JPH0253951B2 - - Google Patents

Info

Publication number
JPH0253951B2
JPH0253951B2 JP57126180A JP12618082A JPH0253951B2 JP H0253951 B2 JPH0253951 B2 JP H0253951B2 JP 57126180 A JP57126180 A JP 57126180A JP 12618082 A JP12618082 A JP 12618082A JP H0253951 B2 JPH0253951 B2 JP H0253951B2
Authority
JP
Japan
Prior art keywords
lead
conductor
glass ceramics
paste
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126180A
Other languages
Japanese (ja)
Other versions
JPS5917294A (en
Inventor
Juzo Shimada
Kazuaki Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57126180A priority Critical patent/JPS5917294A/en
Publication of JPS5917294A publication Critical patent/JPS5917294A/en
Publication of JPH0253951B2 publication Critical patent/JPH0253951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】 本発明は、コンデンサを構成した複合セラミツ
ク部品と、その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite ceramic component constituting a capacitor and a method for manufacturing the same.

従来コンデンサは配線層を設けたセラミツク等
の基板上に、配線導体間に配置して半田付けなど
して電子回路を形成していた。しかし、この方法
では、チツプ型または、円板型のコンデンサはそ
れぞれ1個づつ取付けられねばならない。一方近
年、ハイブリツド技術によりコンデンサ等を含む
電子回路を基板内部に形成することが試みられて
いる。すなわち、アルミナ等のセラミツク基板に
スクリーン印刷法により誘電体層をコンデンサ用
内部電極とを交互に形成し、次いでその上に基板
表面となる絶縁層を形成して焼成し、コンデンサ
を構成している。しかしこの場合、各パターンを
印刷する工程が多くなり作業性が悪くなる欠点が
あつた。また誘電体材料の誘電率が小さいこと、
さらに印刷積層をくり返すに従い印刷率の平面性
が非常に悪くなり積層数を増やすことが困難であ
ることにより大きな容量をもつコンデンサを形成
することは不可能であつた。一方、アルミナグリ
ーンシートを用いて基板内部にコンデンサを形成
する方法も行なわれている。第1図は、この方法
により形成されたコンデンサを含んだ基板の模式
的断面図である。アルミナグリーンシート上にコ
ンデンサ用内部電極層を形成するようにスクリー
ン印刷し、該電極層を設けたアルミナグリーンシ
ート3と、必要に応じて厚みをもたせるためのア
ルミナグリーンシート1とを複数枚積層し1500〜
1600℃の高温でしかも還元雰囲気で焼成されコン
デンサ4を構成したセラミツク複合部品が得られ
た。この方法の場合、アルミナ材料を焼成するた
めに1500〜1600℃という高温が必要であることか
ら導体材料として必然的にW,Mo等の高融点金
属を用いなければならず、これらの金属の酸化防
止のために還元雰囲気で焼成するため、燃料費・
雰囲気作成等のコストが高くなり、装置も大がか
りになる欠点があつた。また、アルミナの誘電率
は約9程度であることから、このコンデンサーの
容量も小さらものとなつてしまう欠点があつた。
さらに、該複合セラミツク部品の外部への引出端
子部をボンデイング性を良好にするために、Au,
Ag等の貴金属メツキをする必要があり、工程的
に多くなるとともにメツキ液などによる腐食やマ
イグレーシヨン等によつて部品の信頼性がそこな
われる危険があつた。
Conventionally, capacitors have been formed on a substrate made of ceramic or the like with a wiring layer, placed between wiring conductors, and soldered to form an electronic circuit. However, with this method, each chip type or disk type capacitor must be installed one at a time. On the other hand, in recent years, attempts have been made to form electronic circuits including capacitors and the like inside substrates using hybrid technology. That is, dielectric layers and internal electrodes for the capacitor are alternately formed on a ceramic substrate made of alumina or the like by screen printing, and then an insulating layer that becomes the surface of the substrate is formed and fired to form the capacitor. . However, in this case, the number of steps for printing each pattern increases, resulting in poor workability. In addition, the dielectric constant of the dielectric material is small;
Furthermore, as printing layers are repeated, the flatness of the printing rate becomes extremely poor, making it difficult to increase the number of layers, making it impossible to form a capacitor with a large capacity. On the other hand, there is also a method of forming a capacitor inside a substrate using an alumina green sheet. FIG. 1 is a schematic cross-sectional view of a substrate containing a capacitor formed by this method. Screen printing is performed to form an internal electrode layer for a capacitor on an alumina green sheet, and a plurality of alumina green sheets 3 with the electrode layer provided thereon and alumina green sheets 1 to be thickened as necessary are laminated. 1500~
The ceramic composite part constituting the capacitor 4 was obtained by firing at a high temperature of 1600° C. and in a reducing atmosphere. In this method, a high temperature of 1500 to 1600°C is required to sinter the alumina material, so high melting point metals such as W and Mo must be used as conductor materials, and oxidation of these metals is necessary. Since firing is performed in a reducing atmosphere to prevent
The disadvantages are that the cost of creating an atmosphere is high and the equipment is also large-scale. Furthermore, since the dielectric constant of alumina is about 9, the capacitance of this capacitor is also small.
Furthermore, in order to improve the bonding properties of the external lead terminal part of the composite ceramic part, Au,
It was necessary to plate precious metals such as Ag, which increased the number of steps involved, and there was a risk that the reliability of the parts would be impaired due to corrosion or migration caused by the plating solution.

