sulfuric acid and 26.3 g of Tetra n-propylammonium bromide were dissolved in this to make liquid A, and water glass (J sodium silicate 3
211.0 g of Nippon Kagaku Kogyo Co., Ltd.) was dissolved in 250 ml of water to obtain Solution B, and 79.0 g of sodium chloride was further dissolved in 122 ml of water to obtain Solution C. Next, the above solutions A and B were simultaneously added dropwise to solution C over 10 minutes at room temperature. The resulting mixture was placed in an autoclave and heat-treated at 170°C for 20 hours. After cooling, the contents were filtered, washed with water, and heated to 120°C.
Let dry for 12 hours. X-ray diffraction analysis of the product confirmed that it was ZSM-5. The obtained ZSM-5 was calcined at 550°C for 6 hours to obtain 56.5 g of sodium type ZSM-5. This sodium form ZSM-5 was added to a 1N ammonium nitrate aqueous solution weighing 5 times its weight, and the mixture was refluxed for 8 hours. Thereafter, the mixture was cooled and allowed to stand, and the supernatant was removed by decantation. Furthermore, after repeating the reflux and decantation operations three times, the contents were filtered and washed with water, dried at 120℃ for 12 hours, and ammonium-type ZSM
-5 was obtained. This ammonium type ZSM-5 is 600
The composition of the product fired at °C is Si/Al = 90 (molar ratio),
The control index (CI value) was 8. Next, the alumina content of this ammonium type ZSM-5 after firing was
Alumina sol was added as a binder to give a concentration of 20% by weight, and the pellets were formed into pellets, dried at 120°C for 16 hours, and then fired at 550°C for 6 hours. 6.5 g of the obtained pellets were filled into a reaction tube, and fluorine treatment was carried out by supplying fluorine-114 (1,1,2,2-tetrafluoro-1,2-dichloroethane) at 70 ml/min for 1 hour at 550°C. A catalyst was obtained. (2) Methylation of toluene 2 g of the catalyst obtained in (1) above was packed into an atmospheric fixed bed flow reaction tube, and the raw material charging ratio (molar ratio) was set toluene:methanol = 4:1 at 600°C. The reaction was carried out with the WHSV of the raw material = 9 hr -1 . The reaction results are shown in Table 1. Example 2 (1) Preparation of catalyst Dissolve 7.5 g of aluminum sulfate in 250 ml of water,
Further, 17.6 g of concentrated sulfuric acid and 31.3 g of tetra-n-butylammonium bromide were dissolved to prepare a solution A, and 211.0 g of water glass (same as in Example 1) was dissolved in 250 ml of water to obtain a solution B. Then,
Solutions A and B were simultaneously dropped into 122 ml of water at room temperature for 10 minutes. Put the resulting mixture into an autoclave,
Heat treatment was performed at 170°C for 20 hours. After cooling, the contents were filtered, washed with water, and dried at 120°C for 12 hours.
As a result of X-ray diffraction analysis of the product, it was confirmed that it was ZSM-11. This ZSM-11 was baked at 550℃ for 6 hours, and 57.7g of sodium type ZSM-11 was obtained.
Obtained. Furthermore, sodium form ZSM-11 was added to a 1N aqueous ammonium nitrate solution of 5 times its weight and refluxed for 8 hours. Thereafter, the mixture was cooled and allowed to stand, and the supernatant was removed by decantation. After repeating the reflux/decantation operation three times, the contents were filtered, washed with water, and dried at 120°C for 12 hours to obtain ammonium type ZSM-11. This ammonium type
The composition of ZSM-11 fired at 600℃ is Si/Al.
=90 (molar ratio), control index (CI value) =8.
Next, alumina sol was added as a binder to the obtained ammonium type ZSM-11 so that the alumina content after firing was 20% by weight, and the mixture was molded at 120°C.
After drying for 16 hours, it was fired at 550°C for 6 hours. Fill a reaction tube with 6.5 g of the obtained calcined pellets and heat at 500°C.
In this step, fluorine treatment was carried out by supplying Freon-13 (trifluorochloromethane) at a rate of 70 ml/min for 1 hour to obtain a catalyst. (2) Methylation of toluene In Example 1 (2), the reaction was carried out in the same manner as in Example 1 (2) except that the catalyst obtained in (1) above was used. The reaction results are shown in Table 1. Comparative Example (1) Preparation of Catalyst A catalyst was prepared in the same manner as in Example 1(1) except that the fluorine treatment with Freon-114 was not performed in Example 1(1). (2) Methylation of toluene In Example 1 (2), the reaction was carried out in the same manner as in Example 1 (2) except that the catalyst obtained in (1) above was used. The reaction results are shown in Table 1.

