JPS5915482A - Conversion of gaseous hydrocarbon - Google Patents

Conversion of gaseous hydrocarbon

Info

Publication number
JPS5915482A
JPS5915482A JP12435282A JP12435282A JPS5915482A JP S5915482 A JPS5915482 A JP S5915482A JP 12435282 A JP12435282 A JP 12435282A JP 12435282 A JP12435282 A JP 12435282A JP S5915482 A JPS5915482 A JP S5915482A
Authority
JP
Japan
Prior art keywords
hydrocarbons
catalytic conversion
gaseous hydrocarbon
hydrocarbon
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12435282A
Other languages
Japanese (ja)
Other versions
JPH0246077B2 (en
Inventor
Motoo Tanaka
田中 元雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12435282A priority Critical patent/JPS5915482A/en
Publication of JPS5915482A publication Critical patent/JPS5915482A/en
Publication of JPH0246077B2 publication Critical patent/JPH0246077B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain liquid hydrocarbon with a high octane number efficiently by performing catalytic conversion of gaseous hydrocarbon in the presence of a crystalline silicate catalyst and effecting a 2nd-step catalytic conversion of the separated gaseous hydrocarbon. CONSTITUTION:First-step catalytic conversion of 2-4C gaseous hydrocarbon is performed at 100-400 deg.C in the presence of a crystalline silicate catalyst. The reaction product is separated into liquid and gaseous hydrocarbons and the latter hydrocarbons are subjected to a 2nd-step catalytic conversion at 400-700 deg.C in the presence of the crystalline silicate catalyst. The aqueous hydrocarbons to be used are usually butane-butene fractions, etc. produced by fluid bed catalytic cracking and preferred composition is a mixture in which paraffinic and olefinic hydrocarbons are present each in less than 75wt%.

Description

【発明の詳細な説明】 本発明は気体状炭化水素の転化力゛法に関し、詳しくは
炭素数2〜4の気体状炭化水素を原料として、これを比
較的低温の第1段階と高温の第2段階の二段階にて接触
転化反応を行ない、オクタン価の高いガソリン等の液状
炭化水素を効率よ(得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting gaseous hydrocarbons, and more specifically, a gaseous hydrocarbon having 2 to 4 carbon atoms is used as a raw material, and the process is carried out in a relatively low-temperature first stage and a high-temperature stage. It relates to a method for efficiently producing liquid hydrocarbons such as gasoline with a high octane number by carrying out a catalytic conversion reaction in two stages.

一般に、流動床式接触分解(FOO)から生成するブタ
ン−ブテン留分(EE留分)には、オレフィン分が約5
0%含まれているため、燃料として市販するには不向き
であり、現在までのところ専ら製油所等の自家燃料とし
て消費されている。
Generally, the butane-butene fraction (EE fraction) produced from fluidized bed catalytic cracking (FOO) has an olefin content of about 5
Since it contains 0%, it is unsuitable for commercial sale as fuel, and so far it has been consumed exclusively as in-house fuel in refineries and the like.

そのため、このFCCからのEB留分な市販燃料に好適
な炭化水素に転換すべく様々な工夫がなされている。例
えばこのBB留分な芳香族分に富む液状炭化水素に一段
で転化する方法が開発されている。
Therefore, various efforts have been made to convert the EB fraction from FCC into hydrocarbons suitable for commercial fuel. For example, a method has been developed for converting the BB fraction into a liquid hydrocarbon rich in aromatics in one step.

しかし上記のような一段の反応では、芳香族分を多く得
ることのできる条件を設定して反応を行なうため、軽質
の炭化水素が多量に副生するという欠点がある。
However, in the one-stage reaction as described above, since the reaction is carried out under conditions that allow a large amount of aromatic components to be obtained, there is a drawback that a large amount of light hydrocarbons are produced as by-products.

本発明者は、上記従来法の欠点を克服して、軽質ガスの
副生量が少なく、しかもオクタン価の高い液状炭化水素
を効率よく得る方法を開発すべく鋭意研究を重ねた。そ
の結果、転化反応を二段階で行なうと共に、第1段目は
比較的低温で反応を行ない、第2段目はやや高温にて反
応を行なうことにより目的を達成することを見出し1本
発明を完成した。
The present inventor has conducted extensive research in order to overcome the drawbacks of the conventional methods described above and to develop a method for efficiently producing liquid hydrocarbons with a small amount of light gas by-product and a high octane number. As a result, they discovered that the objective could be achieved by carrying out the conversion reaction in two stages, by carrying out the reaction at a relatively low temperature in the first stage, and at a slightly higher temperature in the second stage.1. completed.

