JPH0513933B2 - - Google Patents

Info

Publication number
JPH0513933B2
JPH0513933B2 JP59030368A JP3036884A JPH0513933B2 JP H0513933 B2 JPH0513933 B2 JP H0513933B2 JP 59030368 A JP59030368 A JP 59030368A JP 3036884 A JP3036884 A JP 3036884A JP H0513933 B2 JPH0513933 B2 JP H0513933B2
Authority
JP
Japan
Prior art keywords
hours
catalyst
zeolite
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59030368A
Other languages
Japanese (ja)
Other versions
JPS60174730A (en
Inventor
Kazunori Kitagawa
Haruhito Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP59030368A priority Critical patent/JPS60174730A/en
Publication of JPS60174730A publication Critical patent/JPS60174730A/en
Publication of JPH0513933B2 publication Critical patent/JPH0513933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトルエンまたはベンゼンをアルキル化
して選択性良くパラ−ジアルキルベンゼンを製造
する方法に関する。 従来、トルエンやベンゼンをアルキル化してキ
シレンなどを製造する方法としては、触媒に結晶
性アルミノシリケートを用いる方法が知られてい
る(特開昭51−57688号公報,同52−120292号公
報)。しかしながら、この方法では同時に不均化
反応が起こるためにキシレンの選択率が低く、ま
た工業的に有用性の高いパラキシレンなどパラ−
ジアルキルベンゼンの選択率が低い。さらに、触
媒として結晶性ボロシリケートを用いる方法(特
開昭53−55500号公報)が提案されているが、こ
の場合にもパラ−ジアルキルベンゼンの選択率が
低く、また副反応が起こりやすく有用性の低い副
生物の生成量が大きいという問題があつた。 本発明の目的は、このような従来技術の欠点を
克服して、副反応を抑制しつつパラ−ジアルキル
ベンゼンを高い選択率にて効率良く製造すること
にある。すなわち本発明は、触媒の存在下にトル
エンまたはベンゼンをアルキル化してパラ−ジア
ルキルベンゼンを製造するにあたり、触媒として
(A)ゼオライト,(B)弗素および(C)周期律表第a族
金属の化合物からなる組成物を用いることを特徴
とするパラ−ジアルキルベンゼンの製造方法を提
供するものである。 本発明の方法に用いる触媒は、上述の如く、(A)
ゼオライト,(B)弗素および(C)周期律表第a族金
属の化合物からなる組成物である。ここで(A)ゼオ
ライトとしては天然,合成ゼオライトのいずれで
もよく、またX型,Y型,A型さらにはZSM型
など様々なものが使用できる。さらにアルミノシ
リケートゼオライトに限らず、ボロシリケート,
ボロアルミノシリケート,ガロシリケート,ガロ
アルミノシリケートなども使用できる。これらの
うち、特にSiO2/M2O3(Mはアルミニウム,ガ
リウムまたはホウ素を示す。)のモル比が12以上
の結晶性ゼオライトが好ましい。結晶性アルミノ
シリケートとしては、具体的にはペンタシルフア
ミリーとよばれる一群のアルミノシリケートで
ZSM−5,ZSM−11,ZSM−12,ZSM−23,
ZSM−35,ZSM−38,ZSM−48などで代表され
るものがあげられる。また特開昭51−57688号公
報,特開昭52−120292号公報に記載されたもので
もよい。一方、結晶性ボロシリケートとしては、
例えば特開昭53−55500号公報,特開昭55−7598
号公報,特開昭56−84313号公報,特開昭57−
123817号公報,特開昭57−129820号公報などに記
載の結晶性ボロシリケートがあげられる。さら
に、結晶性ボロアルミノシリケートに関しても
様々なものを用いることができ、例えば特開昭55
−6752号公報に記載のものをあげることができ
る。 次に、触媒の(B)成分であり弗素は、通常上述の
(A)ゼオライトに導入された形態で存在せしめる。
この導入はゼオライトを様々な手法によつて弗素
化処理することにより行う。ここで用いる弗素源
としては、各種のものがあり、例えばフロンガ
ス,弗化水素酸,弗化ナトリウム,弗化アンモニ
ウム,三弗化ホウ素,モノフルオロ酢酸などをあ
げることができる。 続いて触媒の(C)成分である周期律表第a族金
属の化合物は様々なものがあり、一種類で用いて
もよく、また二種以上を併用してもよい。ここで
周期律表第a族の金属としては、ベリリウム,
マグネシウム,カルシウム,ストロンチウム,バ
リウムがあるが、このうちマグネシウム,カルシ
ウムが好ましい。この周期律表第a族金属の化
合物としては、上記金属の塩類,水酸化物等があ
げられ、例えば硝酸カルシウム,酢酸カルシウ
ム,硝酸マグネシウムなどがあげられる。 本発明の方法に用いる触媒は、上述の(A),(B),
(C)成分よりなる組成物であればよく、その製法等
については特に制限はない。しかし一般的には、
(A)成分であるゼオライトをまず弗素化処理して、
次いで(C)成分である周期律表第a族金属の化合
物を含浸処理する方法、あるいは(A)成分であるゼ
オライトにまず(C)成分である周期律表第a族金
属の化合物を含浸処理し、次いで弗素化処理する
方法によつて調製する。 上述の弗素化処理の方法としては具体的には、
ゼオライトを、フロンガスなどの有機弗素化合物
と400〜600℃にて接触処理したり、弗化水素酸,
弗化ナトリウム,弗化アンモニウム,三弗化硼
