JPH0253850A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH0253850A
JPH0253850A JP20384588A JP20384588A JPH0253850A JP H0253850 A JPH0253850 A JP H0253850A JP 20384588 A JP20384588 A JP 20384588A JP 20384588 A JP20384588 A JP 20384588A JP H0253850 A JPH0253850 A JP H0253850A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
mold
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20384588A
Other languages
Japanese (ja)
Other versions
JPH0755979B2 (en
Inventor
Yoshihiko Suzuki
義彦 鈴木
Atsuo Ishikawa
石川 淳夫
Ikuo Kogure
木暮 郁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nippon Zeon Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63203845A priority Critical patent/JPH0755979B2/en
Publication of JPH0253850A publication Critical patent/JPH0253850A/en
Publication of JPH0755979B2 publication Critical patent/JPH0755979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an epoxy resin composition compounded with a large amount of metal powder, having high fluidity and small cure shrinkage, giving a cured article having excellent thermal conductivity and suitable as a resin mold, jig, etc. CONSTITUTION:The objective composition is produced by compounding (A) a low-viscosity epoxy resin containing an alicyclic epoxy resin and having a viscosity of <=5,000cps (preferably <=3,000cps) with (B) a liquid acid anhydride- type hardener (e.g., alicyclic dibasic acid anhydride), (C) a cure accelerator (e.g., 2-ethyl-4-methylimidazole) and (D) >=100 pts.wt., preferably 150-300 pts.wt. (based on 100 pts.wt. of A+B) of metal powder (e.g., aluminum powder) containing >=50wt.% of fine powder having particle diameter of <=44mum. The composition is poured into a molding frame containing fixed master pattern and subjected to primary curing at <=80 deg.C, the master pattern is removed and the composition is heated at a high temperature to effect the secondary curing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属粉末を配合してなるエポキシ樹脂組成物
に関し、さらに詳しくは、低粘度のエポキシ樹脂にアル
ミニウム微粉末などの金属粉末を多量に配合してなる樹
脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an epoxy resin composition containing metal powder, and more specifically, to a low-viscosity epoxy resin containing a large amount of metal powder such as fine aluminum powder. The present invention relates to a resin composition that is blended with.

本発明の樹脂組成物は、硬化収縮率が低(、熱伝導率が
高い硬化物を与えるので、樹脂型や治具、その他の成形
物として有用である。
The resin composition of the present invention provides a cured product with a low curing shrinkage rate (and high thermal conductivity), so it is useful as resin molds, jigs, and other molded products.

(従来の技術) エポキシ樹脂にアルミニウム粉末などの金属粉末を配合
してなる樹脂組成物は、樹脂型の原料などとして公知で
ある。
(Prior Art) A resin composition made by blending an epoxy resin with a metal powder such as an aluminum powder is known as a raw material for a resin mold.

例えば、特公昭50−38606号公報には、エポキシ
樹脂100重量%に対し、200〜500メツシユのア
ルミニウム粉末40〜60重量%と硬化剤10〜20重
量%とを混入してなる樹脂材料を適宜の形状に形成した
ことを特徴とする特進用樹脂模型が記載されている。し
かし、この樹脂型では、アルミニウム粉末の配合量の上
限が重量比で、エポキシ樹脂100に対し、せいぜい6
0までであるから、樹脂型の硬化収縮率が大きく、原型
を忠実に転写することができない。また、熱伝導率が低
いので型にひずみを生じ易く、それを防止するためには
徐々に温度を上げながら硬化させなければならず操作性
に劣るなどの問題があった。
For example, in Japanese Patent Publication No. 50-38606, a resin material made by mixing 40-60% by weight of aluminum powder of 200-500 mesh and 10-20% by weight of a hardening agent with 100% by weight of epoxy resin is disclosed. A resin model for special promotion is described, which is characterized by being formed in the shape of . However, in this resin type, the upper limit of the amount of aluminum powder blended is at most 6 by weight per 100 parts of epoxy resin.
0, the curing shrinkage rate of the resin mold is large, making it impossible to faithfully transfer the original mold. Furthermore, since the thermal conductivity is low, the mold is likely to be distorted, and in order to prevent this, the temperature must be gradually raised during curing, resulting in problems such as poor operability.

また、特開昭60−137623号公報には、エポキシ
樹脂で構成される射出成形用樹脂型の製作法について記
載されており、充填剤としてアルミニウム粉末や鉄粉な
どの金属粉を比較的多量配合し、樹脂型の硬化収縮率や
熱伝導性を改善することも開示されている。この樹脂型
では、硬化剤としてアミン系硬化剤を用い、かつ、エポ
キシ樹脂としてビスフェノールA型エポキシ樹脂などを
使用しており、系の粘度が高くなっているため、そこに
充填するアルミニウム粉末は比較的粒径の大きなもので
なければならなかった。しかし、このような粒径の大き
な充填剤を用いて得られた樹脂型は鋳肌の仕上りに難が
あるばかりではなく、充填剤が均一に分散しないために
沈殿層を形成してしまうという欠点があった。
Furthermore, JP-A No. 60-137623 describes a method for manufacturing a resin mold for injection molding made of epoxy resin, and includes a relatively large amount of metal powder such as aluminum powder or iron powder as a filler. However, it is also disclosed that the curing shrinkage rate and thermal conductivity of the resin mold can be improved. This resin type uses an amine curing agent as the curing agent and bisphenol A type epoxy resin as the epoxy resin, and the viscosity of the system is high, so the aluminum powder filled in it is comparatively It had to have a large target particle size. However, resin molds obtained using fillers with such large particle sizes not only have poor casting surface finish, but also have the disadvantage of forming a precipitate layer because the fillers are not uniformly dispersed. was there.