本発明の目的は、このような従来の欠点を除去
せしめ、従来よりも低温(1300℃以下)でしかも
酸化性雰囲気で焼成可能な高誘電率をもつ誘電体
材料およびガスラセラミツクスを主成分とする絶
縁体材料を用いることにより、Au,Ag,Pt,
Pd等およびこれらを1以上含んだ合金が使用可
能となり、通常のグリーンシートを用いる多層セ
ラミツク基板を作製する手法で作業性の良い、平
面性も良好で、しかも同時焼成でき、また該焼成
工程のみでハンダ付等のボンデイング性も良好な
新規な大容量をもつコンデンサ複合積層セラミツ
ク部品および、その製造方法を提供することにあ
る。
The purpose of the present invention is to eliminate these conventional drawbacks, and to develop a dielectric material and gas ceramics as main components that have a high dielectric constant and can be fired at lower temperatures (below 1300°C) and in an oxidizing atmosphere than conventional ones. Au, Ag, Pt,
It is now possible to use Pd, etc., and alloys containing one or more of these, and the method of producing multilayer ceramic substrates using ordinary green sheets has good workability, good flatness, and simultaneous firing, and only the firing process is required. It is an object of the present invention to provide a novel capacitor composite laminated ceramic part having a large capacity and having good bonding properties such as soldering, and a method for manufacturing the same.

