JPH0339495B2 - - Google Patents

Info

Publication number
JPH0339495B2
JPH0339495B2 JP58137493A JP13749383A JPH0339495B2 JP H0339495 B2 JPH0339495 B2 JP H0339495B2 JP 58137493 A JP58137493 A JP 58137493A JP 13749383 A JP13749383 A JP 13749383A JP H0339495 B2 JPH0339495 B2 JP H0339495B2
Authority
JP
Japan
Prior art keywords
reaction
reaction step
methylating agent
crystalline aluminosilicate
methylating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58137493A
Other languages
Japanese (ja)
Other versions
JPS6032721A (en
Inventor
Kazunori Kitagawa
Haruhito Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP58137493A priority Critical patent/JPS6032721A/en
Publication of JPS6032721A publication Critical patent/JPS6032721A/en
Publication of JPH0339495B2 publication Critical patent/JPH0339495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプソイドキユメンまたはデユレンの製
造法に関し、詳しくはキシレンを原料として二段
階に分けてメチル化反応を行なうことにより、メ
チル化剤を効率よく利用すると共にプソイドキユ
メンまたはデユレンを高い選択率にて製造するこ
とのできる方法に関する。 従来、プソイドキユメンやデユレンを製造する
方法としては、ルイス酸触媒を用いる方法や硫酸
を用いる方法などが知られている。しかし、前者
の方法では装置の腐蝕の問題があるほか、生成物
の選択性が低く、また後者の方法では原料の転化
率が低いという問題があつた。特にデユレンにつ
いては、プソイドキユメンの不均化反応によつて
製造する方法についても提案されているが、イソ
デユレンの生成量が多く望ましいものではない。 他方、一般に芳香族単化水素をメチル化する場
合には、メチル化剤として用いるメタノールやジ
メチルエーテルが容易にオレフインに転化したり
炭化したりするため、メチル化反応に利用される
メチル化剤の割合が小さくなるという不都合があ
る。特に、デユレンを高収率で得るには、メチル
化剤の供給割合を増加するとともに高い温度で長
時間反応させることが必要となるが、この場合に
はさらにメチル化剤の利用率が低下するという問
題がある。 本発明者らは以上のような従来技術の問題点を
解消し、メチル化剤の利用率を高めると同時に、
プソイドキユメンやデユレンを高い選択率で得る
ことのできる方法を開発すべく鋭意研究を重ね
た。その結果、キシレンを原料として、メチル化
反応を二段階に分けて行なうことにより、目的を
達成しうることを見出し、本発明を完成するに至
つた。 すなわち本発明は、キシレンをメチル化してプ
ソイドキユメンまたはデユレンを製造するにあた
り、メチル化触媒として結晶性アルミノシリケー
トおよび弗素含有結晶性アルミノシリケートのう
ちのいずれかの存在下、第一段反応工程において
キシレンのメチル化反応を行ない、次いで第二段
反応工程において前記第一段反応工程からの反応
混合物の少なくとも一部をさらにメチル化するこ
とを特徴とするプソイドキユメンまたはデユレン
の製造法を提供するものである。 本発明の方法は、キシレンを原料化合物として
用い、これを二段階に分けてメチル化するわけで
あるが、まず第一段の反応工程では主としてキシ
レンからプソイドキユメンを製造する反応が行な
われる。ここでは様々なメチル化剤が使用でき、
例えばメタノール、ジメチルエーテル、塩化メチ
ル、臭化メチルなとが使用可能である。しかし、
この第一段階のメチル化反応で、プソイドキユメ
ンのみを得たい場合には、比較的メチル化能の小
さいジメチルエーテルを主成分とするメチル化剤
を用いることが好ましい。 前記第一段階の反応終了後、反応混合物を第二
段反応工程を導いて、さらにメチル化反応を進め
るわけであるが、この場合、第一段反応工程から
の反応混合物の全量を第二段反応工程に導入して
もよいが、該混合物中の軽質ガス分やプソイドキ
ユメンの一部を分離除去した後に、残部を導入し
てもよい。この第二段反応工程においては、導入
された反応混合物をさらにメチル化するが、ここ
では第一段反応工程と同様にメタノール、ジメチ
ルエーテル、塩化メチル、臭化メチル等の様々な
メチル化剤が使用できる。この工程では第一段反
応工程で生成したプソイドキユメンや未反応のキ
シレンのメチル化反応が主として進行するが、特
にデユレンを製造したい場合には、比較的メチル
化能の大きいメタノールを主成分とするメチル化
剤を用いることが好ましい。 第二段反応工程において、メタノールを主成分
とするメチル化剤を用いて反応を行なうと、回収
されたメチル化剤中には比較的多量のジメチルエ
ーテルが含まれることとなるが、これを第一段反
応工程のメチル化剤として用いれば、メチル化剤
の有効利用を図ることができる。なお、第一段反
応工程において用いるメチル化剤として、第二段
反応工程から回収されたメチル化剤のみを充当し
てもよいが、この回収メチル化剤と共に新たなメ
チル化剤を供給してもよい。 ところで、上述した第一段反応工程および第二
段反応工程の反応条件は、目的とする生成物、使
用するメチル化剤の種類等により異なり一義的に
定めることはできず、各種状況に応じて適宜定め
ればよい。ここで一般的な反応条件をあげれば、
第一段、第二段の反応工程ともに、反応温度250
〜400℃、好ましくは280〜330℃、反応圧力常圧
〜10Kg/cm2G、キシレンとメチル化剤の供給割合
キシレン/メチル化剤=2/1〜1/10(モル
比)、好ましくは1/1〜1/4(モル比)の範囲
で選定すべきである。なお、通常は、第二段反応
工程を第一段反応工程に比べてやや厳しい条件に
設定することが好ましい。 また、これら第一段、第二段反応工程は、メチ
ル化触媒の存在下で反応を行なうが、本発明では
メチル化触媒として結晶性アルミノシリケートお
よび弗素含有結晶性アルミノシリケートのうちの
いずれかの存在下で反応を行なう。ここで用いる
結晶性アルミノシリケートとしては、様々なもの
が使用可能であるが、具体的にはZSM−5、
ZSM−11、ZSM−12、ZSM−23、ZSM−35、
ZSM−38、ZSM−48などで代表される。弗素を
含有する結晶性のアルミノシリケートは、前述し
た結晶性アルミノシリケートを各種弗素化合物で
処理することにより得ることができる。 本発明の方法によれば、二段階に分けてメチル
化反応を行なうため、一段にて反応を行なう場合
に比べてメチル化剤の利用率(メチル化反応に利
用される割合)が高く、またプソイドキユメンお
よびデユレンの選択率が著しく高い。 従つて本発明の方法はエンジニアリングプラス
チツクの原料として有用なプソイドキユメンある
いはデユレンの効率の良い製造方法として工業的
に利用価値の高いものである。 次に本発明を実施例によりさらに詳しく説明す
る。 参考例 1 (弗素含有結晶性アルミノシリケートの調製) 硫酸アルミニウム(18水塩)6.2g、濃硫酸
17.68gおよびテトラプロピルアンモニウムブロ
マイド26.32gを水250mlに加えた溶液Aおよび水
ガラス(組成:酸化珪素28.9wt%、酸化ナトリウ
ム9.40wt%、水61.65wt%)211.1gを水250mlに
加えた溶液Bをそれぞれ調製した。次いで、溶液
AおよびBを塩化ナトリウム79.0gを水122mlに
加えてなる溶液に室温にて60分間にわたつて同時
に滴下した。得られた混合液は硫酸を用いてPH
9.5に調整した。この溶液をオートクレーブに入
れて、反応温度170℃で20時間加熱処理した。冷
却下、オートクレーブ内容物を濾過し、得られた
固形物を水で洗浄した後、1規定硝酸アンモニウ
ム水溶液300mlを加えて、90℃8時間の条件で3
回イオン交換を行ない、アンモニウム型の結晶住
アルミノシリケートを得た。その後、内容物を濾
過水洗し120℃で24時間乾燥して、ついで550℃で
6時間焼成してH型結晶性アルミノシリケートを
得た。このH型結晶性アルミノシリケートゼオラ
イトの組成は、SiO2/A2O3=100(モル比)で
あつた。このH型結晶性アルミノシリケートにバ
インダー含量が20重量%となるようにアルミナゾ
ルを加えて成形し、120℃で3時間乾燥しさらに
550℃で6時間空気中で焼成した。焼成後、得ら
れたペレツト状の結晶性アルミノシリケートを、