素,モノフルオロ酢酸などと液相で接触処理した
りする方法が考えられる。また、ゼオライトを調
製する際に、シリカ源,アルミナ源,ガリウム源
あるいはホウ素源などと共に、水熱反応の段階で
弗素源を加えて、得られる結晶性のゼオライトに
弗素を含有させることもできる。この場合、弗素
源としては、弗化水素酸,弗化ナトリウム等の水
溶性の化合物が好ましい。 また、周期律表第a族金属の化合物の含浸処
理は、含浸すべき金属化合物の水溶液に、ゼオラ
イトを浸漬したり、ゼオライト粉末を投入して撹
拌したりするなどの常法によればよい。 このような処理により得られる(A),(B),(C)成分
よりなる組成物は、そのままあるいはアルミナ等
の適当なバインダーを加えて成型し、さらに550
〜1000℃にて焼成したものを本発明の方法の触媒
として用いればよい。 本発明の方法は、上述の触媒の存在下で、トル
エンまたはベンゼンを原料として、これをアルキ
ル化剤にてカルキル化してパラ−ジアルキルベン
ゼンを製造する。ここで使用するアルキル化剤は
メチルアルコール,ジメチルエーテル,塩化メチ
ル,臭化メチルなどのメチル化剤をはじめ、エチ
ルアルコール,エチレン,ジエチルエーテル,プ
ロピレン,n−ブテン,イソブテン等様々なもの
がある。また、このアルキル化剤の使用量は、反
応条件、目的とする生成物の種類等により適宜定
めればよいが、通常はトルエンあるいはベンゼン
とアルキル化剤の割合は20:1〜1:5(モル
比)、好ましくは10:1〜1:2(モル比)とすべ
きである。 本発明の方法は、トルエンあるいはベンゼンを
原料とし、またた適当なアルキル化剤を使用し、
さらに上述した触媒を用いて行えばよく、その他
の条件は特に制限はない。一般的な条件を示せ
ば、反応温度300〜650℃、好ましくは400〜600
℃、反応圧力常圧〜10Kg/cm2G、重量空間速度
(WHSV)0.1〜20hr-1、好ましくは1〜10hr-1
ある。 叙上の如き本発明の方法によれば、パラキシレ
ン,パラエチルトルエン,パライソプロピルトル
エンなどのパラ−ジアルキルベンゼンを高い選択
率ならびに収率にて得ることができると同時に、
触媒寿命が非常に長いため、長時間にわたつて高
い触媒活性を維持した状態で連続運転を行うこと
ができる。 従つて、本発明の方法は、テレフタル酸,p−
メチルスチレン,p−クレゾールなどの原料とな
るパラ−ジアルキルベンゼンの工業的な製造方法
として極めて有効であり、かつ利用価値の高いも
のである。次に本発明を参考例,実施例および比
較例によりさらに詳しく説明する。 参考例1 (結晶性アルミノシリケートの調製) 硫酸アルミニウム7.5gを水250mlに溶触させ、
さらにこれに濃硫酸17.6gおよびテトラ−n−プ
ロピルアンモニウムブロマイド26.3gを溶解させ
てこれをA液とし、水ガラス(J珪酸ソーダ3
号:日本化学工業(株)製)211.0gを水250mlに溶解
させてB液とし、さらに塩化ナトリウム79.0gを
水122mlに溶解させてC液とした。 次いで、上記のA液とB液を、室温にて10分間
にわたり同時にC液に滴下した。得られた混合液
をオートクレーブに入れ、170℃で20時間加熱処
理した。冷却後、内容物を濾過水洗し、120℃で
12時間乾燥させた。生成物をX線回折分析したと
ころZSM−5であることが確認された。得られ
たZSM−5を550℃で6時間焼成することにより
ナトリウム型ZSM−5を56.5g得た。このナトリ
ウム型ZSM−5を5倍重量の1規定硝酸アンモ
ニウム水溶液に加えて、8時間還流した。その
後、冷却して静置し上澄みをデカンテーシヨンに
より除去した。更に、還流・デカンテーシヨンの
操作を3回繰り返したのち、内容物を濾過・水洗
し、120℃で12時間乾燥し、アンモニウム型ZSM
−5を得た。このもののSiO2/Al2O3=90(モル
比)であつた。 参考例2 (結晶性ボロシリケートの調製) 硼酸0.29g,濃硫酸3.9gおよびテトラ−n−
プロピルアンモニウムブロマイド5.8gを水55ml
に加えた溶液A、水ガラス(J珪酸ソーダ3号:
日本化学工業(株)製)46.9gを水55mlに加えた溶液
Bおよび塩化ナトリウム17.4gを水27mlに溶解さ
せた溶液Cを調製した。次いで溶液AおよびBを
同時に溶液Cに滴下した。得られた溶液をオート
クレーブに入れて反応温度170℃で20時間加熱処
理した。冷却後、内容物を濾過水洗した後、120
℃で12時間乾燥した。さらに550℃で6時間焼成
し、ナトリウム型結晶性ボロシリケート13.4gを
得た。またこのものはX線回折によりZSM−5
型の構造を有していることがわかつた。 次に、得られたボロシリケートを5倍重量の1
規定硝酸アンモニウム水溶液に加え、8時間加熱
還流し、固形物を濾過した。さらに、その固形物
に還流,濾過の操作を3回繰り返した後、水洗し
120℃で12時間乾燥してアンモニウム型結晶性ボ
ロシリケートを得た。このもののSiO2/B2O3
90(モル比)であつた。 参考例3 (結晶性ガロシリケートの調製) 硝酸ガリウム2.34g,濃硫酸4.42gおよびテト
ラ−n−プロピルアンモニウムブロマイド6.58g
を水62mlに溶解させた溶液A,水ガラス(J珪酸
ソーダ3号:日本化学工業(株)製)52.78gを水62
mlに溶解した溶液Bおよび塩化ナトリウム19.75
gを水30mlに溶解させた溶液Cを調製した。つい
で、溶液AおよびBを同時に溶液Cに滴下した。
得られた混合液をオートクレーブに入れて、反応
温度170℃で24時間反応させた。冷却後、オート
クレーブの内容物を濾過水洗し、120℃で12時間
乾燥後、さらに600℃で6時間焼成してナトリウ
ム型結晶性ガロシリケート9.6gを得た。次に得
られたガロシリケートを5倍重量の1規定硝酸ア
ンモニウム溶液に加え、80℃で8時間加熱処理
し、冷却後、濾過した。さらに固形物に加熱、濾
過の操作を3回繰り返した後、水洗し120℃で16
時間乾燥してアンモニウム型結晶性ガロシリケー
トを得た。得られたガロシリケートのSiO2
Ga2O3の組成比はSiO2/Sa2O3=90(モル比)で
あつた。 実施例 1 (1) 参考例1で得られたNH4型ZSM−5粉末20
gと弗化水素水溶液(弗化水素含量47重量%)
