JPH0246077B2 - - Google Patents

Info

Publication number
JPH0246077B2
JPH0246077B2 JP57124352A JP12435282A JPH0246077B2 JP H0246077 B2 JPH0246077 B2 JP H0246077B2 JP 57124352 A JP57124352 A JP 57124352A JP 12435282 A JP12435282 A JP 12435282A JP H0246077 B2 JPH0246077 B2 JP H0246077B2
Authority
JP
Japan
Prior art keywords
hydrocarbons
stage
reaction
crystalline
conversion reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57124352A
Other languages
Japanese (ja)
Other versions
JPS5915482A (en
Inventor
Motoo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12435282A priority Critical patent/JPS5915482A/en
Publication of JPS5915482A publication Critical patent/JPS5915482A/en
Publication of JPH0246077B2 publication Critical patent/JPH0246077B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は気䜓状炭化氎玠の転化方法に関し、詳
しくはパラフむン系炭化氎玠およびオレフむン系
炭化氎玠を含む炭玠数〜の気䜓状炭化氎玠を
原料ずしお、これを比范的䜎枩の第段階ず高枩
の第段階の二段階にお接觊転化反応を行ない、
オクタン䟡の高いガ゜リン等の液状炭化氎玠を効
率よく埗る方法に関する。 䞀般に、流動床匏接觊分解FCCから生成
するブタン−ブテン留分BB留分には、オレ
フむン分が玄50含たれおいるため、燃料ずしお
垂販するには䞍向きであり、珟圚たでのずころ専
ら補油所等の自家燃料ずしお消費されおいる。 そのため、このFCCからのBB留分を垂販燃料
に奜適な炭化氎玠に転換すべく様々な工倫がなさ
れおいる。䟋えばこのBB留分を芳銙族分に富む
液状炭化氎玠に䞀段で転化する方法が開発されお
いる。 しかし䞊蚘のような䞀段の反応では、芳銙族分
を倚く埗るこずのできる条件を蚭定しお反応を行
なうため、軜質の炭化氎玠が倚量に副生するずい
う欠点がある。 本発明者は、䞊蚘埓来法の欠点を克服しお、軜
質ガスの副生量が少なく、しかもオクタン䟡の高
い液状炭化氎玠を効率よく埗る方法を開発すべく
鋭意研究を重ねた。その結果、転化反応を二段階
で行なうず共に、第段目は比范的䜎枩で反応を
行ない、第段目はやや高枩にお反応を行なうこ
ずにより目的を達成するこずを芋出し、本発明を
完成した。 すなわち本発明は、パラフむン系炭化氎玠およ
びオレフむン系炭化氎玠を含む炭玠数〜の気
䜓状炭化氎玠を原料ずしお、結晶性シリケヌト觊
媒を甚い、枩床100〜400℃にお第段目の接觊転
化反応を行ない、次いで第段の反応生成物を液
状炭化氎玠ず気䜓状炭化氎玠に分離した埌、該気
䜓状炭化氎玠を原料ずしお、結晶性シリケヌト觊
媒を甚い、枩床400〜700℃にお第段目の接觊転
化反応を行なうこずを特城ずする気䜓状炭化氎玠
の転化方法を提䟛するものである。 本発明の方法における原料炭化氎玠は、䞊述の
劂く炭玠数〜の気䜓状炭化氎玠であり、通垞
はFCCから生成するBB留分等が充圓される。こ
の原料炭化氎玠は、パラフむン系炭化氎玠および
オレフむン系炭化氎玠を含む炭玠数〜の気䜓
状炭化氎玠を䞻成分ずするものであり、奜たしい
組成ずしおはパラフむン系炭化氎玠が75重量よ
り少なく、たたオレフむン系炭化氎玠も75重量
より少ない範囲の混合組成をあげるこずができ
る。 本発明の方法では、たず䞊蚘炭玠数〜の気
䜓状炭化氎玠を原料ずしお、第段目の接觊転化
反応を行なう。この際の反応枩床は、100〜400
℃、奜たしくは250〜350℃である。この第段目
の反応においお枩床が400℃を越えるず、メタン
や゚タンなどの気䜓状炭化氎玠の生成量が増倧し
奜たしくない。これに察しお100〜400℃の範囲に
お転化反応を行なうず、䞻ずしお原料気䜓状炭化
氎玠䞭のオレフむン分が優先的に反応しお、メタ
ン、゚タン、゚チレン分の副生がほずんどなく、
オレフむン系炭化氎玠を倚く含むオクタン䟡の高
いガ゜リンが高収率で埗られる。 たた本発明の方法における第段目の接觊転化
反応の他の条件ずしおは、特に制限はなく、甚い
る觊媒の皮類、原料炭化氎玠の皮類などにより適
宜遞定すればよいが、通垞は圧力を垞圧〜50Kg
cm2、奜たしくは垞圧〜20Kgcm2ずし、重量空
間速床WHSV0.1〜50hr-1、奜たしくは0.5〜
10hr-1ずすべきである。さらに反応系には觊媒劣
化を防止するために、所望により氎玠を䟛絊する
こずもできる。この氎玠の䟛絊量は特に制限はな
く適宜定めればよいが、䞀般に氎玠原料炭化氎
玠のモル比ずしお0.1〜、奜たしくは〜ず
する。 さらに本発明の方法の第段目の接觊転化反応
では觊媒ずしお結晶性シリケヌトを甚いるこずが
必芁である。ここで䜿甚できる結晶性シリケヌト
は各皮のものをあげるこずができ、各条件に応じ
お適宜遞択しお䜿甚すればよい。結晶性シリケヌ
トの具䜓䟋をあげれば、型れオラむト、型れ
オラむト、型れオラむト、型れオラむト、
ZSM型れオラむトあるいはこれらに類䌌のれオ
ラむトなどがあり、たたこれらを氎玠むオンで亀
換したものや各皮金属むオンで亀換したものなど
がある。そのうち特にZSM型、ずりわけZSM−
型あるいはこれに類䌌の結晶構造のれオラむト
が奜たしい。このZSM型れオラむトあるいはこ
れに類䌌するれオラむトは、シリカ−アルミナ
系、シリカ−アルミナ−掻性金属系、シリカ−掻
性金属系のものに倧別でき、特に前者二぀はシリ