500℃においてフロン114(1,1,2,2−テト
ラフルオロ−1,2−ジクロルエタン)を70ml/
分で1時間供給して弗素化処理を行ない、弗素含
有結晶性アルミノシリケートを得た。 参考例 2 参考例1で得られたペレツト状の結晶性アルミ
ノシリケート20mlを焼成管に充てんし、700℃に
おいてスチームを水換算で10g/hrで4時間供給
して弱酸化処理を行ない、触媒として用いる結晶
性アルミノシリケートを得た。 実施例 1 第一段反応器および第二段反応器に、それぞれ
触媒として上記参考例で得られた弗素含有結晶性
アルミノシリケートのペレツト20mlを充填し、こ
れら両反応器の間に冷却器と気液分離槽を介して
両反応器を連結した。さらに、第二反応器の出口
配管には冷却器および気液分離槽、減圧弁を介し
てストリツパーを連結し、ストリツパー塔頂ガス
を冷却器で液化し、ポンプで第一段反応器へ供給
できるように配管した。この装置を用いて、予熱
された原料p−キシレンを27ml/hrの流量で、
300℃に加熱された第一段反応器に導入し、つい
でメチル化剤としてメタノール36ml/hrを導入
し、操作圧力9Kg/cm2Gにおいてキシレンのメチ
ル化反応を行なつた。第一段反応器での生成物は
冷却器において30℃に冷却し、気液分離槽におい
てガス成分を分離除去して第二段反応器に導入し
た。この第二段反応器の温度は315℃、圧力は9
Kg/cm2とした。第二段反応器からの生成物は、冷
却器において30℃に冷却後、気液分離槽でガス成
分を分離除去し、減圧弁で常圧まで減圧してスト
リツパーに導入した。ストリツパーでは80℃に再
加熱して塔頂より、ジメチルエーテルおよびメタ
ノールの未反応物を取出して冷却し、液化してポ
ンプで第一段反応器に循環した。このジメチルエ
ーテルを主成分とする未反応メチル化剤の循環使
用を開始後、第一段反応器へのメタノールの供給
を、第二段反応器への供給に変更した。ストリツ
パーの塔底から得られる液状生成物は、水を除去
したのち、別途蒸留して、プソイドキユメンとデ
ユレンを得た。このように第二段反応器での未反
応メチル化剤の循環使用が定常化したのちの、第
一段反応器からの生成物および第二段反応器から
の生成物の組成を第1表に示す。
The present invention relates to a method for producing pseudokyumene or duurene, and more specifically, by carrying out a methylation reaction in two stages using xylene as a raw material, the methylating agent is efficiently utilized and pseudokyumene or duurene is produced with high selectivity. Regarding how it can be done. Conventionally, methods using a Lewis acid catalyst and methods using sulfuric acid are known as methods for producing pseudokyumene and durene. However, the former method has the problem of equipment corrosion and low product selectivity, while the latter method has the problem of low raw material conversion. Particularly regarding duurene, a method of producing it by disproportionation reaction of pseudokyumene has been proposed, but this is not desirable because the amount of isodeurene produced is large. On the other hand, when methylating aromatic hydrogen monoxide, methanol or dimethyl ether used as a methylating agent is easily converted to olefin or carbonized, so the ratio of the methylating agent used in the methylation reaction is This has the disadvantage that it becomes smaller. In particular, in order to obtain Duurene in high yield, it is necessary to increase the supply ratio of the methylating agent and to carry out the reaction at high temperature for a long time, but in this case, the utilization rate of the methylating agent further decreases. There is a problem. The present inventors solved the problems of the conventional technology as described above, and at the same time increased the utilization rate of the methylating agent.
We conducted intensive research to develop a method that can obtain pseudokyumene and duurene with high selectivity. As a result, they discovered that the object could be achieved by carrying out the methylation reaction in two stages using xylene as a raw material, leading to the completion of the present invention. That is, in the present invention, when xylene is methylated to produce pseudokyumene or duurene, xylene is methylated in the first reaction step in the presence of either a crystalline aluminosilicate or a fluorine-containing crystalline aluminosilicate as a methylation catalyst. The present invention provides a method for producing pseudokyumene or duurene, which comprises carrying out a methylation reaction, and then further methylating at least a portion of the reaction mixture from the first reaction step in a second reaction step. The method of the present invention uses xylene as a raw material compound and methylates it in two stages. In the first reaction step, a reaction is mainly performed to produce pseudokymene from xylene. Various methylating agents can be used here,
For example, methanol, dimethyl ether, methyl chloride, methyl bromide, etc. can be used. but,