20gおよび水180gをフラスコに入れて、80℃
に加温、4時間撹拌した。その後、固形物を濾
過水洗し、120℃で12時間乾燥した。 (2) 上記(1)の方法で得られた弗素含有アルミノシ
リケート4g,硝酸カルシウム4水塩0.51gお
よび水40gをフラスコに入れて、80℃に加温
し、6時間撹拌した。 次いで、混合物を蒸発皿に移し、蒸発乾固し
たのち、120℃、12時間乾燥した。その後、800
℃において2時間焼成して触媒を得た。 (3) 上記(2)で得られた触媒ペレツト2gを流通型
反応器に充填し、原料としてトルエン/メチル
アルコールの2/1(モル比)混合物を供給し
た。反応温度600℃、WHSV9hr-1、圧力常圧
にて、メチル化反応を行つた。反応開始から4
時間後の反応結果を第1表に示す。 実施例 2 (1) 参考例1で得られたNH4型ZSM−5粉末4
gと硝酸カルシウム4水塩1.68gおよび水40g
をフラスコに入れて80℃に加温し、6時間撹拌
した。 次いで、混合物を蒸発皿にて蒸発乾固し、
120℃、12時間乾燥した後、800℃において2時
間焼成した。得られた焼成物に対して硝酸カル
シウムの上記の担持操作を繰り返し100重量部
のゼオライトに対して合計20重量部の酸化カル
シウムを配合した組成物を得た。 (2) 上記(1)で得られた組成物4gを触媒調製管に
充填し、550℃においてフロン−114(1,1,
2,2−テトラフルオロ−1,2−ジクロルエ
タン)を70ml/分で2時間供給して、弗素化処
理して触媒を得た。得られた触媒の弗素含有率
は4.6wt%であつた。 (3) 上記(2)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 実施例 3 (1) 参考例1で得られたNH4型ZSM−5粉末10
gを触媒調製管に充填し、600℃、5時間焼成
後、550℃においてフロン−114を70ml/分で2
時間供給して、弗素化処理を行つた。得られた
弗素含有ゼオライトの弗素含有率は0.2wt%で
あつた。 (2) 酸化マグネシウム粉末16.0g、酢酸カルシウ
ム二水塩14.1g、酢酸9.6gおよび水165gを三
ツ口フラスコに入れて80℃に昇温し、6時間撹
拌し、固形物含量10重量%のカルシウム・マグ
ネシウム・スラリー溶液を得た。 (3) 上記(1)で得られた弗素含有アルミノシリケー
ト粉末4gおよび上記(2)で得られたスラリー溶
液10gを混練し、成形した。次いで、120℃に
おいて12時間乾燥したのち、800℃において2
時間焼成して触媒を得た。 (4) 上記(3)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 実施例 4 (1) 参考例2において得られたNH4型結晶性ボ
ロシリケート4g、硝酸カルシウム4水塩0.84
gおよび水40gを80℃で6時間撹拌し、次いで
蒸発乾固し、120℃で12時間乾燥した。この粉
末を触媒調製管に充填し600℃において2時間
焼成した後、550℃においてフロン−114を70
ml/分で2時間供給して弗素化処理を行つて弗
素含有率4.5wt%の組成物を得た。 (2) 上記(1)で得られた組成物に焼成後のアルミナ
含量が20wt%となるようにアルミナゾルを加
えて成形し、120℃で15時間乾燥し、さらに800
℃で2時間焼成して触媒を得た。 (3) 上記(2)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 実施例 5 (1) 参考例3で得られたNH4型ガロシリケート
粉末4gを触媒調製管に充填し、600℃で6時
間焼成した後、同じく600℃を保ち、フロン−
13(1,1,1−トリフルオロクロルメタン)
を70ml/分の供給速度で導入し、3時間弗素化
処理を行つた。その後、1時間空気を導入して
有機成分を除去して弗素含有組成物を得た。 (2) 上記(1)で得られた弗素含有組成物4g、硝酸
カルシウム0.84gおよび水40gを80℃で6時間
撹拌し、水分を蒸発乾固した。 次いで、120℃で、12時間乾燥後、600℃で、
6時間焼成した。 (3) 上記(2)で得られた焼成物に、アルミナ含量が
20重量%となるようにアルミナゾルを加えて成
形し、120℃で、15時間乾燥し、さらに800℃で
2時間焼成して触媒を得た。 (4) 上記(3)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 比較例 1 (1) 実施例1(1)で得られた弗素含有アルミノシリ
ケート粉末をそのまま800℃で、2時間焼成し
て触媒を得た。 (2) 上記(1)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 比較例 2 (1) 参考例1で得られたNH4型ZSM−5粉末4
g、硝酸カルシウム4水塩0.84gおよび水40g
を80℃で6時間撹拌し、その後、蒸発皿に移し
て蒸発乾固した。次いで、120℃で、12時間乾
燥後、800℃で2時間焼成して触媒を得た。 (2) 上記(1)で得られた触媒を用いたこと以外は実
施例1(3)と同様のメチル化反応を行つた。反応
開始から4時間後の反応結果を第1表に示す。 比較例 3 実施例1において、弗化水素水溶液の代わりに
塩化水素水溶液(塩化水素含有量36重量%)を使
用したこと以外は実施例1と同様に行つた。その
結果、反応開始から4時間後のトルエン転化率は
34%、キシレン収率は75%、パラキシレン選択率
は60%であつた。 実施例 6 実施例2(2)で得られた触媒のペレツト2gを流
通型反応器に充填し、原料としてトルエンとエチ
レンをモル比4/1で供給した。トルエンの送入
量WHSV4hr-1、反応温度400℃、圧力常圧にて
エチル化反応を行つた。反応開始から4時間後の
反応結果は、トルエン転化率15%、エチルトルエ
ン選択率98%であり、そのうちのパラ−エチルト
ルエン比率は79%であつた。