カアルミナ比が12〜3000のものが奜たしい。 本発明の方法で䜿甚できる䞊蚘結晶性シリケヌ
トの具䜓䟋をより詳しく説明すれば次の〜の
劂くである。 シリカ、アルカリ金属、呚期埋衚、
、、、、、、族に属
する䞀皮以䞊の金属および氎を原料ずしお、こ
れに結晶化剀ずしおモルホリン、オキサゟリゞ
ンなどの耇玠環匏化合物、゚タノヌルアミン、
プロパノヌルアミンなどのアミノアルコヌル、
アラニン、セリンなどのアミノ酞あるいはアセ
トアミドなどのアミド類を加えお、80〜300℃
にお結晶性れオラむトが十分に生成するたで反
応させお埗た結晶性れオラむト特開昭57−
7817号公報。 䞊蚘の原料にさらにアルミナを加え、これ
に結晶化剀を加えお反応させお埗た結晶性アル
ミノシリケヌトれオラむト特開昭57−7818号
公報。 シリカ、アルミナ、アルカリ金属および氎を
原料ずし、これに皮結晶ずしお結晶性れオラむ
ト粉末を存圚させるず共に反応系のPHを〜12
に保持しお、80〜300℃にお結晶が十分に生成
するたで反応させお埗た結晶性アルミノシリケ
ヌトれオラむト特開昭57−7819号公報。 シリカ、アルミナ、アルカリ金属および氎を
原料ずしお、これに結晶化剀ずしおモルホリ
ン、オキサゟリゞンなどの耇玠環匏化合物を加
えお、80〜300℃にお結晶が十分に生成するた
で反応させお埗た結晶性アルミノシリケヌトれ
オラむト特開昭57−7816号公報。 酞化物のモル比脱氎の圢態で衚わしお、 0.1〜2.0R2nO・ 〔aM2O3・bAl2O3〕・ySiO2 䞊蚘匏䞭、皮又はそれ以䞊の䟡又は
䟡カチオン、の原子䟡、皮又は
それ以䞊の䟡の遷移金属カチオン、
、≧、≧、≧12の化孊組成を有
し、さらにアルコヌル類、有機アミン類、゚ヌ
テル類、ケトン類、゚ステル類、及び又は有
機硫黄化合物又はその誘導䜓を含有する結晶性
遷移金属オルガノシリケヌト特開昭57−
10684号公報。 (a)玄〜15Åの範囲内の均䞀な孔埄及び少な
くずも玄のシリカ察アルミナモル比を有する
結晶質アルミノシリケヌトれオラむト、(b)無機
酞化物マトリツクス、及び(c)ばらばらのアルミ
ナ粒子を含む觊媒であ぀お、前蚘れオラむトは
(b)成分ず耇合化される前に玄24.5Å以䞊の単䜍
胞寞法を有し、か぀アルカリ金属酞化物前蚘
れオラむトの重量比が0.024以䞋ずなる皋床の
アルカリ金属を含むず共に、垌土類金属酞化
物前蚘れオラむトの重量比が玄0.01〜0.08ず
なる皋床の垌土類金属を含有する結晶性れオラ
むト系觊媒特開昭57−91741号公報。 特定の線回折パタヌンを有し、か぀酞化物
のモル比が、 0.9±0.2M2nOW2O3bYO2zH2O 匏䞭は陜むオンで、は前蚘陜むオンの原
子䟡であり、はアルミニりムたたはガリりム
であり、はケむ玠たたはゲルマニりムであ
る。たたは〜40、は少なくずも、奜た
しくは15〜300である。あるいは、 0.9±0.2M2nOAl2O315〜300SiO2zH2O 匏䞭はアルカリ金属陜むオン特にナトリり
ムずテトラアルキルアンモニりム陜むオンア
ルキル基は奜適には〜個の炭玠原子を含有
するの混合物であり、、は前蚘ず同じ。
で衚わされるようなZSM−系れオラむト。 特定の線回折パタヌンを有し、か぀酞化物
のモル比が、 0.9±0.2M2nOAl2O315〜300SiO2zH2O 匏䞭は少なくずも皮の陜むオンではそ
の原子䟡であり、は〜40である。あるい
は、 0.9±0.2M2nOAl2O315〜60SiO2zH2O 匏䞭、はアルカリ金属陜むオン特にナトリ
りムむオンおよびテトラ゚チルアンモニりム陜
むオンの混合物からなる矀から遞ばれる。で
衚わされるようなZSM−系れオラむト。 特定の線回折パタヌンを有し、か぀酞化物
のモル比が、 0.9±0.3M2nOAl2O320〜90SiO2zH2O 匏䞭、は少なくずも皮の陜むオンで、
はその原子䟡であり、は〜12である。あ
るいは、0.9±0.3M2nOAl2O320〜
90SiO2zH2O匏䞭、はアルカリ金属陜む
オン特にナトリりムむオンおよびテトラブチル
アンモニりム陜むオンの混合物からなる矀から
遞ばれる。で衚わされるようなZSM−11系れ
オラむト特開昭50−52104号公報。 (a)特定の線回折パタヌンを有し、(b)ケむ酞
塩を−型に倉換し、×10-9バヌルで400℃
においお16時間枛圧凊理した埌、炭化氎玠圧力
×10-2バヌルおよび100℃においお枬定した
ずき、−ヘキサンの吞収率が最小0.8ミリモ
ルであり、−ゞメチルブタンの吞収
率が最小0.5ミリモルであり、か぀−ヘ
キサンの吞収率−ゞメチルブタンの吞
収率の比が最小1.5であり、(c)酞化物のモル数
で衚わした組成が匏・1.0±0.3M2
nO・・Al2O3・SiO2匏䞭、は氎玠、アル
カリ金属又はアルカリ土類金属、はの原子
䟡、≊0.01である。で瀺され、(d)埮結
晶の平均サむズが500n以䞋であるような結
晶性シリケヌト特開昭55−124721号公報、特
開昭55−125195号公報。 少なくずも12のシリカアルミナモル比ず、
〜12の制埡指数ずをも぀結晶性れオラむト
ZSM−、ZSM−11、ZSM−12、ZSM−23、
ZSM−35、ZSM−38、ZSM−48およびその類
䌌物質であ぀お、該れオラむトを呚期埋衚
族金属元玠含有化合物の皮たたはそれ以䞊
の化合物で凊理するこずによ぀お該れオラむト
䞊に少くずも0.5重量の前蚘元玠を析出させ
おなる結晶性れオラむト特開昭57−95922号
公報。 本発明の方法では以䞊の劂き結晶性シリケヌト
以倖にも、様々なものが䜿甚でき、これらに限定
されるものではない。たた、觊媒ずしお甚いる結
晶性シリケヌトの粒子埄は特に制限はないが、䞀
般に0.005〜30ミクロンである。なお、この結晶
性シリケヌトはそのたた甚いおもよいが、アルミ
ナ等をバむンダヌずしお加えお混合し、抌出成圢
した適宜圢状、䟋えば立方䜓、䞞圢、球状、円筒
状あるいは星状などの異圢に成圢するず取扱いが
䟿利ずなり奜たしい。 本発明の方法では第段目の接觊転化反応終了
埌、埗られた反応生成物を、液状炭化氎玠ず気䜓
状炭化氎玠ずに分離する。分離された液状炭化氎
玠には倚量の高オクタン䟡ガ゜リン留分が含たれ
おおり、䞀方、気䜓状炭化氎玠は倧郚分がパラフ
むン分、すなわちメタン、゚タン、プロパン、ブ