一方、樹脂型は金型などに比べ製作の容易さやコスト面
で有利であるが、繰り返し使用しているうちに型自体に
欠けや折損などの事故を生じる懸念を有している。かか
る欠損部分の補修に前述したような従来より公知のエポ
キシ樹脂組成物を用いた場合には硬化の際に収縮が起こ
ってしまうため、補修部分に間隙が生じ、完全に補修で
きなかった。
On the other hand, although resin molds are advantageous in terms of ease of manufacture and cost compared to metal molds, there is a concern that accidents such as chipping or breakage of the mold itself may occur during repeated use. When a conventionally known epoxy resin composition as described above is used to repair such a defective part, shrinkage occurs during curing, resulting in gaps in the repaired part, making it impossible to completely repair the defect.

このように、近年、簡易型としてエポキシ樹脂を用いた
樹脂型が開発されているが、熱伝導性、硬化収縮率など
の物性が良好で、かつ、得られ−る樹脂型の鋳肌の仕上
りが良く、さらに補修可能な樹脂型は未だ得られていな
かった。
In recent years, resin molds using epoxy resin have been developed as simple molds, but they have good physical properties such as thermal conductivity and curing shrinkage rate, and the finished surface of the resulting resin mold. A resin mold with good repairability and repairability has not yet been obtained.

(発明が解決しようとする課題) 本発明の目的は、前記従来技術の有する問題点を克服し
、アルミニウム微粉末などの金属微粉末を多量に配合し
ても流動性が良(、型用・注型用として好適に使用でき
、しかも硬化収縮率が小さく、熱伝導性に優れた硬化成
形物を与えるエポキシ樹脂組成物を提供することにある
(Problems to be Solved by the Invention) The purpose of the present invention is to overcome the problems of the prior art, and to maintain good fluidity even when a large amount of fine metal powder such as fine aluminum powder is blended. The object of the present invention is to provide an epoxy resin composition that can be suitably used for casting, has a small curing shrinkage rate, and provides a cured molded product with excellent thermal conductivity.

また、本発明の目的は、エポキシ樹脂に微細なアルミニ
ウム粉末などの金属粉末を多量に配合することにより、
鋳肌の仕上りや、機械加工、研磨の面仕上がりが良好な
樹脂型などの硬化成形物を提供することにある。
Furthermore, the purpose of the present invention is to blend a large amount of metal powder such as fine aluminum powder into the epoxy resin.
The purpose of the present invention is to provide a cured molded product such as a resin mold that has a good casting surface finish and a good surface finish when machined or polished.

本発明の他の目的は、補修可能な樹脂型を提供すること
にある。
Another object of the invention is to provide a repairable resin mold.

本発明者らは、従来技術の有する前記問題点を克服する
ために鋭意研究した結果、エポキシ樹脂として、脂環式
エポキシ樹脂を含有する粘度(25℃)が5000セン
チポイズ以下の低粘度エポキシ樹脂を用い、これに液状
酸無水物系硬化剤および硬化促進剤と組合せたものに、
アルミニウム微細粉などの金属微粉末を多量に配合した
エポキシ樹脂組成物が、前記目的を達成することができ
ることを見出し、この知見に基づいて本発明を完成する
に至った。
As a result of intensive research to overcome the above-mentioned problems of the prior art, the present inventors have developed a low-viscosity epoxy resin containing an alicyclic epoxy resin and having a viscosity (at 25°C) of 5000 centipoise or less. and in combination with a liquid acid anhydride curing agent and a curing accelerator,
It was discovered that an epoxy resin composition containing a large amount of fine metal powder such as fine aluminum powder can achieve the above object, and based on this knowledge, the present invention was completed.

(課題を解決するための手段) か(して、本発明によれば、 (A)脂環式エポキシ樹脂を含有する粘度(25℃)が
5000センチポイズ以下の低粘度エポキシ樹脂、 (B)液状酸無水物系硬化剤、 (C)硬化促進剤、および (D)粒径44μm以下の微粉末を50重量%以上含む
金属粉末を(A)と(B)の合計100重量部に対し、
100重量部以上配合してなるエポキシ樹脂組成物が提
供される。
(Means for Solving the Problems) According to the present invention, (A) a low-viscosity epoxy resin containing an alicyclic epoxy resin and having a viscosity (25°C) of 5000 centipoise or less; (B) a liquid An acid anhydride curing agent, (C) a curing accelerator, and (D) a metal powder containing 50% by weight or more of fine powder with a particle size of 44 μm or less, based on a total of 100 parts by weight of (A) and (B).
An epoxy resin composition containing 100 parts by weight or more is provided.

また、本発明によれば、前記エポキシ樹脂組成物を硬化
せしめてなるエポキシ樹脂硬化物および樹脂型が提供さ
れる。
Further, according to the present invention, there are provided a cured epoxy resin product and a resin mold obtained by curing the epoxy resin composition.

さらに、本発明によれば、前記エポキシ樹脂組成物を、
原型を固定した型枠内に注入し、80’C以上で一次硬
化したのち原型を脱型し、次いで速やかに昇温し、高温
下で二次硬化することを特徴とする樹脂型の製造法が提
供される。
Furthermore, according to the present invention, the epoxy resin composition
A method for manufacturing a resin mold, which is characterized by injecting a mold into a fixed mold, primary curing at 80'C or higher, removing the mold, then rapidly raising the temperature, and performing secondary curing at high temperature. is provided.