If it is desired to obtain only pseudokymene in this first step methylation reaction, it is preferable to use a methylating agent whose main component is dimethyl ether, which has a relatively low methylating ability. After the first stage reaction is completed, the reaction mixture is led to the second stage reaction process to further proceed with the methylation reaction. In this case, the entire amount of the reaction mixture from the first stage reaction process is transferred to the second stage reaction process. It may be introduced into the reaction step, or the remainder may be introduced after separating and removing a portion of the light gas components and pseudokymene in the mixture. In this second reaction step, the introduced reaction mixture is further methylated, and here, as in the first reaction step, various methylating agents such as methanol, dimethyl ether, methyl chloride, and methyl bromide are used. can. In this step, the methylation reaction of pseudokyumene and unreacted xylene produced in the first reaction step mainly proceeds, but especially when it is desired to produce duurene, it is necessary to It is preferable to use a curing agent. In the second stage reaction step, if the reaction is carried out using a methylating agent containing methanol as the main component, the recovered methylating agent will contain a relatively large amount of dimethyl ether, but this is If used as a methylating agent in a step reaction step, the methylating agent can be used effectively. Note that as the methylating agent used in the first-stage reaction step, only the methylating agent recovered from the second-stage reaction step may be used, but a new methylating agent may be supplied together with this recovered methylating agent. Good too. By the way, the reaction conditions of the first-stage reaction step and second-stage reaction step described above vary depending on the target product, the type of methylating agent used, etc., and cannot be unambiguously determined, and may vary depending on various circumstances. It may be determined as appropriate. Here are some general reaction conditions:
The reaction temperature for both the first and second stage reaction steps is 250
~400°C, preferably 280~330°C, reaction pressure normal pressure ~10 Kg/cm 2 G, supply ratio of xylene and methylating agent: xylene/methylating agent = 2/1 ~ 1/10 (molar ratio), preferably It should be selected within the range of 1/1 to 1/4 (molar ratio). Note that it is usually preferable to set the second stage reaction step to conditions that are slightly more severe than those of the first stage reaction step. In addition, these first and second stage reaction steps are carried out in the presence of a methylation catalyst, but in the present invention, either crystalline aluminosilicate or fluorine-containing crystalline aluminosilicate is used as the methylation catalyst. The reaction is carried out in the presence of Various crystalline aluminosilicate can be used here, specifically ZSM-5,
ZSM-11, ZSM-12, ZSM-23, ZSM-35,
Representative examples include ZSM-38 and ZSM-48. A crystalline aluminosilicate containing fluorine can be obtained by treating the above-described crystalline aluminosilicate with various fluorine compounds. According to the method of the present invention, the methylation reaction is carried out in two stages, so the utilization rate of the methylating agent (the proportion used in the methylation reaction) is higher than when the reaction is carried out in one stage. Remarkably high selectivity for pseudokyumene and duurene. Therefore, the method of the present invention is of high industrial utility as an efficient method for producing pseudokymene or durene, which is useful as a raw material for engineering plastics. Next, the present invention will be explained in more detail with reference to Examples. Reference example 1 (Preparation of fluorine-containing crystalline aluminosilicate) 6.2 g of aluminum sulfate (18 hydrate), concentrated sulfuric acid