タンなどから成぀おいる。 本発明の方法では、䞊蚘の気䜓状炭化氎玠を原
料ずしお、第段目の接觊転化反応を進める。こ
の際の反応枩床は400〜700℃、奜たしくは450〜
550℃であり、前述の第段目の転化反応よりも
高枩ずすべきである。ここで400℃未満の枩床で
は、液状炭化氎玠ぞの転化が少なく、逆に700℃
を越えるず觊媒の劣化が激しく、たた運転費甚も
䞊昇し実甚的でない。これに察しお、400〜700℃
の範囲で第段目の接觊転化反応を行なうず、芳
銙族分に富む液状炭化氎玠が高収率で埗られる。 たた本発明の方法における第段目の接觊転化
反応の他の条件ずしおは、特に制限はなく甚いる
觊媒の皮類、䟛絊する気䜓状炭化氎玠の組成等に
より適宜遞定すればよいが、通垞は、圧力を垞圧
〜50Kgcm2、奜たしくは垞圧〜20Kgcm2ず
し、WHSV0.1〜50hr-1、奜たしくは0.5〜10hr-1
ずすべきである。さらに反応系には、前蚘した第
段目の接觊転化反応の堎合ず同様に、觊媒劣化
を防止するために、所望により氎玠を加えるこず
もできる。この際の氎玠の䟛絊量は特に制限はな
く適宜定めればよいが、䞀般に導入される気䜓状
炭化氎玠に察しお0.1〜モル比、奜たしくは
〜モル比ずする。たた、この氎玠は新た
に䟛絊しおもよいが、第段の反応に䟛絊した氎
玠をそのたた利甚しおもよい。 さらに本発明の方法の第段目の接觊転化反応
では、觊媒ずしお結晶性シリケヌトを甚いるこず
が必芁である。この結晶性シリケヌトは第段目
の接觊転化反応で甚いた結晶性シリケヌトず同じ
であ぀おも異なるものであ぀おもよい。具䜓的に
は前述した劂きものが奜適に甚いられる。 この第段目の接觊転化反応によれば、芳銙族
分に富んだ液状炭化氎玠が効率よく埗られる。た
たここで副生する気䜓状炭化氎玠は、分離した
埌、第段目あるいは第段目の反応系ぞリサむ
クルするこずもできる。 叙䞊の劂く、本発明の方法によれば利甚䟡倀の
䜎い炭玠数〜の気䜓状炭化氎玠からオクタン
䟡の高い液状炭化氎玠を高収率で埗るこずができ
るず共に、反応性の䜎いメタンガスの副生を抑制
するこずができる。 したが぀お本発明の方法は、高オクタン䟡ガ゜
リンを効率よく補造できるものずしお工業䞊有効
に利甚するこずができる。 次に本発明を実斜䟋によりさらに詳しく説明す
る。 実斜䟋  (1) 觊媒の調補 硫酞アルミニりム18氎塩7.52、硫酞
9717.6および氎250mlからなる溶液
、氎ガラスSiO237.6重量、Na2O17.5
重量、氎44.9重量162および氎300mlか
らなる溶液、塩化ナトリりム79および
æ°Ž122mlからなる溶液をそれぞれ調補し
た。 次いで䞊蚘溶液䞭ぞ溶液および
溶液を宀枩で撹拌しながら同時に埐々に
滎䞋しお混合物を埗た。続いおこの混合物に粉
末モルデナむトを添加した埌、PHを10.0に
調敎し、容のオヌトクレヌプに入れ、170
℃にお200rpmの回転数で撹拌し、自己圧力䞋
で20時間反応させた。その埌、反応混合物を冷
华し、の氎で回掗浄した。次いで過に
より固型分を分離し、120℃で時間也燥した
ずころ、40.5の結晶性アルミノシリケヌトれ
オラむトが埗られた。この結晶性アルミノシリ
ケヌトれオラむトを線回折で確認したずこ
ろ、ZSM−であ぀た。なおこのZSM−は
モル比で次の組成を有する。 0.9Na2O・60SiO2・1.0Al2O3 䞊蚘の方法で埗られたZSM−を圓り
mlの芏定硝酞アンモニりムで回むオン亀
換し、120℃で也燥埌、550℃、時間空気䞭で
燃成しお型ずした。さらに、この型の
ZSM−にアルミナをバむンダヌずしお20重
量加えお混合し、抌出し成圢した埌、120℃
で時間也燥し、さらに空気䞭で550℃にお
時間焌成しお盎埄mm、長さ〜mmの円筒状
の觊媒粒子を埗た。 (2) 転化反応 ステンレス補反応管に、䞊蚘(1)で埗られた觊
媒を充填し、これに第衚に瀺す組成の気䜓状
炭化氎玠を通し、所定条件にお第段目の転化
反応を行な぀た。 続いお䞊蚘転化反応で埗られた生成物を気液
分離し、生成した気䜓状炭化氎玠を原料ずし
お、これをステンレス補反応管に通しお、所定
条件で第段目の転化反応を行な぀た。結果を
第衚に瀺す。 実斜䟋  (1) 觊媒の調補 実斜䟋(1)で埗られた結晶性シリケヌト硝
酞アンモニりムで回むオン亀換し、也燥した
だけのものを、圓り10mlの0.5芏定硝酞
亜鉛で回むオン亀換した。さらにむオン亀換
氎で充分掗浄し、過した埌、120℃で也燥し、
ひき続いお550℃、時間空気䞭で焌成しお亜
鉛亀換型ZSM−觊媒を埗た。 (2) 転化反応 実斜䟋(1)で埗られた觊媒を甚い、実斜䟋
(2)ず同様にしお第段目の転化反応を行な぀
た。 続いお生成物を気液分離埌、埗られた気䜓状
炭化氎玠を原料ずし、実斜䟋(1)で埗られた觊
媒を甚いお、実斜䟋(2)ず同様にしお第段目
の転化反応を行な぀た。結果を第衚に瀺す。
The present invention relates to a method for converting gaseous hydrocarbons, and more particularly, gaseous hydrocarbons having 2 to 4 carbon atoms, including paraffinic hydrocarbons and olefinic hydrocarbons, are used as raw materials, and this is converted into a relatively low-temperature first stage and a high-temperature stage. A catalytic conversion reaction is carried out in the second stage of