以下、本発明の構成要素について詳述する。Hereinafter, the constituent elements of the present invention will be explained in detail.

(エポキシ樹脂) 本発明で使用する低粘度エポキシ樹脂は、脂環式ボキシ
樹脂を含有するものであって、粘度(25℃)が500
0センチボイズ(cps)以下、好ましくは3000c
ps以下の範囲にあるものである。
(Epoxy resin) The low-viscosity epoxy resin used in the present invention contains an alicyclic boxy resin and has a viscosity (25°C) of 500
0 centivoise (cps) or less, preferably 3000c
ps or less.

脂環式エポキシ樹脂としては、例えば、次のような構造
の化合物が挙げられる。
Examples of the alicyclic epoxy resin include compounds having the following structures.

脂環式ジェポキシアジペート 3.4エポキシシクロヘキシルメチルカルボキシレート ビニルシクロヘキセンジオキサイド 3.4エポキシ−6−メチルシクロへキシルメチルカル
ボキシレート 脂環式エポキシ樹脂は、単独で用いることができるが、
脂環式エポキシ樹脂にビスフェノールAやビスフェノー
ルFなどのごとき芳香族系エポキシ樹脂を混合すること
ができ、それにより硬化温度を低下させ、かつ、硬化時
間を短縮することができる。芳香族系エポキシ樹脂の配
合割合は、脂環式エポキシ樹脂との合計量中70重量%
以下、特に20〜60重量%であることが好ましい。芳
香族系エポキシ樹脂の配合割合が多くなると、樹脂組成
物の流動性や硬化物の耐熱性が次第に低下する。
Cycloaliphatic epoxy adipate 3.4 Epoxycyclohexylmethyl carboxylate Vinyl cyclohexene dioxide 3.4 Epoxy-6-methylcyclohexyl methyl carboxylate Cycloaliphatic epoxy resin can be used alone, but
Aromatic epoxy resins such as bisphenol A and bisphenol F can be mixed with the alicyclic epoxy resin, thereby lowering the curing temperature and shortening the curing time. The blending ratio of aromatic epoxy resin is 70% by weight based on the total amount of alicyclic epoxy resin.
Below, it is particularly preferable that the amount is 20 to 60% by weight. As the proportion of the aromatic epoxy resin increases, the fluidity of the resin composition and the heat resistance of the cured product gradually decrease.

(液状酸無水物系硬化剤) 本発明においては、硬化剤として液状酸無水物系硬化剤
が用いられる。液状酸無水物系硬化剤は、一般に25℃
における粘度が500cps以下であり、しかも一般に
多用されているアミン系硬化剤に比較して使用量が多い
ため、金属微粉末を多量配合することが可能となる。
(Liquid acid anhydride curing agent) In the present invention, a liquid acid anhydride curing agent is used as the curing agent. Liquid acid anhydride curing agents are generally heated at 25°C.
Since the viscosity of the curing agent is 500 cps or less and the amount used is larger than that of the commonly used amine curing agent, it is possible to incorporate a large amount of fine metal powder.

本発明で用いる液状酸無水物系硬化剤は、エポキシ樹脂
硬化剤として通常用いられているものであればよく、例
えば、脂環式二塩基酸無水物および長鎖のアルケニルコ
ハク酸無水物が例示される。
The liquid acid anhydride curing agent used in the present invention may be any one commonly used as an epoxy resin curing agent, and examples thereof include alicyclic dibasic acid anhydride and long-chain alkenylsuccinic anhydride. be done.

脂環式二塩基酸無水物の具体的な例としては、メチル−
Δ4−テトラヒドロ無水フタル酸の構造異性体混合物、
メチル−Δ4−テトラヒドロ無水フタル酸の立体異性体
混合物、メチルへキサヒドロ無水フタル酸、3,6−ニ
ンドメチレンメチルテトラヒドロ無水フタル酸などが挙
げられ、中でも保存安定性の面でメチル−Δ4−テトラ
ヒドロ無水フタル酸の立体異性体混合物が最も賞用され
る。
Specific examples of alicyclic dibasic acid anhydrides include methyl-
A mixture of structural isomers of Δ4-tetrahydrophthalic anhydride,
Stereoisomeric mixtures of methyl-Δ4-tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, 3,6-nindomethylenemethyltetrahydrophthalic anhydride, etc. Among them, methyl-Δ4-tetrahydrophthalic anhydride is preferred in terms of storage stability. Stereoisomeric mixtures of phthalic acid are most preferred.

また、テトラヒドロ無水フタル酸やヘキサヒドロ無水フ
タル酸などのごとき固体の二塩基酸無水物であっても、
共融混合物が液状であれば、本発明の範囲に包含される
。また、長鎖のアルケニルコハク酸無水物の具体的な例
として、例えば、ドデセニルコハク酸無水物、オクテニ
ルコハク酸無水物などが挙げられる。
Furthermore, even solid dibasic acid anhydrides such as tetrahydrophthalic anhydride and hexahydrophthalic anhydride,
If the eutectic mixture is liquid, it is within the scope of the present invention. Furthermore, specific examples of long-chain alkenylsuccinic anhydrides include dodecenylsuccinic anhydride, octenylsuccinic anhydride, and the like.