Solution A, in which 17.68 g and 26.32 g of tetrapropylammonium bromide were added to 250 ml of water; and Solution B, in which 211.1 g of water glass (composition: silicon oxide 28.9 wt%, sodium oxide 9.40 wt%, water 61.65 wt%) was added to 250 ml of water. were prepared respectively. Solutions A and B were then simultaneously added dropwise to a solution of 79.0 g of sodium chloride in 122 ml of water at room temperature over 60 minutes. The resulting mixture was PHed using sulfuric acid.
Adjusted to 9.5. This solution was placed in an autoclave and heated at a reaction temperature of 170°C for 20 hours. While cooling, the contents of the autoclave were filtered, and the resulting solid was washed with water. After adding 300 ml of a 1N ammonium nitrate aqueous solution, the mixture was incubated at 90°C for 8 hours.
After ion exchange, an ammonium type crystalline aluminosilicate was obtained. Thereafter, the contents were filtered, washed with water, dried at 120°C for 24 hours, and then calcined at 550°C for 6 hours to obtain H-type crystalline aluminosilicate. The composition of this H-type crystalline aluminosilicate zeolite was SiO 2 /A 2 O 3 =100 (molar ratio). Alumina sol was added to this H-type crystalline aluminosilicate so that the binder content was 20% by weight, molded, dried at 120°C for 3 hours, and further
It was fired in air at 550°C for 6 hours. After firing, the obtained pellet-like crystalline aluminosilicate is
At 500℃, add 70ml of Freon 114 (1,1,2,2-tetrafluoro-1,2-dichloroethane)/
The fluorination treatment was carried out by supplying the solution in minutes for 1 hour to obtain a fluorine-containing crystalline aluminosilicate. Reference Example 2 20ml of the pellet-like crystalline aluminosilicate obtained in Reference Example 1 was filled into a calcining tube, and steam was supplied at 10g/hr in terms of water at 700°C for 4 hours to perform a weak oxidation treatment, and it was used as a catalyst. A crystalline aluminosilicate to be used was obtained. Example 1 20 ml of the fluorine-containing crystalline aluminosilicate pellets obtained in the above reference example were filled as a catalyst into the first and second reactors, and a cooler and an air Both reactors were connected via a liquid separation tank. Furthermore, a stripper is connected to the outlet piping of the second reactor via a cooler, a gas-liquid separation tank, and a pressure reducing valve, and the gas at the top of the stripper is liquefied by the cooler, and then supplied to the first reactor by a pump. It was piped like this. Using this equipment, preheated raw material p-xylene was fed at a flow rate of 27 ml/hr.
The xylene was introduced into a first stage reactor heated to 300° C., then 36 ml/hr of methanol was introduced as a methylating agent, and the methylation reaction of xylene was carried out at an operating pressure of 9 Kg/cm 2 G. The product in the first stage reactor was cooled to 30°C in a cooler, the gas components were separated and removed in a gas-liquid separation tank, and the product was introduced into the second stage reactor. The temperature of this second stage reactor is 315℃ and the pressure is 9
Kg/ cm2 . The product from the second stage reactor was cooled to 30°C in a condenser, gas components were separated and removed in a gas-liquid separation tank, the pressure was reduced to normal pressure with a pressure reducing valve, and the product was introduced into a stripper. In the stripper, it was reheated to 80°C, and unreacted dimethyl ether and methanol were taken out from the top of the column, cooled, liquefied, and circulated to the first stage reactor using a pump. After starting to circulate and use the unreacted methylating agent mainly composed of dimethyl ether, the supply of methanol to the first stage reactor was changed to the supply to the second stage reactor. The liquid product obtained from the bottom of the stripper was distilled separately after removing water to obtain pseudokyumene and durene. Table 1 shows the compositions of the products from the first stage reactor and the products from the second stage reactor after the circulating use of the unreacted methylating agent in the second stage reactor becomes steady. Shown below.