すなわち本発明は、炭素数2〜4の気体状炭化水素を原
料として、結晶性シリケート触媒を用い、温度100〜
400℃にて第1段目の接触転化反応を行ない、次いで
第1段の反応生成物を液状炭化水素と気体状炭化水素に
分離した後、該気体状炭化水素を原料として、結晶性シ
リケート触媒を用い、温度400〜700°Cにて第2
段目の接触転化反応を行なうことを特徴とする気体状炭
化水素の転化方法を提供するものである。
That is, the present invention uses a gaseous hydrocarbon having 2 to 4 carbon atoms as a raw material, a crystalline silicate catalyst, and a temperature of 100 to
After carrying out the first stage catalytic conversion reaction at 400°C and then separating the first stage reaction product into liquid hydrocarbon and gaseous hydrocarbon, the gaseous hydrocarbon is used as a raw material to form a crystalline silicate catalyst. 2nd at a temperature of 400 to 700°C.
The present invention provides a method for converting gaseous hydrocarbons, which is characterized by carrying out a catalytic conversion reaction in stages.

本発明の方法における原料炭化水素は、上述の如く炭素
数2〜4の気体状炭化水素であり、通常はFOOから生
成するBE留分等が充当される。この原料炭化水素は、
炭素数2〜4の気体状炭化水素を主成分とするものであ
れば、その組成は特に制限なく、各種のものがあげられ
るが、好ましい組成としてはパラフィン系炭化水素が7
5重量%より少なく、またオレフィン系炭化水素も75
重量%より少ない範囲の混合組成をあげることができる
The raw material hydrocarbon in the method of the present invention is a gaseous hydrocarbon having 2 to 4 carbon atoms as described above, and the BE fraction produced from FOO is usually used. This feedstock hydrocarbon is
As long as the main component is a gaseous hydrocarbon having 2 to 4 carbon atoms, its composition is not particularly limited and various types can be mentioned, but the preferred composition is paraffinic hydrocarbons.
less than 5% by weight, and olefinic hydrocarbons are also less than 75% by weight.
Mixed compositions ranging from less than % by weight can be mentioned.

本発明の方法では、まず上記炭素数2〜4の気体状炭化
水素を原料として、第1段目の接触転化反応を行なう。
In the method of the present invention, the first stage catalytic conversion reaction is first performed using the gaseous hydrocarbon having 2 to 4 carbon atoms as a raw material.

この際の反応温度は、100〜400°C1好ましくは
250〜350℃である。
The reaction temperature at this time is 100 to 400°C, preferably 250 to 350°C.

この第1段目の反応において温度が400″Cを越える
と、メタンやエタンなどの気体状炭化水素の生成量が増
大し好ましくない。これに対して100〜400°Cの
範囲にて転化反応を行な・うと、主として原料気体状炭
化水素中のオレフィン分が優先的に反応して、メタン、
エタン、エチレン分の副生がほとんどなく、オレフィン
系炭化水素を多く含むオクタン価の為いガソリンが高収
率で得られる。
If the temperature exceeds 400''C in this first stage reaction, the amount of gaseous hydrocarbons such as methane and ethane produced will increase, which is undesirable. When this is carried out, the olefin content in the raw gaseous hydrocarbon reacts preferentially, producing methane,
There are almost no by-products of ethane and ethylene, and because the octane number contains a large amount of olefinic hydrocarbons, gasoline can be obtained in high yield.

また本発明の方法における第1段目の接触転化反応の他
の条件としては、特に制限はなく、用いる触媒の種類、
原料炭化水素の種類などにより適宜選定すればよいが1
通常は圧力を常圧〜5゜kg7cm” G 、好ましく
は常圧〜2okg/♂Gとし、重量空間速度(W)Is
V ) 0.1〜50 hr ’ 、好ましくは0.5
〜10 hr”−’  とすべきである。さらに反応系
には触媒劣化を防止するために、所望により水素を供給
することもできる。この水素の供給量は特に制限はなく
適宜定めればよいが、一般に水素/原料炭化水素のモル
比として0.1〜6、好ましくは1〜5とする。
In addition, there are no particular restrictions on other conditions for the first stage catalytic conversion reaction in the method of the present invention, such as the type of catalyst used,
It may be selected appropriately depending on the type of raw material hydrocarbon, etc.1
Usually the pressure is normal pressure to 5゜kg7cm''G, preferably normal pressure to 2okg/♂G, and the weight hourly space velocity (W) Is
V) 0.1-50 hr', preferably 0.5
It should be ~10 hr"-'. Furthermore, in order to prevent catalyst deterioration, hydrogen can be supplied to the reaction system if desired. The amount of hydrogen supplied is not particularly limited and may be determined as appropriate. However, the hydrogen/raw material hydrocarbon molar ratio is generally 0.1 to 6, preferably 1 to 5.

さらに本発明の方法の第1段目の接触転化反応では触媒
として結晶性シリケートを用いることが必要である。こ
こで使用できる結晶性シリケートは各種のものをあげる
ことができ、各条件に応じて適宜選択して使用すればよ
い。結晶性シリケートの具体例をあげれば、X型ゼオラ
イト、Y型ゼオライト、A型ゼオライト、L型ゼオライ
ト。
Furthermore, it is necessary to use a crystalline silicate as a catalyst in the first stage catalytic conversion reaction of the method of the present invention. Various types of crystalline silicates can be used here, and they may be appropriately selected and used depending on each condition. Specific examples of crystalline silicates include X-type zeolite, Y-type zeolite, A-type zeolite, and L-type zeolite.