中でも100cps以下の脂環式二塩基酸無水物が好ま
しい。
Among them, alicyclic dibasic acid anhydrides with a ps of 100 cps or less are preferred.

液状酸無水物系硬化剤の配合量は、通常用いられている
範囲内であればよ(、例えば、エポキシ樹脂との当量比
が6/10〜12/10になるように使用するのが好ま
しい。
The amount of the liquid acid anhydride curing agent may be within the commonly used range (for example, it is preferable to use it so that the equivalent ratio with the epoxy resin is 6/10 to 12/10). .

したがって、低粘度エポキシ樹脂100重量部に対し、
90〜120重量部の範囲で用いることが好ましい。
Therefore, for 100 parts by weight of low viscosity epoxy resin,
It is preferable to use it in a range of 90 to 120 parts by weight.

(硬化促進剤) 本発明に用いられる硬化促進剤としては、例えば、2−
エチル4−メチルイミダゾール、1−シアノエチル4−
メチルイミダゾール、l−ベンジル2−エチルイミダゾ
ール等のイミダゾールおよびその誘導体、トリスジメチ
ルアミノメチルフェノール、2,4.6−)リス(ジメ
チルアミノ)フェノール等の第3級アミン類、ジメチル
シクロヘキシルアミン、三フッ化ホウ素モノエチルアミ
ン等が挙げられる。その中でも、低粘度で取り扱い易い
ことから2.4.6−1−リス(ジメチルアミノ)フェ
ノールやジメチルシクロヘキシルアミンが好ましい。
(Curing accelerator) Examples of the curing accelerator used in the present invention include 2-
Ethyl 4-methylimidazole, 1-cyanoethyl 4-
Imidazole and its derivatives such as methylimidazole and l-benzyl-2-ethylimidazole, tertiary amines such as trisdimethylaminomethylphenol, 2,4.6-)lis(dimethylamino)phenol, dimethylcyclohexylamine, trifluorocarbon Examples include boron monoethylamine. Among these, 2.4.6-1-lis(dimethylamino)phenol and dimethylcyclohexylamine are preferred because they have low viscosity and are easy to handle.

硬化促進剤を使用することにより、低温硬化および硬化
時間の短縮が可能となる。硬化促進剤の使用量は、80
℃以下の温度で硬化可能となるような範囲内で選択され
、具体的には酸無水物系硬化剤100重量部当たり2重
量部以上、好ましくは3〜5重量部である。
By using a curing accelerator, low temperature curing and shortening of curing time are possible. The amount of curing accelerator used is 80
It is selected within a range that can be cured at a temperature of 0.degree.

(金属粉末) 本発明で用いる金属粉末としては、アルミニウム粉末、
銅粉末など各種の金属粉末が挙げられるが、その中でも
アルミニウム粉末が熱伝導性が良好で、熱膨張率が小さ
(、エポキシ樹脂との濡れ性が良(、しかも鋳肌面の仕
上りが良いこと、さらに比重が小さいために硬化物が軽
量化できることなどから賞用される。
(Metal powder) The metal powder used in the present invention includes aluminum powder,
There are various metal powders such as copper powder, but among them, aluminum powder has good thermal conductivity, low coefficient of thermal expansion (good wettability with epoxy resin), and good finish on the casting surface. Furthermore, it is prized for its low specific gravity, which allows the cured product to be made lighter.

本発明で用いられる金属粉末は、粒径44μm以下の微
粉末を50重量%以上、好ましくは70重量%以上含む
ものである。その中でも、特に、粒径20um以下の微
粉末を10重量%以上、好ましくは20重量%以上含む
ものが好ましい。金属粉末が微粉末のみでは、組成物の
粘度が上昇し、配合が困難となる場合があるため、残余
の金属粉末は、粒径が44μmを越える大きなものであ
ってもよいが、好ましくは200μm以下、より好まし
くは150μm以下のものがよい。
The metal powder used in the present invention contains 50% by weight or more, preferably 70% by weight or more of fine powder with a particle size of 44 μm or less. Among these, those containing 10% by weight or more, preferably 20% by weight or more of fine powder with a particle size of 20 um or less are particularly preferred. If the metal powder is only a fine powder, the viscosity of the composition may increase and blending may become difficult. Therefore, the remaining metal powder may have a particle size exceeding 44 μm, but preferably 200 μm. Below, it is more preferably 150 μm or less.

微細粉末であることによって、金属粉末を多量に配合し
ても樹脂組成物中に均一に分散され、成形中に沈殿層を
形成することが抑制され、内部歪が緩和され、また、鋳
肌の仕上りや、機械加工、研磨の面仕上がりが良好とな
る。
By being a fine powder, even if a large amount of metal powder is blended, it is uniformly dispersed in the resin composition, suppresses the formation of a precipitate layer during molding, alleviates internal strain, and improves the appearance of the casting surface. Good surface finish, machining, and polishing.

金属粉末の配合割合は、低粘度エポキシ樹脂と液状酸無
水物系硬化剤の合計量と等重量以上であることが必要で
ある。金属粉末の配合割合の上限は、組成物全体の75
重量%程度まで配合することができる。したがって、金
属粉末の配合割合は、低粘度エポキシ樹脂と液状酸無水
物系硬化剤の合計100重量部に対し、100重量部以
上、好ましくは150〜300重量部である。
The mixing ratio of the metal powder needs to be at least equal in weight to the total amount of the low-viscosity epoxy resin and the liquid acid anhydride curing agent. The upper limit of the blending ratio of metal powder is 75% of the total composition.
It can be blended up to about % by weight. Therefore, the mixing ratio of the metal powder is 100 parts by weight or more, preferably 150 to 300 parts by weight, based on a total of 100 parts by weight of the low-viscosity epoxy resin and the liquid acid anhydride curing agent.