The present invention relates to a method for producing para-dialkylbenzene with good selectivity by alkylating toluene or benzene. Conventionally, as a method for producing xylene and the like by alkylating toluene and benzene, a method using a crystalline aluminosilicate as a catalyst has been known (Japanese Patent Laid-Open Nos. 51-57688 and 52-120292). However, in this method, the disproportionation reaction occurs at the same time, resulting in a low xylene selectivity.
Selectivity for dialkylbenzene is low. Furthermore, a method using crystalline borosilicate as a catalyst has been proposed (Japanese Unexamined Patent Publication No. 53-55500), but in this case too, the selectivity for para-dialkylbenzene is low and side reactions are likely to occur, making it difficult to use. There was a problem that a large amount of by-products were produced with low carbon dioxide. An object of the present invention is to overcome these drawbacks of the prior art and to efficiently produce para-dialkylbenzene with high selectivity while suppressing side reactions. That is, the present invention provides a method for producing para-dialkylbenzene by alkylating toluene or benzene in the presence of a catalyst.
The present invention provides a method for producing para-dialkylbenzene, which uses a composition comprising (A) zeolite, (B) fluorine, and (C) a compound of a metal of group a of the periodic table. As mentioned above, the catalyst used in the method of the present invention includes (A)
This is a composition consisting of zeolite, (B) fluorine, and (C) a compound of a group a metal of the periodic table. Here, the zeolite (A) may be either natural or synthetic zeolite, and various types such as X type, Y type, A type, and even ZSM type can be used. In addition to aluminosilicate zeolite, borosilicate,
Boroaluminosilicate, gallosilicate, galloaluminosilicate, etc. can also be used. Among these, crystalline zeolites having a SiO 2 /M 2 O 3 (M represents aluminum, gallium or boron) molar ratio of 12 or more are particularly preferred. Specifically, crystalline aluminosilicates include a group of aluminosilicates called pentasilphamylies.
ZSM-5, ZSM-11, ZSM-12, ZSM-23,
Representative examples include ZSM-35, ZSM-38, and ZSM-48. Also, those described in JP-A-51-57688 and JP-A-52-120292 may be used. On the other hand, as crystalline borosilicate,
For example, JP-A-53-55500, JP-A-55-7598
Publication No. 1984-84313, Japanese Patent Publication No. 1984-84313
Examples include crystalline borosilicate described in JP-A No. 123817 and JP-A-57-129820. Furthermore, various crystalline boroaluminosilicates can be used; for example, JP-A-55
Examples include those described in Publication No.-6752. Next, the (B) component of the catalyst, fluorine, is usually
(A) Allow it to exist in a form introduced into zeolite.