ZSM型ゼオライトあるいはこれらに類似のゼオライト
などがあり、またこれらを水素イオンで交換したものや
各種金属イオンで交換したものなどがある。そのうち特
に28M型、とりわけZSM−5型あるいはこれに類似
の結晶構造のゼオライトが好ましい。このZSM型ゼオ
ラ、イトあるいはこれに類似するゼオライトは、シリカ
−アルミナ系、シリカ−アルミナ−活性金属系、シリカ
−活性金属系のものに大別でき、特に前渚二つはシリカ
/アルミナ比が12〜3000のものが好ましい。
There are ZSM type zeolites and zeolites similar to these, and there are also those in which these are exchanged with hydrogen ions and those in which various metal ions are exchanged. Among these, 28M type, particularly ZSM-5 type or similar crystal structure zeolites are preferred. These ZSM-type zeolites, zeolites, and similar zeolites can be broadly classified into silica-alumina, silica-alumina-active metal, and silica-active metal. 12 to 3000 is preferred.

本発明の方法で使用できる」−記結晶性シリケードの具
体例をより詳しく説明すれば次の■〜■の如くである。
Specific examples of the crystalline silicates that can be used in the method of the present invention are as follows (1) to (2) below.

■ シリカ、アルカリ金属6周期律表111A 、 T
VA。
■ Silica, alkali metals 6 periodic table 111A, T
V.A.

VA、 mB、 [VI3. ’V13. VI:B、
■族に属する一種以上の金属および水を原料として、こ
れに結晶化剤としてモルホリン、オキサゾリジンなどの
複素環式化合物、エタノールアミン、グロバノールアミ
ンなどのアミノアルコール、アラニン、セリンなどのア
ミノ酸あるいはアセトアミドなどのアミド類を加えて、
80〜300°Cにて結晶性ゼオライトが十分に生成す
るまで反応させて得た結晶性ゼオライト(特開昭57−
7817号公報)。
VA, mB, [VI3. 'V13. VI:B,
Using one or more metals belonging to group II and water as raw materials, and crystallizing agents such as heterocyclic compounds such as morpholine and oxazolidine, amino alcohols such as ethanolamine and globanolamine, amino acids such as alanine and serine, or acetamide. Add the amides of
Crystalline zeolite obtained by reacting at 80 to 300°C until crystalline zeolite is sufficiently produced (JP-A-57-
Publication No. 7817).

■ 上記■の原料にさらにアルミナを加え、これに結晶
化剤を加えて反応させて得た結晶化アルミノシリケート
ゼオライト(特開昭57−7818号公報)。
(2) A crystallized aluminosilicate zeolite obtained by adding alumina to the raw material (1) above and reacting it with a crystallizing agent (Japanese Unexamined Patent Publication No. 7818/1983).

■) シリカ、アルミナ、アルカリ金属および水を原料
とし、これに種結晶として結晶性ゼオライト粉末を存在
させると共に反応系の田を9〜12に保持して、80〜
300°Cにて結晶が十分に生成するまで反応させて得
た結晶性゛アルミノシリケートゼオライト(特開昭57
−781.9号公報)。
■) Silica, alumina, alkali metal and water are used as raw materials, crystalline zeolite powder is present as a seed crystal, and the temperature of the reaction system is maintained at 9 to 12.
Crystalline ``aluminosilicate zeolite'' obtained by reacting at 300°C until sufficient crystal formation
-781.9 Publication).

■ シリカ、アルミナ、アルカリ金属および水を原料と
して、これに結晶化剤としてモルホリン。
■ Silica, alumina, alkali metals and water are used as raw materials, and morpholine is used as a crystallizing agent.

オキサゾリジンなどの複素環式化合物を加えて、80〜
300°Cにて結晶が十分に生成するまで反応させて得
た結晶性アルミノシリケートゼオライト(特開昭57−
7816号公報)。
By adding a heterocyclic compound such as oxazolidine, 80~
Crystalline aluminosilicate zeolite obtained by reacting at 300°C until sufficient crystal formation
Publication No. 7816).

■ 酸化物のモル比(脱水の形態)で表わして、(0,
1〜2.0 ) Re/n O・[aM、 o8HbA
’ 90g :1 ・y 81011(上記式中、几:
1種又はそれ以、上の1価又(j2価カチオ/、a:R
の原子価1M:1種又はそれ以上の3価の遷移金属カチ
オン、a−1−b=l。
■ Expressed as the molar ratio of oxides (dehydrated form), (0,
1~2.0) Re/n O・[aM, o8HbA
' 90g:1 ・y 81011 (in the above formula, 几:
One or more of the above monovalent or divalent cations/, a:R
Valency 1M: one or more trivalent transition metal cations, a-1-b=l.

a≧Q、b≧o、y≧12)の化学組成を有L7、さら
にアルコール類、有機アミン類、エーテル類。
L7 has a chemical composition of a≧Q, b≧o, y≧12), and further includes alcohols, organic amines, and ethers.