金属粉末の配合割合がこのように大きいことによって、
硬化収縮率が低くなり、樹脂型とした場合、原型を忠実
に転写することができるため、型の精度が向上する。ま
た、硬化物の熱伝導率が高(なり、ひずみが生じに((
、型もちが良(なる。熱伝導率が高くなることにより、
低温で一次硬化させた後、速やかに高温に昇温して二次
硬化させることも可能になる。さらに、低温での一次硬
化の際には、熱収縮を起こし、高温での二次硬化の際に
は熱膨張を起こすようになり、その割合が収縮に比べて
膨張のほうが大きいため、樹脂型の欠損部分を補修する
ことが可能となる。
Due to such a large proportion of metal powder,
The curing shrinkage rate is lower, and when a resin mold is used, the original mold can be faithfully transferred, improving the precision of the mold. In addition, the thermal conductivity of the cured product is high ((), causing distortion (((
, has good shape retention.By increasing the thermal conductivity,
After primary curing at a low temperature, it is also possible to quickly raise the temperature to a high temperature and perform secondary curing. Furthermore, during primary curing at low temperatures, thermal contraction occurs, and during secondary curing at high temperatures, thermal expansion occurs, and the ratio of expansion is greater than contraction, so resin molds It becomes possible to repair the missing part.

(エポキシ樹脂組成物) エポキシ樹脂組成物の粘度(25℃)は、10万cps
以下、好ましくは5万cps以下であって、金属粉末を
多量に配合したにもかかわらず、流動性が良好である。
(Epoxy resin composition) The viscosity (25°C) of the epoxy resin composition is 100,000 cps.
It is preferably 50,000 cps or less, and has good fluidity even though a large amount of metal powder is blended.

このように本発明のエポキシ樹脂組成物は、流動性が良
いため、原型から直接反転型取りする注型用樹脂組成物
として好適である。
As described above, since the epoxy resin composition of the present invention has good fluidity, it is suitable as a casting resin composition that is directly inverted from a master mold.

(硬化方法) 硬化の方法は特に限定されず、通常行なわれているよう
な方法、すなわちまず低温で一次硬化させた後、次いで
高温下で二次硬化させることにより行なわれる。具体的
には、50〜80℃で5〜10時間加熱することにより
一次硬化させ、次いで130〜180℃で2〜6時間加
熱することにより二次硬化させる。(硬化物) 本発明の硬化物は、通常、次のような特性を有する。
(Curing Method) The method of curing is not particularly limited, and may be carried out by a commonly used method, that is, first, primary curing is performed at a low temperature, and then secondary curing is performed at a high temperature. Specifically, it is primarily cured by heating at 50 to 80°C for 5 to 10 hours, and then secondarily cured by heating at 130 to 180°C for 2 to 6 hours. (Cured product) The cured product of the present invention usually has the following characteristics.

熱変形温度:130℃以上 熱伝導率: 1.7X10−”caβ/ c m・se
c・℃以上 熱収縮率:0.2%以下、好ましくは0.15%以下 (樹脂型の製法) 原型としては、通常使用されているものであれば使用可
能である。
Heat deformation temperature: 130℃ or higher Thermal conductivity: 1.7X10-”caβ/cm・se
C.° C. or higher Heat shrinkage rate: 0.2% or less, preferably 0.15% or less (resin mold manufacturing method) As the master mold, any commonly used mold can be used.

80″C以下で一次硬化が可能であることにより、例え
ば、ゴムやプラスチック製の原型でも使用でき、原型の
種類が広がった。
Since primary curing is possible at 80"C or lower, molds made of rubber or plastic, for example, can also be used, and the variety of molds has expanded.

ただし、ABS樹脂やメタクリル樹脂製の原型は、エポ
キシ樹脂組成物によって侵される恐れがあるため、使用
に当っては予めバリヤー・コーティングを行なうことが
必要である。
However, since the master mold made of ABS resin or methacrylic resin may be attacked by the epoxy resin composition, it is necessary to apply a barrier coating before use.

本発明のエポキシ樹脂組成物を用いた樹脂型の製造法は
、原型を固定した型枠内に該樹脂組成物を注型し、まず
、80℃以下で一次硬化させたのち原型を脱型し、次い
で速やかに昇温し二次硬化させるという方法である。
The method for manufacturing a resin mold using the epoxy resin composition of the present invention involves casting the resin composition into a mold with a fixed mold, first curing it at 80°C or less, and then demolding the mold. Then, the temperature is rapidly raised to perform secondary curing.

具体的には、50〜80℃で5〜10時間加熱して一次
硬化させた後、原型を脱型し、次いで130〜180℃
で2〜6時間加熱して二次硬化させる。
Specifically, after primary curing by heating at 50 to 80°C for 5 to 10 hours, the master mold is demolded, and then heated at 130 to 180°C.
Heat for 2 to 6 hours for secondary curing.