This introduction is carried out by fluorinating the zeolite using various techniques. There are various fluorine sources used here, such as chlorofluorocarbon gas, hydrofluoric acid, sodium fluoride, ammonium fluoride, boron trifluoride, and monofluoroacetic acid. Next, there are various compounds of group a metals of the periodic table which are component (C) of the catalyst, and they may be used alone or in combination of two or more. Here, the metals of group a of the periodic table include beryllium,
There are magnesium, calcium, strontium, and barium, and among these, magnesium and calcium are preferred. Examples of compounds of metals of group a of the periodic table include salts and hydroxides of the above metals, such as calcium nitrate, calcium acetate, and magnesium nitrate. The catalyst used in the method of the present invention is the above-mentioned (A), (B),
Any composition may be used as long as it is composed of component (C), and there are no particular restrictions on its manufacturing method. But in general,
(A) component zeolite is first fluorinated,
Next, a method of impregnating a compound of a metal of group a of the periodic table, which is the component (C), or a method of impregnating the zeolite, which is the component (A), with a compound of a metal of group a of the periodic table, which is the component (C). and then fluorination treatment. Specifically, the above-mentioned fluorination treatment method is as follows:
Zeolite is contacted with organic fluorine compounds such as chlorofluorocarbon gas at 400 to 600℃, or treated with hydrofluoric acid,
Possible methods include contact treatment with sodium fluoride, ammonium fluoride, boron trifluoride, monofluoroacetic acid, etc. in a liquid phase. Furthermore, when preparing zeolite, a fluorine source can be added in the hydrothermal reaction stage along with a silica source, alumina source, gallium source, boron source, etc., so that the resulting crystalline zeolite can contain fluorine. In this case, the fluorine source is preferably a water-soluble compound such as hydrofluoric acid or sodium fluoride. Further, the impregnation treatment with a compound of a group A metal of the periodic table may be carried out by a conventional method such as immersing zeolite in an aqueous solution of the metal compound to be impregnated, or adding zeolite powder and stirring. The composition consisting of components (A), (B), and (C) obtained by such treatment is molded as it is or with the addition of a suitable binder such as alumina, and then molded with 550%
A catalyst calcined at ~1000°C may be used as a catalyst in the method of the present invention. The method of the present invention uses toluene or benzene as a raw material and calkylates it with an alkylating agent in the presence of the above-mentioned catalyst to produce para-dialkylbenzene. There are various alkylating agents used here, including methylating agents such as methyl alcohol, dimethyl ether, methyl chloride, and methyl bromide, as well as ethyl alcohol, ethylene, diethyl ether, propylene, n-butene, and isobutene. The amount of this alkylating agent to be used may be determined as appropriate depending on the reaction conditions, the type of desired product, etc., but usually the ratio of toluene or benzene to alkylating agent is 20:1 to 1:5 ( (molar ratio), preferably 10:1 to 1:2 (molar ratio). The method of the present invention uses toluene or benzene as a raw material and a suitable alkylating agent,
Further, the above-mentioned catalyst may be used, and other conditions are not particularly limited. General conditions: reaction temperature 300-650℃, preferably 400-600℃
C, the reaction pressure is normal pressure to 10 Kg/cm 2 G, and the weight hourly space velocity (WHSV) is 0.1 to 20 hr −1 , preferably 1 to 10 hr −1 . According to the method of the present invention as described above, para-dialkylbenzenes such as para-xylene, para-ethyltoluene, para-isopropyltoluene, etc. can be obtained with high selectivity and yield, and at the same time,
Since the catalyst life is extremely long, continuous operation can be performed while maintaining high catalyst activity for a long period of time. Therefore, the method of the present invention can be applied to terephthalic acid, p-
It is extremely effective as an industrial method for producing para-dialkylbenzene, which is a raw material for methylstyrene, p-cresol, etc., and has high utility value. Next, the present invention will be explained in more detail using reference examples, working examples, and comparative examples. Reference Example 1 (Preparation of crystalline aluminosilicate) 7.5 g of aluminum sulfate was dissolved in 250 ml of water,
Furthermore, 17.6 g of concentrated sulfuric acid and 26.3 g of tetra-n-propylammonium bromide were dissolved in this to make liquid A, and water glass (J sodium silicate 3
No.: Nihon Kagaku Kogyo Co., Ltd.) was dissolved in 250 ml of water to obtain liquid B, and further 79.0 g of sodium chloride was dissolved in 122 ml of water to form liquid C. Next, the above solutions A and B were simultaneously added dropwise to solution C over 10 minutes at room temperature. The resulting mixture was placed in an autoclave and heat-treated at 170°C for 20 hours. After cooling, the contents were filtered, washed with water, and heated to 120°C.