ケトン類、エステル類、及び/又は有機硫黄化合物又は
その誘導体を含有する結晶性遷移金用オルガノシリケー
ト(特開昭5710684号公報)、。
Crystalline transition gold organosilicate containing ketones, esters, and/or organic sulfur compounds or derivatives thereof (Japanese Patent Application Laid-Open No. 5710684).

■ (a)約6〜15′Aの範囲内の均一な孔径及び少
なくとも約3のシリカ対アルミナモル比を有する結晶質
アルミノシリケートゼオライト、(b)無機酸化物マト
リックス、及び(c)ばらばらのアルミナ粒子を含む触
媒であって、前記ゼオライトは0))成分と複合化され
る前に約24.11以上の単位胞寸法を有し5かつアル
カリ金属酸化物/前記ゼオライトのM’ Sl比が00
24以下となる程度のアルカリ金属な含むと共に、希土
類金属酸化物/前記ゼオライトの重量比が約0.01〜
oo8となる程度の希土類金属を含有する結晶性ゼオラ
イト系触媒(特開昭57−91741号公報)。
■ (a) a crystalline aluminosilicate zeolite having a uniform pore size in the range of about 6 to 15'A and a silica to alumina molar ratio of at least about 3; (b) an inorganic oxide matrix; and (c) loose alumina particles. 5), wherein the zeolite has a unit cell size of about 24.11 or more before being composited with component 0), and the alkali metal oxide/M'Sl ratio of the zeolite is 00.
24 or less, and the weight ratio of the rare earth metal oxide/the zeolite is about 0.01 to
A crystalline zeolite catalyst containing a rare earth metal in an amount of oo8 (Japanese Unexamined Patent Publication No. 57-91741).

■ 特定のX線回折パターンを有し、かつ酸化物のモル
比が、 09十0.2 M2/n (1: WQOs : bY
Os : ZH510(式中Mは陽イオンで、nは前記
陽イオンの原子価であり、’W&’X、アルミニウムま
たはガリウムであり、Yはケイ素またはゲルマニウムで
ある。また2は0〜40、bは少なくとも5、好ましく
は15〜300である。)あるいは、 0、9−+0.2 MQ/n O’ Al、o8’ 1
5〜300 S 102 ’ zH20(式中Mはアル
カリ金属陽イオン特にす) IJつ”とテトラアルキル
アンモニウム陽イオン(アルキル基は好適には2〜5個
の炭素原子を含有する)の混合物であり、n+Zは前記
と同じ。)で表わされるようなZSM−5系ゼオライト
■ It has a specific X-ray diffraction pattern, and the molar ratio of oxides is 090.2 M2/n (1: WQOs: bY
Os: ZH510 (where M is a cation, n is the valence of the cation, 'W&'X, aluminum or gallium, Y is silicon or germanium, and 2 is 0-40, b is at least 5, preferably from 15 to 300) or 0,9-+0.2 MQ/n O' Al, o8' 1
5 to 300 S 102 ' zH20 (wherein M is an alkali metal cation, especially an alkali metal cation) and a tetraalkylammonium cation (the alkyl group preferably contains 2 to 5 carbon atoms); , n+Z is the same as above.) ZSM-5 series zeolite.

特定のX線回折パターンを有L、かつ酸化物のモル比が
、 0.9±0.2 M2/n O’ Al:s08: 1
5〜300 S 1o11: 7.H2O(式中Mけ少
なくとも1種の陽イオンでnはその原子価であり、2は
0〜40である。)あるいは、09千0.2 Ms/H
O: AlgOs ’ 15〜60 Sl、02’ z
H40(式中、Mはアルカリ金属陽イオン、特にナトリ
ウムイオンおよびテトラエチルアンモニウム陽イオンの
混合物からなる群から選ばれる。)で表わされるような
ZSM−8系ゼオライト。
L has a specific X-ray diffraction pattern, and the molar ratio of oxides is 0.9±0.2 M2/n O' Al:s08:1
5-300 S 1o11: 7. H2O (where M is at least one cation, n is its valence, and 2 is from 0 to 40) or 09,000,0.2 Ms/H
O: AlgOs' 15~60 Sl, 02'z
Zeolites of the ZSM-8 series, such as H40, where M is selected from the group consisting of a mixture of alkali metal cations, especially sodium ions and tetraethylammonium cations.

特定のX線回折パターンを有し、かつ酸化物のモル上じ
が、 0、9 +0.3 MQ/nO’ A l e Oa 
’ 20〜90810Il: zH20(式中1Mは少
なくとも1種の陽イオンで、nはその原子価であり、2
は6〜12である。)あるいは、0.9 +(1,3M
a/n O: A、’i0a ’ 20〜90 Si 
(12: 7.1?20(式中、Mはアルカリ金属陽イ
オン特にナトリウムイオンおよびテトラブチルアンモニ
ウム陽イオンの混合物からなる群から選ばれる。)で表
わされるよりなzSM−11系ゼオライト(特開昭50
−521 (,14号公報)。
It has a specific X-ray diffraction pattern and the molar mass of oxide is 0,9 +0.3 MQ/nO' A le Oa
'20-90810Il: zH20 (wherein 1M is at least one cation, n is its valence, 2
is 6-12. ) or 0.9 + (1,3M
a/n O: A, 'i0a' 20~90 Si
(12: 7.1?20, where M is selected from the group consisting of a mixture of alkali metal cations, especially sodium ions and tetrabutylammonium cations). 1970
-521 (, No. 14 Publication).