すなわち本発明は鉛系複合ペロブスカイト高誘
電率材料と酸化アルミニウムを40〜60wt%、酸
化鉛を1〜40wt%、酸化ケイ素を2〜40wt%、
酸化ホウ素を1〜30wt%、族元素酸化物を0.05
〜25wt%、族元素(ただし炭素、ケイ素、鉛
は除く)の酸化物を0.01〜10wt%、で合計100wt
%となるような組成のガラスセラミツクスを主成
分とする絶縁体と導体とが一体に積層、焼成され
てなる積層焼結体であつて、その内部に配線用導
体層と前記高誘電率材料と導体によつて構成され
る1以上のコンデンサ素子とを備えてなることを
特徴とする複合積層セラミツク部品の発明と、鉛
系複合ペロブスカイト高誘電率材料ペースト及び
導体ペーストを作製する工程、酸化アルミニウム
を40〜60wt%、酸化鉛を1〜40wt%、酸化ケイ
素を2〜40wt%、酸化ホウ素を1〜30wt%、
族元素酸化物を0.05〜25wt%、族元素(ただし
炭素、ケイ素、鉛は除く)の酸化物を0.01〜10wt
%、で合計100wt%となるような組成のガラスセ
ラミツクスを主成分とする絶縁体グリーンシート
を作製する工程、前記ガラスセラミツクスを主成
分とする絶縁体グリーンシートにスルーホールを
形成する工程、前詰ガラスセラミツクスを主成分
とする絶縁体グリーンシートのスルーホールに導
体ペーストを充填する工程、前記ガラスセラミツ
クスを主成分とする絶縁体グリーンシートのスル
ーホールに導体ペーストを充填すると同時に該シ
ート上に導体ペーストを形成する工程、前記ガラ
スセラミツクスを主成分とする絶縁体グリーンシ
ートに導体ペーストと鉛系複合ペロブスカイト高
誘電率材料ペーストを高誘電率材料を導体がはさ
む様な構成をなし、はさんだ導体が対向するコン
デンサ電極になるように形成する工程、各ペース
トを形成した前記ガラスセラミツクスを主成分と
する絶縁体グリーンシートを導体が対向電極にな
るよう形成された高誘電率材料を印刷したシート
がコンデンサを形成するよう構成して積層し、焼
成する工程を有することを特徴とする複合積層セ
ラミツク部品の製造方法の発明である。
That is, the present invention uses a lead-based composite perovskite high dielectric constant material, 40 to 60 wt% of aluminum oxide, 1 to 40 wt% of lead oxide, 2 to 40 wt% of silicon oxide,
1-30wt% boron oxide, 0.05% group element oxide
~25wt%, 0.01~10wt% of oxides of group elements (excluding carbon, silicon, and lead), totaling 100wt
It is a laminated sintered body formed by integrally laminating and firing an insulator and a conductor mainly composed of glass ceramics with a composition of An invention of a composite laminated ceramic component characterized by comprising one or more capacitor elements constituted by a conductor, a process for producing a lead-based composite perovskite high dielectric constant material paste and a conductor paste, and an aluminum oxide 40-60wt%, lead oxide 1-40wt%, silicon oxide 2-40wt%, boron oxide 1-30wt%,
0.05-25wt% of group element oxides, 0.01-10wt of group element oxides (excluding carbon, silicon, and lead)
%, a step of producing an insulating green sheet mainly composed of glass ceramics with a composition of 100 wt% in total, a step of forming through holes in the insulating green sheet mainly composed of glass ceramics, and a pre-filling step. A step of filling conductive paste into the through holes of an insulating green sheet mainly composed of glass ceramics, filling the through holes of the insulating green sheet mainly composed of glass ceramics with conductive paste and at the same time filling the conductive paste onto the sheet. In the process of forming a conductor paste and a lead-based composite perovskite high dielectric constant material paste on an insulating green sheet mainly composed of glass ceramics, the high dielectric constant material is sandwiched between the conductors, and the sandwiched conductors face each other. In the step of forming a capacitor electrode, the insulator green sheet, which is mainly made of glass ceramics and which has been coated with each paste, is printed with a high dielectric constant material, the conductor of which is formed as a counter electrode. This invention relates to a method for manufacturing a composite laminated ceramic part, characterized by comprising steps of forming, laminating, and firing a composite laminated ceramic part.

以下本発明を実施例に基づいて詳細に説明す
る。
The present invention will be described in detail below based on examples.

第2図〜第9図は本発明の製造方法を示す図で
あり第10図は実施例において作製した本発明の
複合積層セラミツク部品の模式的断面図である。
2 to 9 are diagrams showing the manufacturing method of the present invention, and FIG. 10 is a schematic cross-sectional view of a composite laminated ceramic component of the present invention produced in an example.