【表】【table】

【表】 実施例 2 実施例1において、触媒として弗素含有結晶性
アルミノシリケートの代わりに参考例2で得られ
た結晶性アルミノシリケートを使用したこと以外
は実施例1と同様に実験を行なつた。その結果を
第2表に示す。
[Table] Example 2 An experiment was conducted in the same manner as in Example 1, except that the crystalline aluminosilicate obtained in Reference Example 2 was used instead of the fluorine-containing crystalline aluminosilicate as a catalyst. . The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 キシレンをメチル化してプソイドキユメンま
たはデユレンを製造するにあたり、メチル化触媒
として結晶性アルミノシリケートおよび弗素含有
結晶性アルミノシリケートのうちのいずれかの存
在下、第一段反応工程においてキシレンのメチル
化反応を行ない、次いで第二段反応工程において
前記第一段反応工程からの反応生成物の少なくと
も一部をさらにメチル化することを特徴とするプ
ソイドキユメンまたはデユレンの製造法。 2 第一段反応工程においてジメチルエーテルを
含有するメチル化剤を用い、第二段反応工程にお
いてメタノールを含有するメチル化剤を用いるこ
とを特徴とする特許請求の範囲第1項記載の製造
法。 3 第二段反応工程から回収されたメチル化剤
を、第一段反応工程におけるメチル化剤の少なく
とも一部として使用する特許請求の範囲第1項記
載の製造法。
[Claims] 1. In producing pseudokyumene or duurene by methylating xylene, in the first reaction step in the presence of either a crystalline aluminosilicate or a fluorine-containing crystalline aluminosilicate as a methylation catalyst. A method for producing pseudokyumene or duurene, which comprises carrying out a methylation reaction of xylene, and then further methylating at least a portion of the reaction product from the first reaction step in a second reaction step. 2. The production method according to claim 1, wherein a methylating agent containing dimethyl ether is used in the first reaction step, and a methylating agent containing methanol is used in the second reaction step. 3. The production method according to claim 1, wherein the methylating agent recovered from the second reaction step is used as at least a part of the methylating agent in the first reaction step.
JP58137493A 1983-07-29 1983-07-29 Production of pseudocumene or durene Granted JPS6032721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137493A JPS6032721A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137493A JPS6032721A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Publications (2)