Let dry for 12 hours. X-ray diffraction analysis of the product confirmed that it was ZSM-5. The obtained ZSM-5 was calcined at 550°C for 6 hours to obtain 56.5 g of sodium type ZSM-5. This sodium form ZSM-5 was added to a 1N ammonium nitrate aqueous solution weighing 5 times its weight, and the mixture was refluxed for 8 hours. Thereafter, the mixture was cooled and left to stand, and the supernatant was removed by decantation. Furthermore, after repeating the reflux and decantation operations three times, the contents were filtered and washed with water, dried at 120°C for 12 hours, and ammonium-type ZSM
-5 was obtained. The SiO 2 /Al 2 O 3 ratio of this product was 90 (molar ratio). Reference Example 2 (Preparation of crystalline borosilicate) Boric acid 0.29g, concentrated sulfuric acid 3.9g and tetra-n-
5.8g of propylammonium bromide and 55ml of water
Solution A added to water glass (J Sodium Silicate No. 3:
Solution B was prepared by adding 46.9 g of sodium chloride (manufactured by Nihon Kagaku Kogyo Co., Ltd.) to 55 ml of water, and solution C was prepared by dissolving 17.4 g of sodium chloride in 27 ml of water. Solutions A and B were then added dropwise to solution C simultaneously. The obtained solution was placed in an autoclave and heated at a reaction temperature of 170°C for 20 hours. After cooling, the contents were filtered and washed with water.
Dry at ℃ for 12 hours. The mixture was further calcined at 550° C. for 6 hours to obtain 13.4 g of sodium type crystalline borosilicate. Also, this product was found to be ZSM-5 by X-ray diffraction.
It was found that it has a type structure. Next, the obtained borosilicate was mixed with 5 times the weight of 1
The mixture was added to a normal aqueous ammonium nitrate solution, heated under reflux for 8 hours, and the solid matter was filtered. Furthermore, after repeating the reflux and filtration operations three times, the solid was washed with water.
It was dried at 120°C for 12 hours to obtain ammonium type crystalline borosilicate. SiO 2 /B 2 O 3 of this =
90 (molar ratio). Reference Example 3 (Preparation of crystalline gallosilicate) 2.34 g of gallium nitrate, 4.42 g of concentrated sulfuric acid, and 6.58 g of tetra-n-propylammonium bromide
52.78 g of solution A, water glass (J Sodium Silicate No. 3, manufactured by Nihon Kagaku Kogyo Co., Ltd.) dissolved in 62 ml of water, was dissolved in 62 ml of water.
Solution B and sodium chloride dissolved in ml 19.75
Solution C was prepared by dissolving g in 30 ml of water. Solutions A and B were then added dropwise to solution C at the same time.
The resulting mixture was placed in an autoclave and reacted at a reaction temperature of 170°C for 24 hours. After cooling, the contents of the autoclave were filtered and washed with water, dried at 120°C for 12 hours, and further calcined at 600°C for 6 hours to obtain 9.6 g of sodium crystalline gallosilicate. Next, the obtained gallosilicate was added to 5 times the weight of 1N ammonium nitrate solution, heated at 80° C. for 8 hours, cooled, and filtered. Furthermore, after repeating the heating and filtration operations three times, the solid material was washed with water and heated to 120°C for 16 days.
After drying for hours, an ammonium type crystalline gallosilicate was obtained. The resulting gallosilicate SiO2 and
The composition ratio of Ga 2 O 3 was SiO 2 /Sa 2 O 3 =90 (molar ratio). Example 1 (1) NH 4 type ZSM-5 powder 20 obtained in Reference Example 1
g and hydrogen fluoride aqueous solution (hydrogen fluoride content 47% by weight)
Put 20g and 180g of water into a flask and heat to 80℃.
and stirred for 4 hours. Thereafter, the solid matter was filtered, washed with water, and dried at 120°C for 12 hours. (2) 4 g of the fluorine-containing aluminosilicate obtained by the method (1) above, 0.51 g of calcium nitrate tetrahydrate, and 40 g of water were placed in a flask, heated to 80° C., and stirred for 6 hours. The mixture was then transferred to an evaporating dish, evaporated to dryness, and then dried at 120°C for 12 hours. Then 800
A catalyst was obtained by calcining at ℃ for 2 hours. (3) 2 g of the catalyst pellets obtained in (2) above were packed into a flow reactor, and a 2/1 (molar ratio) mixture of toluene/methyl alcohol was supplied as a raw material. The methylation reaction was carried out at a reaction temperature of 600°C, a WHSV of 9hr -1 and a normal pressure. 4 from the start of the reaction
The reaction results after hours are shown in Table 1. Example 2 (1) NH 4 type ZSM-5 powder 4 obtained in Reference Example 1
g, calcium nitrate tetrahydrate 1.68 g and water 40 g
was placed in a flask, heated to 80°C, and stirred for 6 hours. The mixture was then evaporated to dryness in an evaporating dish.
After drying at 120°C for 12 hours, it was fired at 800°C for 2 hours. The above-described loading operation of calcium nitrate was repeated on the obtained calcined product to obtain a composition in which a total of 20 parts by weight of calcium oxide was blended with 100 parts by weight of zeolite. (2) Fill a catalyst preparation tube with 4 g of the composition obtained in (1) above, and heat it at 550°C.
2,2-tetrafluoro-1,2-dichloroethane) was fed at a rate of 70 ml/min for 2 hours to perform fluorination treatment to obtain a catalyst. The fluorine content of the obtained catalyst was 4.6 wt%. (3) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (2) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Example 3 (1) NH 4 type ZSM-5 powder 10 obtained in Reference Example 1
g was filled into a catalyst preparation tube, and after calcining at 600℃ for 5 hours, 2 ml of Freon-114 was added at 70ml/min at 550℃.