【表】 実施例 3 (1) 触媒の調製 実施例1(1)で得られたアンモニウム型ZSM−
5粉末10gを水100c.c.にフツ化水素酸(46%)0.5g
を溶かした溶液に加え、80℃で6時間過熱撹拌を
行なつた。冷却後、ろ過、水洗を繰返した後、
120℃で一晩乾燥し、さらに550℃で6時間焼成を
行なつた。次に、焼成後のアルミナ含量が20重量
%となるようにバインダーとしてアルミナゾルを
加えて成形し、120℃で1晩乾燥した後、550℃で
6時間焼成した。 (2) トルエンのメチル化 実施例1(2)において、触媒として上記(1)で得ら
れたものを用いたこと以外は実施例1(2)と同様に
反応を行なつた。反応結果を第2表に示す。
[Table] Example 3 (1) Preparation of catalyst Ammonium type ZSM- obtained in Example 1 (1)
5 10g of powder in 100c.c. of water with 0.5g of hydrofluoric acid (46%)
was added to the solution in which the mixture was dissolved, and heated and stirred at 80°C for 6 hours. After cooling, filtration, and repeated washing with water,
It was dried at 120°C overnight and then fired at 550°C for 6 hours. Next, alumina sol was added as a binder and molded so that the alumina content after firing was 20% by weight, and after drying at 120°C overnight, it was fired at 550°C for 6 hours. (2) Methylation of toluene In Example 1 (2), the reaction was carried out in the same manner as in Example 1 (2) except that the catalyst obtained in (1) above was used. The reaction results are shown in Table 2.

【表】 参考例 ZSM−5(H型)ゼオライト6gを250℃で2時
間塩化アルミニウム蒸気と接触させ、次いで窒素
雰囲気下600℃で1.5時間加熱処理し、さらに空気
中600℃にて1時間焼成後成形した。 この触媒[A]と実施例1の触媒を用いて、実
施例1と同一条件でトルエンのメチル化反応を行
ない、その効果を比較した。結果を第3表に示
す。
[Table] Reference example 6g of ZSM-5 (H type) zeolite was brought into contact with aluminum chloride vapor at 250℃ for 2 hours, then heat treated at 600℃ for 1.5 hours in a nitrogen atmosphere, and then calcined in air at 600℃ for 1 hour. Post-molded. Using this catalyst [A] and the catalyst of Example 1, a toluene methylation reaction was carried out under the same conditions as in Example 1, and the effects were compared. The results are shown in Table 3.

【表】【table】

【表】 表から明らかなように、触媒[A]を使用した
場合、反応時間の経過と共にトルエン転化率が著
しく低下するのに対し、実施例1の触媒を使用し
たときは、このような現象が生起せず効率よく目
的とするキシレンを製造することが可能である。
[Table] As is clear from the table, when catalyst [A] was used, the toluene conversion rate decreased significantly as the reaction time progressed, whereas when the catalyst of Example 1 was used, this phenomenon did not occur. It is possible to efficiently produce the desired xylene without causing any

Claims (1)