■ (a)特定のX線回折パターンを有し、(b)ケイ
酸塩なIi−型に変換し、2×10″″9バールで40
0°Cにおいて16時間減圧処理した後、炭化水素圧力
sxi o ”バールおよび100°Cにおいて測定し
たとき、n−ヘキサンの吸収率が最小0.8 ミIJモ
ル/9であり、2,2−ジメチルブタンの吸収率が最小
05ミリモル/gであり、かつn−ヘキサンの吸収率/
2,2−ジメチルブタンの吸収率の比が最小1.5であ
り、(C)酸化物のモル数で表わした組成が式: y−
(t、o±0.3 ) M2.’H0・7−Al@OB
 ・Sj’Og(式中1Mは水素、アルカリ金属又はア
ルカリ土類金属、nはMの原子価、0〈y≦001であ
る。)125195号公報)。
■ (a) has a specific X-ray diffraction pattern and (b) is converted to the silicate form Ii-form at 2 x 10''9 bar.
After vacuum treatment for 16 hours at 0 °C, the absorption of n-hexane is a minimum of 0.8 μIJ mole/9 when measured at hydrocarbon pressure sxi o ” bar and 100 °C, and 2,2- The absorption rate of dimethylbutane is at least 05 mmol/g, and the absorption rate of n-hexane/
The ratio of the absorption rates of 2,2-dimethylbutane is at least 1.5, and the composition expressed in moles of (C) oxide has the formula: y-
(t, o±0.3) M2. 'H0・7-Al@OB
- Sj'Og (in the formula, 1M is hydrogen, an alkali metal or an alkaline earth metal, n is the valence of M, and 0<y≦001). Publication No. 125195).

■ 少なくとも12のシリカ/アルミナモル比と、1〜
120制御指数とをもつ結晶性ゼオライト(ZSM−5
,28M−11,ZSM−12,ZSM−23,28M
−35、ZSM−38,ZSM−48およびその類似物
質)であって、該ゼオライトを周期律表IITA族金属
元素含有化合物の1種またはそれ以北の化合物で処理す
ることによって該ゼオライト上に少くとも0.5重量%
の前記元素を析出させてなる結晶性ゼオライト(特開昭
57−95922号公報)。
■ A silica/alumina molar ratio of at least 12 and
Crystalline zeolite (ZSM-5) with control index of 120
, 28M-11, ZSM-12, ZSM-23, 28M
-35, ZSM-38, ZSM-48 and their similar substances), by treating the zeolite with one of the compounds containing metal elements of group IITA of the periodic table or with a compound containing a metal element in group IITA of the periodic table. Both 0.5% by weight
A crystalline zeolite obtained by precipitating the above elements (Japanese Patent Application Laid-Open No. 57-95922).

本発明の方法では以上の如き結晶性シリケート以外にも
、様々なものが使用でき1.これらに限定されるもので
はない。また、触媒として用いる結晶性シリケートの粒
子径は特に制限はないが、一般にo、oos〜30ミク
ロンである。なお、この結晶性シリケートはそのまま用
いてもよいが、アルミナ等をバインダーとして加えて混
合し、押出成形して適宜形状、例えば立方体、丸形1球
状。
In addition to the above-mentioned crystalline silicates, various other materials can be used in the method of the present invention.1. It is not limited to these. Further, the particle size of the crystalline silicate used as a catalyst is not particularly limited, but is generally from o.oos to 30 microns. Although this crystalline silicate may be used as it is, it is mixed with alumina or the like as a binder and extruded to form an appropriate shape, for example, a cube, a round shape, or a spherical shape.

円筒状あるいは星状なとの異形に成形すると取扱いが便
利となり好ましい。
It is preferable to mold it into a cylindrical or star-shaped irregular shape for convenient handling.

本発明の方法では第1段目の接触転化反応終了後、得ら
れた反応生成物を、液状炭化水素と気体状炭化水素とに
分離する。分離された液状炭化水素には多量の高オクタ
ン価ガソリン留分が含まれており、一方、気体状炭化水
素は大部分がパラフィン分、すなわちメタン、エタン、
プロパン、ブタンなどから成っている。
In the method of the present invention, after the first stage catalytic conversion reaction is completed, the obtained reaction product is separated into liquid hydrocarbons and gaseous hydrocarbons. The separated liquid hydrocarbons contain a large amount of high-octane gasoline fraction, while the gaseous hydrocarbons are mostly paraffins, i.e. methane, ethane,
It consists of propane, butane, etc.