This invention relates to a method for efficiently obtaining liquid hydrocarbons such as gasoline with a high octane number. In general, the butane-butene fraction (BB fraction) produced from fluidized bed catalytic cracking (FCC) contains approximately 50% olefin content, making it unsuitable for commercial use as a fuel. However, it is consumed exclusively as in-house fuel at refineries and other facilities. Therefore, various efforts have been made to convert the BB fraction from FCC into hydrocarbons suitable for commercial fuel. For example, a method has been developed to convert this BB fraction into liquid hydrocarbons rich in aromatics in one step. However, in the one-stage reaction as described above, since the reaction is carried out under conditions that allow a large amount of aromatic components to be obtained, there is a drawback that a large amount of light hydrocarbons are produced as by-products. The present inventor has conducted extensive research in order to overcome the drawbacks of the conventional methods described above and to develop a method for efficiently producing liquid hydrocarbons with a small amount of light gas by-product and a high octane number. As a result, it was discovered that the purpose could be achieved by carrying out the conversion reaction in two stages, by carrying out the reaction at a relatively low temperature in the first stage, and at a slightly high temperature in the second stage, and developed the present invention. completed. That is, the present invention uses gaseous hydrocarbons having 2 to 4 carbon atoms, including paraffinic hydrocarbons and olefinic hydrocarbons, as a raw material, and uses a crystalline silicate catalyst to conduct the first stage contact at a temperature of 100 to 400°C. After carrying out a conversion reaction and then separating the first stage reaction product into liquid hydrocarbon and gaseous hydrocarbon, the gaseous hydrocarbon is used as a raw material and a crystalline silicate catalyst is used at a temperature of 400 to 700°C. The present invention provides a method for converting gaseous hydrocarbons, which is characterized by carrying out a second-stage catalytic conversion reaction. The raw material hydrocarbon in the method of the present invention is a gaseous hydrocarbon having 2 to 4 carbon atoms as described above, and the BB fraction produced from FCC is usually used. This raw material hydrocarbon is mainly composed of gaseous hydrocarbons having 2 to 4 carbon atoms, including paraffinic hydrocarbons and olefinic hydrocarbons, and preferably contains less than 75% by weight of paraffinic hydrocarbons. , and 75% by weight of olefinic hydrocarbons.
A smaller range of mixed compositions can be mentioned. In the method of the present invention, the first stage catalytic conversion reaction is first performed using the gaseous hydrocarbon having 2 to 4 carbon atoms as a raw material. The reaction temperature at this time is 100 to 400