The fluorination treatment was carried out by supplying the solution for a certain amount of time. The fluorine content of the obtained fluorine-containing zeolite was 0.2 wt%. (2) 16.0 g of magnesium oxide powder, 14.1 g of calcium acetate dihydrate, 9.6 g of acetic acid, and 165 g of water were placed in a three-necked flask, heated to 80°C, and stirred for 6 hours to prepare calcium with a solid content of 10% by weight. A magnesium slurry solution was obtained. (3) 4 g of the fluorine-containing aluminosilicate powder obtained in the above (1) and 10 g of the slurry solution obtained in the above (2) were kneaded and molded. Next, after drying at 120℃ for 12 hours, it was dried at 800℃ for 2 hours.
A catalyst was obtained by firing for a period of time. (4) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (3) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Example 4 (1) 4 g of NH 4 type crystalline borosilicate obtained in Reference Example 2, 0.84 g of calcium nitrate tetrahydrate
g and 40 g of water were stirred at 80°C for 6 hours, then evaporated to dryness and dried at 120°C for 12 hours. This powder was filled into a catalyst preparation tube and fired at 600℃ for 2 hours.
The fluorination treatment was carried out by supplying the solution at a rate of ml/min for 2 hours to obtain a composition with a fluorine content of 4.5 wt%. (2) Add alumina sol to the composition obtained in (1) above so that the alumina content after firing is 20wt%, mold it, dry it at 120℃ for 15 hours, and further
A catalyst was obtained by calcining at ℃ for 2 hours. (3) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (2) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Example 5 (1) 4 g of the NH 4 type gallosilicate powder obtained in Reference Example 3 was filled into a catalyst preparation tube and fired at 600°C for 6 hours.
13 (1,1,1-trifluorochloromethane)
was introduced at a feed rate of 70 ml/min, and the fluorination treatment was carried out for 3 hours. Thereafter, air was introduced for 1 hour to remove organic components to obtain a fluorine-containing composition. (2) 4 g of the fluorine-containing composition obtained in (1) above, 0.84 g of calcium nitrate, and 40 g of water were stirred at 80° C. for 6 hours, and water was evaporated to dryness. Then, after drying at 120℃ for 12 hours, at 600℃,
It was baked for 6 hours. (3) The fired product obtained in (2) above has an alumina content.
Alumina sol was added to the mixture to give a concentration of 20% by weight, molded, dried at 120°C for 15 hours, and further calcined at 800°C for 2 hours to obtain a catalyst. (4) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (3) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Comparative Example 1 (1) The fluorine-containing aluminosilicate powder obtained in Example 1 (1) was directly calcined at 800° C. for 2 hours to obtain a catalyst. (2) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (1) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Comparative Example 2 (1) NH 4 type ZSM-5 powder 4 obtained in Reference Example 1
g, calcium nitrate tetrahydrate 0.84 g and water 40 g
The mixture was stirred at 80° C. for 6 hours, then transferred to an evaporating dish and evaporated to dryness. Next, after drying at 120°C for 12 hours, the mixture was calcined at 800°C for 2 hours to obtain a catalyst. (2) A methylation reaction was carried out in the same manner as in Example 1 (3) except that the catalyst obtained in (1) above was used. Table 1 shows the reaction results 4 hours after the start of the reaction. Comparative Example 3 The same procedure as in Example 1 was conducted except that a hydrogen chloride aqueous solution (hydrogen chloride content: 36% by weight) was used instead of the hydrogen fluoride aqueous solution. As a result, the toluene conversion rate after 4 hours from the start of the reaction was
The xylene yield was 75%, and the para-xylene selectivity was 60%. Example 6 2 g of the catalyst pellets obtained in Example 2 (2) were packed into a flow reactor, and toluene and ethylene were supplied as raw materials at a molar ratio of 4/1. The ethylation reaction was carried out at a toluene feed rate of WHSV4hr -1 , a reaction temperature of 400°C, and a normal pressure. The reaction results 4 hours after the start of the reaction were a toluene conversion rate of 15% and an ethyltoluene selectivity of 98%, of which the para-ethyltoluene ratio was 79%.