本発明の硬化物は熱伝導率が高いために、低温で一次硬
化させた後、速やかに高温に昇温して二次硬化させるこ
とができる。従来法では、熱伝導率が悪く急激に昇温す
ると歪が生ずるため二次硬化温度への昇温に、例えば、
順次、80℃で2時間、100℃で2時間、120℃で
2時間、140℃で2時間、180℃で2時間と段階的
に昇温しなければならず、数時間を要した。ところが、
本発明では、速やかに昇温することが可能であり、通常
、昇温速度は3〜b る時間は60分以内であるが、場合によっては一気に昇
温することも可能である。
Since the cured product of the present invention has high thermal conductivity, it can be first cured at a low temperature and then quickly heated to a high temperature to be secondarily cured. In the conventional method, the thermal conductivity is poor and distortion occurs when the temperature rises rapidly, so when raising the temperature to the secondary curing temperature, for example,
The temperature had to be raised in steps of 80°C for 2 hours, 100°C for 2 hours, 120°C for 2 hours, 140°C for 2 hours, and 180°C for 2 hours, which took several hours. However,
In the present invention, it is possible to raise the temperature quickly, and the temperature increase rate is usually 3 to 60 minutes, but in some cases it is also possible to raise the temperature all at once.

かくして得られた樹脂型は、130℃以上の熱変形温度
を有するため、高温での成形用型などとして使用できる
The resin mold thus obtained has a heat deformation temperature of 130° C. or higher, and therefore can be used as a mold for molding at high temperatures.

(樹脂型の補修) 本発明の組成物は、硬化の段階によって硬化物の収縮率
が異なる。つまり、−次硬化の際には熱収縮を起こし、
二次硬化の際には熱膨張を起こす。そして、その割合が
収縮に比べて膨張の方が大きいことから樹脂型の欠けた
部分の補修に用いた場合、この収縮率の差を利用して、
樹脂組成物を欠けた部分に追加注型することにより補修
しない部分とピッタリ一体向に密着した補修型を得るこ
とができる。
(Repair of Resin Mold) The shrinkage rate of the cured product of the composition of the present invention varies depending on the stage of curing. In other words, heat shrinkage occurs during the -second curing,
Thermal expansion occurs during secondary curing. Since the rate of expansion is larger than that of contraction, when used to repair chipped parts of resin molds, this difference in contraction rate can be used to
By additionally casting the resin composition into the chipped portion, a repair mold can be obtained that is in close contact with the portion that is not to be repaired.

(用途) 本発明のエポキシ樹脂組成物は、型材料として、熱可塑
性樹脂の射出成形型や、ウレタン樹脂やエポキシ樹脂、
不飽和ポリエステル樹脂などの熱硬化性樹脂の、真空ま
たは低圧注型用の型、反応射出成形用型、発泡型に使用
でき、その他、真空成形型、ブロー型、プレス型、およ
び治具として使用できる。また、その他の成形物とする
こともできる。
(Applications) The epoxy resin composition of the present invention can be used as a mold material for injection molding molds of thermoplastic resins, urethane resins, epoxy resins,
Can be used in vacuum or low-pressure casting molds, reaction injection molding molds, and foaming molds for thermosetting resins such as unsaturated polyester resins, as well as vacuum molding molds, blow molds, press molds, and jigs. can. Moreover, other molded products can also be used.

(以下余白) 実施例 以下、本発明を実施例および比較例を挙げて説明するが
、本発明は、これら実施例のみに限定されるものではな
い。なお、部および%は、特に断わりのない限り重量基
準である。
(Left below) Examples The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Note that parts and percentages are based on weight unless otherwise specified.

実施例1 第1表に示す割合で調製した(I)液と(U)液との混
合物に硬化促進剤を加えて混合してエポキシ樹脂組成物
を得た。
Example 1 A curing accelerator was added to a mixture of liquid (I) and liquid (U) prepared in the proportions shown in Table 1 and mixed to obtain an epoxy resin composition.

この組成物の25℃における粘度(cps)を測定し、
第1表に示した。
Measuring the viscosity (cps) of this composition at 25°C,
It is shown in Table 1.

次いで、上記エポキシ樹脂組成物を表面を研磨した鋼製
原型(平均面粗さ0.05μm)を固定した型枠の中に
室温で注型し、真空脱泡の後、所定の硬化条件で加熱、
硬化し硬化物を得た。ただし、−次硬化から二次硬化へ
の昇温速度は、平均3℃/分であった。
Next, the above-mentioned epoxy resin composition was cast at room temperature into a mold in which a steel mold with a polished surface (average surface roughness: 0.05 μm) was fixed, and after vacuum degassing, it was heated under predetermined curing conditions. ,
It was cured to obtain a cured product. However, the temperature increase rate from secondary curing to secondary curing was 3° C./min on average.

得られた硬化物の物性を第1表に示した。The physical properties of the obtained cured product are shown in Table 1.

なお、第1表中*1〜*9は、以下のとおりである。Note that *1 to *9 in Table 1 are as follows.