℃, preferably 250-350℃. If the temperature exceeds 400°C in this first stage reaction, the amount of gaseous hydrocarbons such as methane and ethane produced will increase, which is undesirable. On the other hand, when the conversion reaction is carried out in the range of 100 to 400°C, the olefin component in the raw gaseous hydrocarbon reacts preferentially, with almost no by-products of methane, ethane, and ethylene.
Gasoline with a high octane number containing a large amount of olefinic hydrocarbons can be obtained in high yield. In addition, other conditions for the first stage catalytic conversion reaction in the method of the present invention are not particularly limited and may be appropriately selected depending on the type of catalyst used, the type of raw material hydrocarbon, etc., but usually the pressure is kept constant. Pressure~50Kg/
cm2G , preferably normal pressure to 20Kg/ cm2G , and weight hourly space velocity (WHSV) 0.1 to 50hr -1 , preferably 0.5 to
It should be 10hr -1 . Furthermore, hydrogen can be supplied to the reaction system if desired in order to prevent catalyst deterioration. The amount of hydrogen supplied is not particularly limited and may be determined as appropriate, but the molar ratio of hydrogen/raw material hydrocarbon is generally 0.1 to 6, preferably 1 to 5. Furthermore, it is necessary to use a crystalline silicate as a catalyst in the first stage catalytic conversion reaction of the method of the present invention. Various types of crystalline silicates can be used here, and they may be appropriately selected and used depending on each condition. Specific examples of crystalline silicates include X-type zeolite, Y-type zeolite, A-type zeolite, L-type zeolite,
There are ZSM type zeolites and zeolites similar to these, and there are also zeolites that have been exchanged with hydrogen ions and various metal ions. Of these, especially the ZSM type, especially the ZSM-
Zeolite having a crystal structure of Type 5 or similar thereto is preferred. This ZSM type zeolite and similar zeolites can be roughly divided into silica-alumina type, silica-alumina-active metal type, and silica-active metal type, and the former two in particular have a silica/alumina ratio of 12 to 3000. Preferably. Specific examples of the crystalline silicate that can be used in the method of the present invention are as follows. Silica, alkali metals, periodic table A,
Using one or more metals belonging to groups A, A, B, B, B, B, and water as raw materials, a heterocyclic compound such as morpholine or oxazolidine, ethanolamine,
amino alcohols such as propanolamine,
Add amino acids such as alanine and serine or amides such as acetamide and heat at 80 to 300℃.