【表】 生成芳香族留分
パラキシレン
**
[Table] Produced aromatic fraction Paraxylene **

Claims (1)

【特許請求の範囲】 1 触媒の存在下にトルエンまたはベンゼンをア
ルキル化してパラ−ジアルキルベンゼンを製造す
るにあたり、触媒として(A)ゼオライト,(B)弗素お
よび(C)周期律表第a族金属の化合物からなる組
成物を用いることを特徴とするパラ−ジアルキル
ベンゼンの製造方法。 2 触媒が、ゼオライトを弗素化処理し、次いで
周期律表第a族金属の化合物を含浸させてなる
組成物である特許請求の範囲第1項記載の方法。 3 触媒が、ゼオライトに周期律表第a族金属
の化合物を含浸させ、次いで弗素化処理してなる
組成物である特許請求の範囲第1項記載の方法。 4 (A)ゼオライトにおけるSiO2/M2O3(Mはア
ルミニウム,ガリウムまたはホウ素を示す。)が
12以上(モル比)である特許請求の範囲第1項記
載の方法。 5 ゼオライトがアルミノシリケートであり、周
期律表第a族金属の化合物がカルシウムまたは
マグネシウムの塩類である特許請求の範囲第2項
もしくは第3項記載の方法。
[Claims] 1. In producing para-dialkylbenzene by alkylating toluene or benzene in the presence of a catalyst, (A) zeolite, (B) fluorine, and (C) a metal from group a of the periodic table. 1. A method for producing para-dialkylbenzene, the method comprising using a composition comprising the following compounds. 2. The method according to claim 1, wherein the catalyst is a composition obtained by fluorinating zeolite and then impregnating it with a compound of a group a metal of the periodic table. 3. The method according to claim 1, wherein the catalyst is a composition obtained by impregnating zeolite with a compound of a group a metal of the periodic table and then fluorinating it. 4 (A) SiO 2 /M 2 O 3 (M represents aluminum, gallium or boron) in zeolite
12. The method according to claim 1, wherein the molar ratio is 12 or more. 5. The method according to claim 2 or 3, wherein the zeolite is an aluminosilicate and the compound of metal of group a of the periodic table is a salt of calcium or magnesium.
JP59030368A 1984-02-22 1984-02-22 Preparation of p-dialkylbenzene Granted JPS60174730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030368A JPS60174730A (en) 1984-02-22 1984-02-22 Preparation of p-dialkylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030368A JPS60174730A (en) 1984-02-22 1984-02-22 Preparation of p-dialkylbenzene

Publications (2)

Publication Number Publication Date
JPS60174730A JPS60174730A (en) 1985-09-09
JPH0513933B2 true JPH0513933B2 (en) 1993-02-23

Family

ID=12301921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030368A Granted JPS60174730A (en) 1984-02-22 1984-02-22 Preparation of p-dialkylbenzene

Country Status (1)

Country Link
JP (1) JPS60174730A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104630B2 (en) * 1986-11-11 1994-12-21 三井石油化学工業株式会社 Method for producing alkyl group-substituted aromatic hydrocarbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106436A (en) * 1978-02-10 1979-08-21 Mitsubishi Petrochem Co Ltd Preparation of ethylbenzene
JPS557597A (en) * 1978-06-22 1980-01-19 Snam Progetti Aluminium modified silica * production and production of high octane value hydrocarbon
JPS55102440A (en) * 1979-01-31 1980-08-05 Mobil Oil Preparation of thermal stability* shape selective catalyst composition and hydrocarbon inverting method which use said composition
JPS56133223A (en) * 1980-03-10 1981-10-19 Mobil Oil Corp Conversion of organic compound by alkali earth metal denatured zeolite catalyst
US4361713A (en) * 1981-06-26 1982-11-30 Mobil Oil Corporation Para-selective zeolite catalysts treated with halogen compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106436A (en) * 1978-02-10 1979-08-21 Mitsubishi Petrochem Co Ltd Preparation of ethylbenzene
JPS557597A (en) * 1978-06-22 1980-01-19 Snam Progetti Aluminium modified silica * production and production of high octane value hydrocarbon
JPS55102440A (en) * 1979-01-31 1980-08-05 Mobil Oil Preparation of thermal stability* shape selective catalyst composition and hydrocarbon inverting method which use said composition
JPS56133223A (en) * 1980-03-10 1981-10-19 Mobil Oil Corp Conversion of organic compound by alkali earth metal denatured zeolite catalyst
US4361713A (en) * 1981-06-26 1982-11-30 Mobil Oil Corporation Para-selective zeolite catalysts treated with halogen compounds

Also Published As

Publication number Publication date
JPS60174730A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US3763260A (en) Hydrocarbon conversion catalyst
CA1180307A (en) Shape selective reactions with zeolite catalyst modified with group ivb metal
JPH01250332A (en) Production of p-ethylphenol
US4548913A (en) Catalyst, a process for its preparation and an isomerization process in the presence of this catalyst
JPH0437737B2 (en)
JPH0580262B2 (en)
US4626609A (en) Aromatic compound conversion
JP3435516B2 (en) Modified zeolite alkylation catalyst and method of using same
US4721825A (en) Process for the production of xylene
JPH0513933B2 (en)
JPS6238332B2 (en)
EP0129239B1 (en) Method for the synthesis of zsm-5 zeolite, at atmospheric pressure and at low temperature
JPS6042220A (en) Zeolite treatment
JPH0278640A (en) Production of thimol
JPS6263528A (en) Production of p-xylene
JPH0437054B2 (en)
JPH0375536B2 (en)
JP3799740B2 (en) Isomerization of chloroethylbenzene
JP2571200B2 (en) Method for producing dialkylbenzene
JPH0254809B2 (en)
FI81028C (en) CATALOGS FOER AROMATISERING AV LAETTA KOLVAETEN OCH FOERFARANDE FOER FRAMSTAELLNING AV DENNA.
JPH0437053B2 (en)
JPH0459013B2 (en)
JPS6215050B2 (en)
JPS6311331B2 (en)