:脂環式エポキシ樹脂、3.4−エポキシシクロヘキシ
ルメチルカルボキシレート(ダイセル化学工業社製、商
品名上ロキサイド2021A 、エポキシ当量136) *2:ビスフェノールA型エポキシ樹脂(油化シェルエ
ポキシ社製、商品名エピコート828エポキシ当量18
6) *3ニアルミニウム微粉末(東洋アルミニウム社製、商
品名A C1003、A C2500、A C5005
の3種を混合し、粒径分布が 44〜150μm   10重量%、 20〜44μm   50重量%、 1〜20μm   40重量% となるように調製したもの。) *4:液状酸無水物系硬化剤(日本ゼオン社製、商品名
フィンハード200) ただし、実験番号1−4は、アミン系硬化剤(ハイソー
ルジャパン社製、HD3688)を使用した。
: Alicyclic epoxy resin, 3,4-epoxycyclohexylmethylcarboxylate (manufactured by Daicel Chemical Industries, Ltd., trade name: ROXIDE 2021A, epoxy equivalent: 136) *2: Bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product name: ROXIDE 2021A, epoxy equivalent: 136) Name Epicote 828 Epoxy equivalent weight 18
6) *3 Nialuminum fine powder (manufactured by Toyo Aluminum Co., Ltd., product name A C1003, A C2500, A C5005
These three types were mixed and prepared so that the particle size distribution was 44-150 μm 10% by weight, 20-44 μm 50% by weight, and 1-20 μm 40% by weight. ) *4: Liquid acid anhydride curing agent (manufactured by Nippon Zeon Co., Ltd., trade name Finhard 200) However, in experiment number 1-4, an amine curing agent (manufactured by Hysol Japan Co., Ltd., HD3688) was used.

*5:硬化促進剤(新日本理化社製、商品名ワンダミン
DMCA) *6:熱変形温度(HDT) 測定方法 JIS  K−6911 *7:硬化収縮率(%) 測定方法 JIS  K−6911に準拠ただし、常圧
注型、印象面のみ測定し た。二次硬化物の収縮率は、最終的に得られた硬化物の
値を示す。(−)は、膨張を意味する。
*5: Curing accelerator (manufactured by Shin Nippon Rika Co., Ltd., trade name Wandamin DMCA) *6: Heat distortion temperature (HDT) Measuring method JIS K-6911 *7: Curing shrinkage rate (%) Measuring method Compliant with JIS K-6911 However, only the normal pressure casting and impression surfaces were measured. The shrinkage rate of the secondary cured product indicates the value of the finally obtained cured product. (-) means expansion.

*8:熱電動率(can/cm−sec・’c)測定方
法 染出式(アセトン・ベンゼン法) *9:鋳肌の状態の測定方法 JIS  BO601に
したがい、東京精密■社製サーフコム700B (10
万倍)で平均面粗さを測定した。
*8: Thermoelectric coefficient (can/cm-sec/'c) measurement method: Dyeing method (acetone/benzene method) *9: Method of measuring cast surface condition: According to JIS BO601, Surfcom 700B manufactured by Tokyo Seimitsu ■ Co., Ltd. 10
The average surface roughness was measured at a magnification of 10,000 times.

(以下余白) 実施例2 実施例1の実験番号1−3の配合において、実施例1で
使用した3品種のアルミニウム粉末を第2表に示す各割
合で含むように調製した以外は、実施例1と同様に操作
してエポキシ樹脂組成物および硬化物を得、物性を測定
した。結果を第2表に示す。
(Leaving space below) Example 2 Except for the formulation of experiment number 1-3 of Example 1, which was prepared to contain the three types of aluminum powder used in Example 1 in the respective proportions shown in Table 2. An epoxy resin composition and a cured product were obtained in the same manner as in 1, and their physical properties were measured. The results are shown in Table 2.

(以下余白) 実施例3 樹脂型形状部に直径5mm、深さ10mmの穴をあけ欠
損部とした。実施例1の実験番号1−3のエポキシ樹脂
組成物を樹脂型の欠損部に注型し、60℃で8時間加熱
し、−次硬化を行なった後、3°C/分の昇温速度で昇
温し、150℃で5時間加熱して二次硬化を行なった。
(Hereinafter, blank space) Example 3 A hole with a diameter of 5 mm and a depth of 10 mm was made in the resin mold shape part to form a defective part. The epoxy resin composition of Experiment No. 1-3 of Example 1 was cast into the defective part of the resin mold, heated at 60°C for 8 hours to perform secondary curing, and then heated at a temperature increase rate of 3°C/min. The temperature was raised at 150° C. for 5 hours to perform secondary curing.

次いで、補修部分を研磨したところ注型した樹脂組成物
が樹脂型の補修部分とピッタリ一体向に密着し、欠損部
分は完全に補修できた。
Next, when the repaired area was polished, the cast resin composition adhered perfectly to the repaired area of the resin mold, and the defective area was completely repaired.

(以下余白) (発明の効果) 本発明のエポキシ樹脂組成物は、粘度が低く、注型が容
易で、しかも低温−次硬化でき、原型としてゴムや熱可
塑性樹脂でも使用することが可能で、得られる樹脂型の
鋳肌の仕上りが良く、機械加工や研磨の面仕上がりも良
好で、耐熱性、硬化収縮率、熱伝導性などの物性の良好
な樹脂型を与える。また、本発明の樹脂組成物は、各種
成形物に成形することができる。
(Left below) (Effects of the Invention) The epoxy resin composition of the present invention has a low viscosity, is easy to cast, can be cured at low temperatures, and can also be used as a mold in rubber or thermoplastic resin. The resulting resin mold has a good casting surface finish, a good surface finish after machining and polishing, and a resin mold with good physical properties such as heat resistance, curing shrinkage rate, and thermal conductivity. Moreover, the resin composition of the present invention can be molded into various molded products.