Crystalline zeolite obtained by reacting until a sufficient amount of crystalline zeolite is produced in
Publication No. 7817). Crystalline aluminosilicate zeolite obtained by adding alumina to the above raw materials and reacting the same with a crystallizing agent (Japanese Patent Application Laid-open No. 7818/1983). Using silica, alumina, alkali metal and water as raw materials, crystalline zeolite powder is added as a seed crystal and the pH of the reaction system is adjusted to 9-12.
A crystalline aluminosilicate zeolite (Japanese Unexamined Patent Publication No. 7819/1983) obtained by reacting at 80 to 300°C until sufficient crystal formation. Crystals obtained by using silica, alumina, alkali metals, and water as raw materials, adding a heterocyclic compound such as morpholine or oxazolidine as a crystallizing agent, and reacting at 80 to 300°C until sufficient crystal formation. aluminosilicate zeolite (Japanese Unexamined Patent Publication No. 7816/1983). Expressed in molar ratio of oxide (dehydrated form), (0.1 to 2.0) R 2 /nO・[aM 2 O 3・bAl 2 O 3 ]・ySiO 2 (In the above formula, R: one or more types monovalent or divalent cation, a: valence of R, M: one or more trivalent transition metal cations, a+b=
1, has a chemical composition of a≧0, b≧0, y≧12) and further contains alcohols, organic amines, ethers, ketones, esters, and/or organic sulfur compounds or derivatives thereof. Crystalline transition metal organosilicate (Unexamined Japanese Patent Publication No. 1983-
Publication No. 10684). (a) a crystalline aluminosilicate zeolite having a uniform pore size in the range of about 6 to 15 Å and a silica to alumina molar ratio of at least about 3; (b) an inorganic oxide matrix; and (c) a catalyst comprising discrete alumina particles. and the zeolite is
(b) has a unit cell size of about 24.5 Å or more before being composited with component, contains an alkali metal to such an extent that the weight ratio of alkali metal oxide/the zeolite is 0.024 or less, and contains rare earth metal oxide. A crystalline zeolite-based catalyst containing a rare earth metal such that the weight ratio of substance/zeolite is about 0.01 to 0.08 (Japanese Unexamined Patent Publication No. 57-91741). It has a specific X-ray diffraction pattern and the molar ratio of oxides is 0.9±0.2M 2 /nO:W 2 O 3 :bYO 2 :zH 2 O (where M is a cation and n is the cation). ion valence, W is aluminum or gallium, Y is silicon or germanium, and z is 0 to 40, b is at least 5, preferably 15 to 300), or 0.9±0.2M 2 / nO : Al2O3 : 15-300SiO2 : zH2O (wherein M is an alkali metal cation, in particular a sodium and tetraalkylammonium cation (the alkyl group preferably contains 2 to 5 carbon atoms) ), where n and z are the same as above.)
ZSM-5 series zeolite as expressed by . It has a specific X-ray diffraction pattern and the molar ratio of oxides is 0.9±0.2M2 / nO: Al2O3 : 15-300SiO2 : zH2O (where M is at least one cation (where n is its valence and z is 0 to 40) or 0.9±0.2M 2 /nO: Al 2 O 3 : 15 to 60 SiO 2 : zH 2 O (where M is an alkali metal positive Zeolites of the ZSM-8 series, such as those selected from the group consisting of ions, in particular sodium ions and mixtures of tetraethylammonium cations. It has a specific X-ray diffraction pattern and the molar ratio of oxides is 0.9±0.3M2 / nO: Al2O3 : 20~90SiO2 : zH2O (wherein M is at least one cationic ion, n
is its valence, and z is from 6 to 12. ) or 0.9±0.3M 2 /nO: Al 2 O 3 : 20~
90SiO 2 :zH 2 O (wherein M is selected from the group consisting of a mixture of alkali metal cations, particularly sodium ions and tetrabutylammonium cations) -52104). (a) has a specific X-ray diffraction pattern; (b) converts the silicate into the H-form at 400°C at 2 x 10 -9 bar;
When measured at a hydrocarbon pressure of 8 x 10 -2 bar and 100 °C after vacuum treatment for 16 hours at and the ratio of n-hexane absorption rate/2,2-dimethylbutane absorption rate is at least 1.5, and (c) the composition expressed in moles of oxide has the formula (1.0±0.3) M2 /
It is represented by nO・y・Al 2 O 3・SiO 2 (in the formula, M is hydrogen, an alkali metal or an alkaline earth metal, n is the valence of M, and 0<y≩0.01), (d) A crystalline silicate in which the average size of microcrystals is 500 nm or less (JP-A-55-124721, JP-A-55-125195). a silica/alumina molar ratio of at least 12;
Crystalline zeolites with control index of 1 to 12 (ZSM-5, ZSM-11, ZSM-12, ZSM-23,