Publication Number Publication Date
JPS6032721A JPS6032721A (en) 1985-02-19
JPH0339495B2 true JPH0339495B2 (en) 1991-06-14

Family

ID=15199939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137493A Granted JPS6032721A (en) 1983-07-29 1983-07-29 Production of pseudocumene or durene

Country Status (1)

Country Link
JP (1) JPS6032721A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593212B2 (en) * 1988-11-30 1997-03-26 三井石油化学工業株式会社 How to make cumene
CN110372465B (en) * 2019-07-29 2022-04-05 唐山旭阳化工有限公司 Method for preparing durene from xylene and methanol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326997A (en) * 1964-06-01 1967-06-20 Sinclair Research Inc Process for the production of durene
JPS52139029A (en) * 1976-05-17 1977-11-19 Mobil Oil Alkylation alkyl exchange reaction in the presence of crystalline aluminoslicate catalyst
JPS5644050A (en) * 1979-09-19 1981-04-23 Satake Eng Co Ltd Warming humidifying rice cleaning method and its device
JPH0238571A (en) * 1988-07-27 1990-02-07 Tokyo Electron Ltd Treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326997A (en) * 1964-06-01 1967-06-20 Sinclair Research Inc Process for the production of durene
JPS52139029A (en) * 1976-05-17 1977-11-19 Mobil Oil Alkylation alkyl exchange reaction in the presence of crystalline aluminoslicate catalyst
JPS5644050A (en) * 1979-09-19 1981-04-23 Satake Eng Co Ltd Warming humidifying rice cleaning method and its device
JPH0238571A (en) * 1988-07-27 1990-02-07 Tokyo Electron Ltd Treating device

Also Published As

Publication number Publication date
JPS6032721A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
CA2713172C (en) Dehydration of alcohols in the presence of an inert component
US4137195A (en) Catalyst for disproportionation of toluene
JPH01250332A (en) Production of p-ethylphenol
WO2007006238A1 (en) Catalyst for preparing dimethyl ether by dewatering of methanol at liquid phase or mixed phase
US4520219A (en) Process for the production of pseudocumene or durene
JPS6247172B2 (en)
WO2008082082A1 (en) Method of preparing mono-iodo benzene through transiodination
JPH0339495B2 (en)
EP0088495A1 (en) Process for converting alcohols into olefins
JPH0342250B2 (en)
EP2108636A1 (en) Dehydration of alcohols in the presence of an inert component.
AU2013200006A1 (en) Dehydration of alcohols in the presence of an inert component
JPH0376296B2 (en)
JP2003246755A (en) Process for preparing 4,4'-dimethylbiphenyl
JP3470357B2 (en) Method for producing anilines
JPS6087232A (en) Manufacture of methadichlorobenzene
US4914242A (en) Process for preparing 3-ethylbenzophenone
JPS61112040A (en) Production of phenylacetaldehyde
US5880321A (en) Preparation of 1,1-diphenylethanes
JPH0254809B2 (en)
JPS6158451B2 (en)
JPH0380137B2 (en)
JPH0513933B2 (en)
JPH06305722A (en) Production of high purity carbon monoxide
HU212976B (en) Method for producing catalyst and method for producing tertiary-olefines from alkyl-tertiary-alkyl-ethers using this catalyst