本発明の方法では、上記の気体状炭化水素を原料として
、第2段目の接触転化反応を進める。この際の反応温度
は400〜700”C1好ましくは450〜550℃で
あり、前述の第1段目の転化反応よりも高温とすべきで
ある。ここで400°C未満の温度では、液状炭化水素
への転化が少なく、逆に700°Cを越えると触媒の劣
化が激しく、また運転費用も上昇し実用的でない。これ
に対して、400〜700℃の範囲で第2段目の接触転
化反応を行なうと、芳香族分に富む液状炭化水素が高収
率で得られる。
In the method of the present invention, the second stage catalytic conversion reaction is carried out using the above gaseous hydrocarbon as a raw material. The reaction temperature at this time is 400 to 700" C1, preferably 450 to 550 °C, and should be higher than the first stage conversion reaction described above. At a temperature below 400 °C, liquid carbonization Conversion to hydrogen is small, and on the other hand, if the temperature exceeds 700°C, the catalyst deteriorates significantly, and operating costs also increase, making it impractical.On the other hand, in the range of 400 to 700°C, the second stage catalytic conversion When the reaction is carried out, a liquid hydrocarbon rich in aromatics is obtained in high yield.

また本発明の方法における第2段目の接触転化反応の他
の条件としては、特に制限はなく用℃・る触媒の糧類、
供給する気体状炭化水素の組成等により適宜選定すれば
よいが、通常は、圧力を常圧〜50 kg /c+w″
G、好ましくは常圧〜20 kg/cm2Gとし、 W
H8V O,1〜50 hr−’ 、好ましくは0.5
〜]、 Ohr−”  とすべきである。さらに反応系
に&気前記した第1段目の接触転化反応の場合と同様に
、触媒劣化を防止するために、所望により水素を加える
こともできる。この際の水素の供給量は特に制限はなく
適宜穴めればよいが、一般に導入される気体状炭化水素
に対して0.1〜6(モル比)、好ましくは1〜5(モ
ル比)とする。また、この水素は新たに供給してもよい
が、第、1段の反応に供給した水素をそのまま利用して
もよい。
In addition, other conditions for the second stage catalytic conversion reaction in the method of the present invention are not particularly limited;
The pressure may be selected as appropriate depending on the composition of the gaseous hydrocarbon to be supplied, but usually the pressure is between normal pressure and 50 kg/c+w''.
G, preferably normal pressure to 20 kg/cm2G, W
H8V O, 1-50 hr-', preferably 0.5
〜], Ohr-''.Furthermore, as in the case of the first stage catalytic conversion reaction described above, hydrogen can be added to the reaction system if desired in order to prevent catalyst deterioration. The amount of hydrogen supplied at this time is not particularly limited and may be adjusted appropriately, but it is generally 0.1 to 6 (molar ratio), preferably 1 to 5 (molar ratio) relative to the gaseous hydrocarbon introduced. ).Although this hydrogen may be newly supplied, the hydrogen supplied to the first stage reaction may be used as is.

さらに本発明の方法の第2段目の接触転化反応では、触
媒として結晶性シリケートを用いることが必要である。
Furthermore, in the second stage catalytic conversion reaction of the method of the present invention, it is necessary to use a crystalline silicate as a catalyst.

この結晶性シリケー日家第1段目の接触転化反応で用い
た結晶性シリケートと同じであっても異なるものであっ
てもよい。具体的には前述した如きものが好適に用いら
れる。
This crystalline silicate may be the same as or different from the crystalline silicate used in the first stage catalytic conversion reaction. Specifically, those mentioned above are preferably used.

この第2段目の接触転化反応によれば、芳香族分に富ん
だ液状炭化水素が効率よく得られる。またここで副生す
る気体状炭化水素は、分離した後、第1段目あるいは第
2段目の反応系ヘリサイクルすることもできる。
According to this second-stage catalytic conversion reaction, liquid hydrocarbons rich in aromatic components can be efficiently obtained. Further, the gaseous hydrocarbons produced by-product here can be recycled to the first or second stage reaction system after being separated.

叙上の如く、本発明の方法によれば利用価値の低い炭素
数2〜4の気体状炭化水素からオクタン価の高い液状炭
化水素を高収率で得ることができると共に、反応性の低
いメタンガスの副生を抑制することができる。
As described above, according to the method of the present invention, liquid hydrocarbons with a high octane number can be obtained in high yield from gaseous hydrocarbons having a carbon number of 2 to 4, which have low utility value, and methane gas with low reactivity can be obtained. By-products can be suppressed.

したがって本発明の方法は、高オクタン価ガソリンを効
率よく製造できるものとして工業上有効に利用すること
ができる。
Therefore, the method of the present invention can be effectively used industrially as a method for efficiently producing high octane gasoline.

次に本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 +11  触媒の調製 硫酸アルミニウム(18水塩)752り、硫酸(97%
) 17.69および水250 mlからなる溶液(1
)、水ガラス(8]、02 37.6 xi目、 Na
−@017.5重1%、水449重門%)162りおよ
び水300 mlからなる溶液(II) 、塩化ナトリ
ウム79りおよび水122mJからなる溶液(1,11
)をイ二才1ぞれ調製した。
Example 1 +11 Preparation of catalyst Aluminum sulfate (18 hydrate) 752 chloride, sulfuric acid (97%
) 17.69 and 250 ml of water (1
), water glass (8), 02 37.6 xi, Na
-@017.5 1% by weight, 449% water) and 300 ml of solution (II), 79 ml of sodium chloride and 122 mJ of water (1,11
) were prepared in two batches.