【特許請求の範囲】 1 触媒の存在下でトルエンまたはベンゼンをメ
チル化剤でメチル化してキシレンを製造するにあ
たり、シリカ/アルミナモル比が12以上でありか
つ制御指数が1〜12のアルミノシリケートを弗素
処理して得られる弗素化アルミノシリケートを触
媒として用いることを特徴とするキシレンの製造
方法。 2 弗素処理をフロンガス、弗化水素酸、弗化ナ
トリウム、三弗化硼素あるいはモノフルオロ酢酸
を用いて行なう特許請求の範囲第1項記載の方
法。
[Claims] 1. In producing xylene by methylating toluene or benzene with a methylating agent in the presence of a catalyst, an aluminosilicate having a silica/alumina molar ratio of 12 or more and a control index of 1 to 12 is mixed with fluorine. A method for producing xylene, characterized in that a fluorinated aluminosilicate obtained by the treatment is used as a catalyst. 2. The method according to claim 1, wherein the fluorine treatment is performed using chlorofluorocarbon gas, hydrofluoric acid, sodium fluoride, boron trifluoride, or monofluoroacetic acid.
JP58107890A 1983-06-17 1983-06-17 Production of xylene Granted JPS601141A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58107890A JPS601141A (en) 1983-06-17 1983-06-17 Production of xylene
US06/618,461 US4721825A (en) 1983-06-17 1984-06-08 Process for the production of xylene
GB08414865A GB2144447B (en) 1983-06-17 1984-06-11 Production of xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107890A JPS601141A (en) 1983-06-17 1983-06-17 Production of xylene

Publications (2)

Publication Number Publication Date
JPS601141A JPS601141A (en) 1985-01-07
JPH0375536B2 true JPH0375536B2 (en) 1991-12-02

Family

ID=14470665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107890A Granted JPS601141A (en) 1983-06-17 1983-06-17 Production of xylene

Country Status (1)

Country Link
JP (1) JPS601141A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709110A (en) * 1983-08-15 1987-11-24 Mobil Oil Corporation Catalytic conversion with boron trifluoride treated zeolite
JPH06104630B2 (en) * 1986-11-11 1994-12-21 三井石油化学工業株式会社 Method for producing alkyl group-substituted aromatic hydrocarbon
JPH01166011U (en) * 1988-05-12 1989-11-21
JPH0656659A (en) * 1992-06-10 1994-03-01 Natl Sci Council Pharmaceutical composition which can be directly made into tablet and preparation of said tablet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361713A (en) * 1981-06-26 1982-11-30 Mobil Oil Corporation Para-selective zeolite catalysts treated with halogen compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361713A (en) * 1981-06-26 1982-11-30 Mobil Oil Corporation Para-selective zeolite catalysts treated with halogen compounds

Also Published As

Publication number Publication date
JPS601141A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US4180689A (en) Process for converting C3 -C12 hydrocarbons to aromatics over gallia-activated zeolite
US4175057A (en) Zeolite composition
US4137195A (en) Catalyst for disproportionation of toluene
JPH01125333A (en) Steam phase disproportionation of toluene
US4158024A (en) Selective production of para-xylene
US3980586A (en) Modified solid catalyst materials
US4438215A (en) Activity enhancement of high silica zeolites
NO863357L (en) PROCEDURE FOR MANUFACTURING AROMATS FROM HYDROCARBON RAW MATERIAL.
US4107220A (en) Gas phase nitration of chlorobenzene
US5100852A (en) Compounds of catalysts for dealkoxylation of gem-dialkoxy
US4182923A (en) Disproportionation of toluene
US20140058181A1 (en) Process for manufacture of a zeolite based catalyst for the conversion of methanol to olefins
US4098837A (en) Disproportionation of toluene
US4548913A (en) Catalyst, a process for its preparation and an isomerization process in the presence of this catalyst
JPS6132294B2 (en)
JP3481647B2 (en) Method for surface selective dealumination of zeolite and use of zeolite with surface dealuminated
US4721825A (en) Process for the production of xylene
JPH0375536B2 (en)
CA1122228A (en) Selective reaction of 1,4-disubstituted benzene compounds
KR960016524B1 (en) Synthesis for pyridine and alkylpyridine
JP2708212B2 (en) Method for modifying molecular sieve
JPS59132941A (en) Selective para-alkylation catalyst and production thereof
US6069280A (en) Process for the manufacture of methylamines
JPH01233246A (en) Production of phenylethanol
CA1262364A (en) Method and catalyst for converting propane to propylene