第2図に示す絶縁体グリーンシート11は酸化
アルミニウムを40〜60wt%、酸化鉛を1〜40wt
%、酸化ケイ素を2〜40wt%、酸化ホウ素を1
〜30wt%、族元素酸化物を0.05〜25wt%、
族元素(ただし炭素、ケイ素、鉛は除く)の酸化
物を0.01〜10wt%、で合計100wt%となるような
組成の900℃程度で焼結できる無機粉末をエチル
セルセルブ等の有機溶媒・可塑剤、およびバイン
ダーとしてPVBと共に混合しスラリー状にした
後キヤステイング製膜し60mm×40mm、厚み100μm
のシートにパンチングして作成した。一方誘電体
ペーストはPb(Fe2/3・W1/3)0
The insulator green sheet 11 shown in Figure 2 contains 40 to 60 wt% aluminum oxide and 1 to 40 wt% lead oxide.
%, silicon oxide 2-40wt%, boron oxide 1
~30wt%, group element oxides 0.05~25wt%,
An inorganic powder that can be sintered at around 900℃ with a composition of 0.01 to 10 wt% of oxides of group elements (excluding carbon, silicon, and lead), for a total of 100 wt%, is mixed with an organic solvent such as ethyl celselv and plasticizer. After mixing with PVB as agent and binder to form a slurry, it is cast into a film of 60mm x 40mm and 100μm thick.
It was created by punching a sheet. On the other hand, the dielectric paste is Pb (Fe2/3・W1/3) 0

Claims (1)

【特許請求の範囲】 1 鉛系複合ペロブスカイト高誘電率材料と酸化
アルミニウムを40〜60wt%、酸化鉛を1〜40wt
%、酸化ケイ素を2〜40wt%、酸化ホウ素を1
〜30wt%、族元素酸化物を0.05〜25wt%、
族元素(ただし炭素、ケイ素、鉛は除く)の酸化
物を0.01〜10wt%、で合計100wt%となるような
組成のガラスセラミツクスを主成分とする絶縁体
と導体とが一体に積層、焼成されてなる積層焼結
体であつて、その内部に配線用導体層と前記高誘
電率材料と導体によつて構成される1以上のコン
デンサ素子とを備えてなることを特徴とする複合
積層セラミツク部品。 2 鉛系複合ペロブスカイト高誘電率材料ペース
ト及び導体ペーストを作製する工程、酸化アルミ
ニウムを40〜60wt%、酸化鉛を1〜40wt%、酸
化ケイ素を2〜40wt%、酸化ホウ素を1〜30wt
%、族元素酸化物を0.05〜25wt%、族元素
(ただし炭素、ケイ素、鉛は除く)の酸化物を
0.01〜10wt%、で合計100wt%となるような組成
のガラスセラミツクスを主成分とする絶縁体グリ
ーンシートを作製する工程、前記ガラスセラミツ
クスを主成分とする絶縁体グリーンシートにスル
ーホールを形成する工程、前記ガラスセラミツク
スを主成分とする絶縁体グリーンシートのスルー
ホールに導体ペーストを充填する工程、前記ガラ
スセラミツクスを主成分とする絶縁体グリーンシ
ートのスルーホールに導体ペーストを充填すると
同時に該シート上に導体ペーストを形成する工
程、前記ガラスセラミツクスを主成分とする絶縁
体グリーンシートに導体ペーストと鉛系複合ペロ
ブスカイト高誘電率材料ペーストを高誘電率材料
を導体がはさむ様な構成をなし、はさんだ導体が
対向するコンデンサ電極になるように形成する工
程、各ペーストを形成した前記ガラスセラミツク
スを主成分とする絶縁体グリーンシートを導体が
対向電極になるよう形成された高誘電率材料を印
刷したシートがコンデンサを形成するよう構成し
て積層し、焼成する工程を有することを特徴とす
る複合積層セラミツク部品の製造方法。
[Claims] 1. 40 to 60 wt% of lead-based composite perovskite high dielectric constant material and aluminum oxide, and 1 to 40 wt% of lead oxide.
%, silicon oxide 2-40wt%, boron oxide 1
~30wt%, group element oxides 0.05~25wt%,
An insulator and conductor whose main component is glass ceramics with a composition of 0.01 to 10 wt% of oxides of group elements (excluding carbon, silicon, and lead) and a total of 100 wt% are laminated and fired. A composite laminated ceramic component comprising a laminated sintered body comprising a wiring conductor layer and one or more capacitor elements constituted by the high dielectric constant material and the conductor. . 2. Process of producing lead-based composite perovskite high dielectric constant material paste and conductor paste, 40 to 60 wt% aluminum oxide, 1 to 40 wt% lead oxide, 2 to 40 wt% silicon oxide, and 1 to 30 wt% boron oxide.
%, group element oxides from 0.05 to 25wt%, group element oxides (excluding carbon, silicon, and lead)
A step of producing an insulating green sheet mainly composed of glass ceramics with a composition of 0.01 to 10 wt%, giving a total of 100 wt%, and a step of forming through holes in the insulating green sheet mainly composed of glass ceramics. , filling the through holes of the insulating green sheet mainly composed of glass ceramics with a conductive paste; filling the through holes of the insulating green sheet mainly composed of glass ceramics with the conductive paste and simultaneously filling the through holes on the sheet; In the step of forming a conductor paste, the conductor paste and the lead-based composite perovskite high dielectric constant material paste are sandwiched between the conductors and the high dielectric constant material is sandwiched between the insulator green sheet mainly composed of glass ceramics, and the sandwiched conductor is formed. A step of forming the insulating green sheet mainly composed of glass ceramics on which each paste has been formed into a sheet printed with a high dielectric constant material formed so that the conductor becomes the opposing electrode. 1. A method of manufacturing a composite laminated ceramic component, comprising the steps of configuring, laminating, and firing to form a capacitor.
JP57126180A 1982-07-20 1982-07-20 Composite laminated ceramic part and method of producing same Granted JPS5917294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126180A JPS5917294A (en) 1982-07-20 1982-07-20 Composite laminated ceramic part and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126180A JPS5917294A (en) 1982-07-20 1982-07-20 Composite laminated ceramic part and method of producing same