次いで上記溶液(m)中へ溶液(Dおよび溶液(IT)
を室温で攪拌しながら同時に徐々に滴下1〜て( 混合物を得た。続いてこの混合物に粉末モルデナイト1
りを添加した後、田を100に調望し、11容のオート
クレーブに人J1.170°Cにて200rpmの回転
数で攪拌し、自己圧力下で20時間反応させた。その後
、反応混合物を冷却し2.1gの水で5回洗浄した。次
いでri過により固型分を分離し、120°Cで3時間
乾燥したところ、405りの結晶性アルミノシリケート
ゼオライトが得られた。この結晶性アルミノシリケート
ぞオライドをX線回折で確認したところ、ZSM−5で
あった。
Then, solution (D) and solution (IT) were added into the above solution (m).
were gradually added dropwise at the same time while stirring at room temperature (to obtain a mixture).
After adding the solution, the temperature was adjusted to 100 ml, and the mixture was placed in an 11-volume autoclave at 170° C. with stirring at 200 rpm and allowed to react under autogenous pressure for 20 hours. Thereafter, the reaction mixture was cooled and washed five times with 2.1 g of water. Then, solid matter was separated by RI filtration and dried at 120°C for 3 hours, yielding 405 crystalline aluminosilicate zeolites. This crystalline aluminosilicate olide was confirmed by X-ray diffraction and was found to be ZSM-5.

なおこのZSM−5はモル比で次の組成を有する。Note that this ZSM-5 has the following composition in terms of molar ratio.

0、9 NF190 ’ 60  SjOg ’ 1.
 OAt@C)s上記の方法で得らJまたZSM−5を
1ノ当り5 rrrlの1川定硝酸アンモニウムで2回
イオン交換し、120°Cで乾燥後、550℃、6時間
空気中で燃成してH型とした。さらに、この1■型のZ
SM−5にアルミナをバインダーとして20重量系加え
て混合し、押出17成形した後、120°Cで3時間乾
燥し、さらに空気中で550°Cにて6時間焼成して直
径1叢貫、長さ5〜6非の円筒状の触媒粒子を得プこ。
0, 9 NF190' 60 SjOg' 1.
OAt@C)s ZSM-5 obtained by the above method was ion-exchanged twice with 5 rrrl of ammonium nitrate per sample, dried at 120°C, and then burned in air at 550°C for 6 hours. It was made into an H type. Furthermore, this 1■ type Z
A 20 weight system of alumina was added as a binder to SM-5, mixed, extruded and molded for 17 minutes, dried at 120°C for 3 hours, and fired in air at 550°C for 6 hours to form a diameter of 1 block. Cylindrical catalyst particles having a length of 5 to 6 mm are obtained.

121  転化反応 ステンレス製反応管に、上記(1)で得られた触、媒を
充填し、これに第1表に示す組成の気体状炭化水素を通
し、所定条併にて第1段目の転化反応を行なった。
121 Conversion Reaction A stainless steel reaction tube is filled with the catalyst and catalyst obtained in (1) above, and a gaseous hydrocarbon having the composition shown in Table 1 is passed through it to form the first stage under the prescribed conditions. A conversion reaction was carried out.

続いて上記転化反応で得られた生成物を気液分離し、生
成した気体状炭化水素を原料として、これをステンレス
製反応管に通して、所定条件で第2段目の転化反応を行
なった。結果を第2表に示す。
Subsequently, the product obtained in the above conversion reaction was separated into gas and liquid, and the generated gaseous hydrocarbon was passed through a stainless steel reaction tube as a raw material to perform a second stage conversion reaction under predetermined conditions. . The results are shown in Table 2.

実施例2 +1+  触媒の1・■製 実施例1(1)で得られた結晶性シリケート(硝酸アン
モニウムで2回イオン交換し、乾燥しただけのもの)を
、1g当りlQmlの0.5規定硝酸亜鉛で2回イオン
交換した。さらにイオン交換水で充分洗浄し、卸過した
後、120″Cで乾燥し、ひき続いて550℃、6時間
空気中で焼成して亜鉛交換型Z8M−5触媒を得た。
Example 2 +1+ Catalyst 1・■ Preparation The crystalline silicate obtained in Example 1 (1) (simply ion-exchanged twice with ammonium nitrate and dried) was mixed with lQml/g of 0.5N zinc nitrate. Ion exchanged twice. Further, the product was thoroughly washed with ion-exchanged water, filtered, dried at 120"C, and then calcined in air at 550C for 6 hours to obtain a zinc-exchanged Z8M-5 catalyst.

(2)  転化反応 実施例1(1)で得られた触媒を用い、実施例1(2)
と同様にして第1段目の転化反応を行なった。
(2) Conversion reaction Example 1 (2) using the catalyst obtained in Example 1 (1)
The first stage conversion reaction was carried out in the same manner as above.