ZSM-35, ZSM-38, ZSM-48 and similar substances), which can be formed on the zeolite by treating the zeolite with one or more compounds containing metal elements of group A of the periodic table. A crystalline zeolite obtained by precipitating at least 0.5% by weight of the above elements (Japanese Patent Laid-Open No. 57-95922). In addition to the above-mentioned crystalline silicates, various other materials can be used in the method of the present invention, and the method is not limited thereto. Further, the particle size of the crystalline silicate used as a catalyst is not particularly limited, but is generally 0.005 to 30 microns. Although this crystalline silicate may be used as it is, it is handled better if it is mixed with alumina etc. as a binder and extruded into an appropriate shape such as a cube, round, sphere, cylinder or star. is convenient and preferable. In the method of the present invention, after the first stage catalytic conversion reaction is completed, the obtained reaction product is separated into liquid hydrocarbons and gaseous hydrocarbons. The separated liquid hydrocarbons contain a large amount of high octane gasoline fraction, while the gaseous hydrocarbons consist mostly of paraffins, such as methane, ethane, propane, butane, etc. In the method of the present invention, the second stage catalytic conversion reaction is carried out using the above gaseous hydrocarbon as a raw material. The reaction temperature at this time is 400~700℃, preferably 450~
The temperature is 550°C, which should be higher than the first stage conversion reaction described above. Here, at temperatures below 400℃, there is little conversion to liquid hydrocarbons, and conversely, at temperatures below 700℃
Exceeding this will cause severe deterioration of the catalyst and increase operating costs, making it impractical. In contrast, 400-700℃
When the second stage catalytic conversion reaction is carried out in the range of 0.05 to 0.05%, liquid hydrocarbons rich in aromatic components can be obtained in high yield. Further, other conditions for the second stage catalytic conversion reaction in the method of the present invention are not particularly limited and may be appropriately selected depending on the type of catalyst used, the composition of the gaseous hydrocarbon to be supplied, etc., but usually, The pressure is normal pressure ~ 50Kg/cm 2 G, preferably normal pressure ~ 20Kg/cm 2 G, and WHSV 0.1 ~ 50hr -1 , preferably 0.5 ~ 10hr -1
Should be. Furthermore, hydrogen can be added to the reaction system if desired in order to prevent catalyst deterioration, as in the case of the first stage catalytic conversion reaction described above. The amount of hydrogen supplied at this time is not particularly limited and may be determined as appropriate, but it is generally 0.1 to 6 (molar ratio), preferably 1 to 5 (molar ratio) relative to the introduced gaseous hydrocarbon. Further, although this hydrogen may be newly supplied, the hydrogen supplied to the first stage reaction may be used as is. Furthermore, in the second stage catalytic conversion reaction of the method of the present invention, it is necessary to use a crystalline silicate as a catalyst. This crystalline silicate may be the same as or different from the crystalline silicate used in the first stage catalytic conversion reaction. Specifically, those mentioned above are preferably used. According to this second-stage catalytic conversion reaction, liquid hydrocarbons rich in aromatic components can be efficiently obtained. Further, the gaseous hydrocarbons produced as a by-product here can be separated and then recycled to the first or second stage reaction system. As described above, according to the method of the present invention, liquid hydrocarbons with a high octane number can be obtained in high yield from gaseous hydrocarbons having a carbon number of 2 to 4, which have low utility value, and methane gas with low reactivity can be obtained. By-products can be suppressed. Therefore, the method of the present invention can be effectively used industrially as a method for efficiently producing high octane gasoline. Next, the present invention will be explained in more detail with reference to Examples. Example 1 (1) Preparation of catalyst A solution () consisting of 7.52 g of aluminum sulfate (18 hydrate), 17.6 g of sulfuric acid (97%) and 250 ml of water, water glass (37.6% by weight of SiO 2 , 17.5% of Na 2 O)
A solution (2) consisting of 162 g (wt%, 44.9 wt% water) and 300 ml of water, and a solution (2) consisting of 79 g of sodium chloride and 122 ml of water were prepared, respectively. Next, solution () and solution () were simultaneously gradually dropped into the above solution () while stirring at room temperature to obtain a mixture. Subsequently, 1 g of powdered mordenite was added to this mixture, the pH was adjusted to 10.0, and the mixture was placed in a 1-volume autoclave and heated to 170 ml.
The mixture was stirred at a rotational speed of 200 rpm at ℃, and reacted for 20 hours under autogenous pressure. The reaction mixture was then cooled and washed five times with 1 portion of water. The solid content was then separated by filtration and dried at 120° C. for 3 hours, yielding 40.5 g of crystalline aluminosilicate zeolite. This crystalline aluminosilicate zeolite was confirmed by X-ray diffraction and was found to be ZSM-5. Note that this ZSM-5 has the following composition in terms of molar ratio. 0.9Na 2 O・60SiO 2・1.0Al 2 O 3 ZSM-5 obtained by the above method was ion-exchanged twice with 5 ml of 1N ammonium nitrate per 1 g, dried at 120°C, and then exposed to air at 550°C for 6 hours. It was combusted inside and became H type. Furthermore, this H type
Add 20% by weight of alumina as a binder to ZSM-5, mix, extrude, and heat to 120°C.
Dry for 3 hours, then dry in air at 550℃ for 6 hours.