Publications (2)

Publication Number Publication Date
JPS5917294A JPS5917294A (en) 1984-01-28
JPH0253951B2 true JPH0253951B2 (en) 1990-11-20

Family

ID=14928662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126180A Granted JPS5917294A (en) 1982-07-20 1982-07-20 Composite laminated ceramic part and method of producing same

Country Status (1)

Country Link
JP (1) JPS5917294A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177695A (en) * 1984-02-23 1985-09-11 日本電気株式会社 Composite ceramic board
JPH01128587A (en) * 1987-11-13 1989-05-22 Tdk Corp Manufacture of ceramic wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658294A (en) * 1979-10-17 1981-05-21 Hitachi Ltd Multilayer circuit board
JPS5658295A (en) * 1979-10-17 1981-05-21 Hitachi Ltd Method of manufacturing high accuracy capacitor contained multilayer circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156753U (en) * 1978-04-01 1979-10-31
JPS56154080U (en) * 1980-04-11 1981-11-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658294A (en) * 1979-10-17 1981-05-21 Hitachi Ltd Multilayer circuit board
JPS5658295A (en) * 1979-10-17 1981-05-21 Hitachi Ltd Method of manufacturing high accuracy capacitor contained multilayer circuit board

Also Published As

Publication number Publication date
JPS5917294A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
JP3754748B2 (en) Conductor paste for filling through holes, ceramic circuit boards and package boards
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JP4038602B2 (en) Conductive paste and ceramic multilayer substrate
JPH0155594B2 (en)
JPH0253951B2 (en)
JPS61108192A (en) Low temperature sintered multilayer ceramic substrate
JP3222296B2 (en) Conductive ink
JPS6092697A (en) Composite laminated ceramic part
JPH0588557B2 (en)
JPS6318356B2 (en)
JPH08134388A (en) Electrically conductive ink
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0544838B2 (en)
JPH0544200B2 (en)
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2842707B2 (en) Circuit board
JP2738603B2 (en) Circuit board
JPS6263488A (en) Manufacturing thick film substrate
JPH0321109B2 (en)
JPS6077187A (en) Ceramic electronic part and manufacture
JPH05343851A (en) Manufacture of multilayer ceramic substrate
JPS59221362A (en) Electrically conductive paste composition
JPH05308193A (en) Manufacture of multilayer ceramic board
JPH01241810A (en) Composite laminated ceramic structure