続いて生成物を気液分離後、得られた気体状炭化水素を
原料とし、実施例2(1)で得られた触媒を用いて、実
施例1(2)と同様にして第2段目の転化反応を行なっ
た。結果を第2表に示す。
Subsequently, after gas-liquid separation of the product, the second stage was carried out in the same manner as in Example 1 (2) using the obtained gaseous hydrocarbon as a raw material and the catalyst obtained in Example 2 (1). A conversion reaction was carried out. The results are shown in Table 2.

−、−/ 第 1 表 (原料組成)−、−/ Table 1 (Raw material composition)

Claims (1)

【特許請求の範囲】[Claims] (1)  炭素数2〜4の気体状炭化水素を原料として
、結晶性シリケート触媒を用い、温度100〜400°
Cにて第1段目の接触転化反応を行ない、次いで第1段
の反応生成物を液状炭化水素と気体状炭化水素に分離し
た後、該気体状炭化水素を原料として、結晶性シリケー
ト触媒を用い、温度400〜700°Cにて第2段目の
接触転化反応を行なうことを特徴とする気体状炭化水素
の転化方法。
(1) Using a gaseous hydrocarbon having 2 to 4 carbon atoms as a raw material, using a crystalline silicate catalyst, at a temperature of 100 to 400°
After carrying out the first stage catalytic conversion reaction at C, and then separating the first stage reaction product into liquid hydrocarbon and gaseous hydrocarbon, a crystalline silicate catalyst is prepared using the gaseous hydrocarbon as a raw material. A method for converting gaseous hydrocarbons, characterized in that the second stage catalytic conversion reaction is carried out at a temperature of 400 to 700°C.
JP12435282A 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon Granted JPS5915482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12435282A JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12435282A JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5915482A true JPS5915482A (en) 1984-01-26
JPH0246077B2 JPH0246077B2 (en) 1990-10-12

Family

ID=14883252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12435282A Granted JPS5915482A (en) 1982-07-19 1982-07-19 Conversion of gaseous hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5915482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206482A (en) * 1983-04-26 1984-11-22 モ−ビル・オイル・コ−ポレ−シヨン Exothermic hydrogenation conversion by use of heat exchange between reaction column effluent refinement system and raw material
JPS6451492A (en) * 1987-08-06 1989-02-27 Mobil Oil Corp Manufacture of fatty hydrocarbon
JPH03182592A (en) * 1989-12-04 1991-08-08 Uop Inc Method for continuous catalytic and selective production of aromatic hydrocarbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103292A (en) * 1979-12-31 1981-08-18 Mobil Oil Manufacture of gasoline fraction from olefinncontaining mixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103292A (en) * 1979-12-31 1981-08-18 Mobil Oil Manufacture of gasoline fraction from olefinncontaining mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206482A (en) * 1983-04-26 1984-11-22 モ−ビル・オイル・コ−ポレ−シヨン Exothermic hydrogenation conversion by use of heat exchange between reaction column effluent refinement system and raw material
JPS6451492A (en) * 1987-08-06 1989-02-27 Mobil Oil Corp Manufacture of fatty hydrocarbon
JPH03182592A (en) * 1989-12-04 1991-08-08 Uop Inc Method for continuous catalytic and selective production of aromatic hydrocarbon

Also Published As

Publication number Publication date
JPH0246077B2 (en) 1990-10-12

Similar Documents

Publication Publication Date Title
US4333859A (en) High silica faujasite polymorph - CSZ-3 and method of synthesizing
US5554274A (en) Manufacture of improved catalyst
JPH0551571B2 (en)
JPS6092221A (en) Conversion of methanol to olefin
JPS62254847A (en) Production of high-octane gasoline base material
JPS6052084B2 (en) Crystalline zeolite with an aluminum-free outer shell
US5689024A (en) Use of crystalline SUZ-9
JP2740819B2 (en) Method for producing high octane gasoline base material
JPS6132294B2 (en)
JPS6163525A (en) Reformation of zeolite
JPS61168521A (en) Manufacture of silica-rich synthetic offretite
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JP3560610B2 (en) Catalytic cracking method and method for producing ZSM-5 catalyst used therein
JPH05500650A (en) Low Aluminum Boron Beta Zeolite
JPS5915482A (en) Conversion of gaseous hydrocarbon
US5202513A (en) Process for producing aromatic hydrocarbons
JP2759099B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbon oils and fluid catalytic cracking using the same
JPH0339009B2 (en)
RU2242279C2 (en) Paraffin c2-c5-hydrocarbon conversion catalyst, method of preparation thereof, and a method for conversion of paraffin c2-c5-hydrocarbons into lower olefins
JP3966429B2 (en) Aromatic hydrocarbon production catalyst
JPS61200928A (en) Production of lower olefin
JPH06192135A (en) Method for converting light hydrocarbon
JPH06199707A (en) Catalytic cracking of light hydrocarbon
JPS6217017A (en) Reformation of crystalline porous ore
JP2501868B2 (en) Method for producing crystalline galloaluminosilicate and method for producing aromatic hydrocarbon