After firing for a period of time, cylindrical catalyst particles having a diameter of 1 mm and a length of 5 to 6 mm were obtained. (2) Conversion reaction A stainless steel reaction tube was filled with the catalyst obtained in (1) above, and a gaseous hydrocarbon having the composition shown in Table 1 was passed through it to perform the first stage conversion under specified conditions. The reaction was carried out. Subsequently, the product obtained in the above conversion reaction is separated into gas and liquid, and the generated gaseous hydrocarbon is passed through a stainless steel reaction tube as a raw material to perform a second stage conversion reaction under predetermined conditions. Ta. The results are shown in Table 2. Example 2 (1) Preparation of catalyst The crystalline silicate obtained in Example 1 (1) (ion-exchanged twice with ammonium nitrate and dried) was treated twice with 10 ml/g of 0.5N zinc nitrate. Ion exchanged. Furthermore, after thoroughly washing with ion-exchanged water and filtering, dry at 120℃.
Subsequently, it was calcined in air at 550°C for 6 hours to obtain a zinc-exchanged ZSM-5 catalyst. (2) Conversion reaction Using the catalyst obtained in Example 1 (1), Example 1
The first stage conversion reaction was carried out in the same manner as in (2). Subsequently, after gas-liquid separation of the product, the second stage was carried out in the same manner as in Example 1 (2) using the obtained gaseous hydrocarbon as a raw material and the catalyst obtained in Example 2 (1). A conversion reaction was carried out. The results are shown in Table 2.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  パラフむン系炭化氎玠およびオレフむン系炭
化氎玠を含む炭玠数〜の気䜓状炭化氎玠を原
料ずしお、結晶性シリケヌト觊媒を甚い、枩床
100〜400℃にお第段目の接觊転化反応を行な
い、次いで第段の反応生成物を液状炭化氎玠ず
気䜓状炭化氎玠に分離した埌、該気䜓状炭化氎玠
を原料ずしお、結晶性シリケヌト觊媒を甚い、枩
床400〜700℃にお第段目の接觊転化反応を行な
うこずを特城ずする炭化氎玠の転化方法。
1 Using gaseous hydrocarbons having 2 to 4 carbon atoms, including paraffinic hydrocarbons and olefinic hydrocarbons, as raw materials, using a crystalline silicate catalyst,
The first stage catalytic conversion reaction is carried out at 100 to 400°C, and then the first stage reaction product is separated into liquid hydrocarbon and gaseous hydrocarbon, and then the gaseous hydrocarbon is used as a raw material to convert crystalline A method for converting hydrocarbons, characterized by carrying out a second stage catalytic conversion reaction at a temperature of 400 to 700°C using a silicate catalyst.
JP12435282A 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon Granted JPS5915482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12435282A JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12435282A JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5915482A JPS5915482A (en) 1984-01-26
JPH0246077B2 true JPH0246077B2 (en) 1990-10-12

Family

ID=14883252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12435282A Granted JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5915482A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ207610A (en) * 1983-04-26 1986-06-11 Mobil Oil Corp Catalytic conversion of olefins to higher hydrocarbons
US4754100A (en) * 1986-03-28 1988-06-28 Mobil Oil Corporation Catalytic conversion of C3 aliphatics to higher hydrocarbons
JPH0721149B2 (en) * 1989-12-04 1995-03-08 ナヌオヌピヌ Continuous catalytic selective production method of aromatic hydrocarbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103292A (en) * 1979-12-31 1981-08-18 Mobil Oil Manufacture of gasoline fraction from olefinncontaining mixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103292A (en) * 1979-12-31 1981-08-18 Mobil Oil Manufacture of gasoline fraction from olefinncontaining mixture

Also Published As

Publication number Publication date
JPS5915482A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
US4333859A (en) High silica faujasite polymorph - CSZ-3 and method of synthesizing
JPH0214286B2 (en)
JPS6052084B2 (en) Crystalline zeolite with an aluminum-free outer shell
JPS62254847A (en) Production of high-octane gasoline base material
JPS624326B2 (en)
JPS6132294B2 (en)
JPS61168521A (en) Manufacture of silica-rich synthetic offretite
JPH043366B2 (en)
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JPH0246077B2 (en)
US5321179A (en) Process for preparing of aromatic hydrocarbons
JPS59190213A (en) Preparation of crystalline zeolite
JPS61289049A (en) Production of propylene
JPH0788319B2 (en) Method for producing m-benzyltoluene
WO1990001528A1 (en) Process for treating by-product oil
JPS6159246B2 (en)
JPH0339009B2 (en)
CA1251435A (en) Crystalline galloborosilicates
RU2242279C2 (en) Paraffin c2-c5-hydrocarbon conversion catalyst, method of preparation thereof, and a method for conversion of paraffin c2-c5-hydrocarbons into lower olefins
EP0299392B1 (en) Process for production of crystalline galloalumino silicate and process for production of aromatic hydrocarbons
JPH0232205B2 (en)
JPH035436B2 (en)
JPS617218A (en) Catalytic conversion of hydrocarbon
JP2501868B2 (en) Method for producing crystalline galloaluminosilicate and method for producing aromatic hydrocarbon
JPS5915483A (en) Conversion of petroleum naphtha