Claims (4)

【特許請求の範囲】[Claims] (1)(A)脂環式エポキシ樹脂を含有する粘度(25
℃)が5000センチポイズ以下の低粘度エポキシ樹脂
、 (B)液状酸無水物系硬化剤、 (C)硬化促進剤、および (D)粒径44μm以下の微粉末を50重量%以上含む
金属粉末を(A)と(B)の合計100重量部に対し、
100重量部以上配合してなるエポキシ樹脂組成物。
(1) (A) Viscosity containing cycloaliphatic epoxy resin (25
℃) is 5000 centipoise or less, (B) a liquid acid anhydride curing agent, (C) a curing accelerator, and (D) a metal powder containing 50% by weight or more of fine powder with a particle size of 44 μm or less. For a total of 100 parts by weight of (A) and (B),
An epoxy resin composition containing 100 parts by weight or more.
(2)請求項1記載のエポキシ樹脂組成物を硬化せしめ
てなるエポキシ樹脂硬化物。
(2) A cured epoxy resin product obtained by curing the epoxy resin composition according to claim 1.
(3)前記エポキシ樹脂硬化物が樹脂型である請求項2
記載のエポキシ樹脂硬化物。
(3) Claim 2, wherein the cured epoxy resin is a resin type.
Cured epoxy resin as described.
(4)請求項1記載のエポキシ樹脂組成物を、原型を固
定した型枠内に注入し、80℃以下で一次硬化したのち
原型を脱型し、次いで速やかに昇温し、高温下で二次硬
化することを特徴とする樹脂型の製造法。
(4) The epoxy resin composition according to claim 1 is injected into a mold in which a master mold is fixed, and after primary curing at 80°C or lower, the master mold is removed, and then the temperature is rapidly raised, and then the mold is heated at a high temperature. A method for manufacturing resin molds characterized by subsequent curing.
JP63203845A 1988-08-18 1988-08-18 Epoxy resin composition Expired - Lifetime JPH0755979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203845A JPH0755979B2 (en) 1988-08-18 1988-08-18 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203845A JPH0755979B2 (en) 1988-08-18 1988-08-18 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH0253850A true JPH0253850A (en) 1990-02-22
JPH0755979B2 JPH0755979B2 (en) 1995-06-14

Family

ID=16480649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203845A Expired - Lifetime JPH0755979B2 (en) 1988-08-18 1988-08-18 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH0755979B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198953A (en) * 1995-01-26 1996-08-06 Nitto Denko Corp Photosemiconductor device
WO1999055780A1 (en) * 1998-04-28 1999-11-04 Tomoegawa Paper Co., Ltd. Epoxy resin composition for jig and tool, and mold made of epoxy resin
EP1873149A1 (en) * 2006-06-29 2008-01-02 Daicel Chemical Industries, Ltd. Cycloaliphatic polyepoxy compounds and preparation thereof
WO2009144135A1 (en) * 2008-05-28 2009-12-03 Siemens Aktiengesellschaft Thermally conductive composite material comprising aluminum powder, process for producing the composite material and use of the composite material
US7939171B2 (en) 2003-12-26 2011-05-10 Kabushiki Kaisha Toshiba Metal-containing resin particle, metal-containing resin layer, method of forming metal-containing resin layer, and substrate for electronic circuit
JP2012153768A (en) * 2011-01-24 2012-08-16 Panasonic Corp Method for manufacturing thermosetting resin molded product
WO2012165239A1 (en) * 2011-06-01 2012-12-06 住友ベークライト株式会社 Liquid resin composition and semiconductor device using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126619A (en) * 1984-07-17 1986-02-05 Daicel Chem Ind Ltd Alicyclic epoxy resin blend
JPH0196242A (en) * 1987-10-09 1989-04-14 Nitto Denko Corp Heat-conductive epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126619A (en) * 1984-07-17 1986-02-05 Daicel Chem Ind Ltd Alicyclic epoxy resin blend
JPH0196242A (en) * 1987-10-09 1989-04-14 Nitto Denko Corp Heat-conductive epoxy resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198953A (en) * 1995-01-26 1996-08-06 Nitto Denko Corp Photosemiconductor device
WO1999055780A1 (en) * 1998-04-28 1999-11-04 Tomoegawa Paper Co., Ltd. Epoxy resin composition for jig and tool, and mold made of epoxy resin
US7939171B2 (en) 2003-12-26 2011-05-10 Kabushiki Kaisha Toshiba Metal-containing resin particle, metal-containing resin layer, method of forming metal-containing resin layer, and substrate for electronic circuit
EP1873149A1 (en) * 2006-06-29 2008-01-02 Daicel Chemical Industries, Ltd. Cycloaliphatic polyepoxy compounds and preparation thereof
US7615656B2 (en) 2006-06-29 2009-11-10 Daicel Chemical Industries, Ltd. Cycloaliphatic polyepoxy compounds and preparation thereof
WO2009144135A1 (en) * 2008-05-28 2009-12-03 Siemens Aktiengesellschaft Thermally conductive composite material comprising aluminum powder, process for producing the composite material and use of the composite material
DE102008025484A1 (en) * 2008-05-28 2009-12-03 Siemens Aktiengesellschaft Thermally conductive composite with aluminum powder, process for making the composite and use of the composite
JP2012153768A (en) * 2011-01-24 2012-08-16 Panasonic Corp Method for manufacturing thermosetting resin molded product
WO2012165239A1 (en) * 2011-06-01 2012-12-06 住友ベークライト株式会社 Liquid resin composition and semiconductor device using same

Also Published As

Publication number Publication date
JPH0755979B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
AU605234B2 (en) High temperature epoxy resin tooling composition
US6602936B1 (en) Casting resin and process for the fabrication of resin molds
JPH0253850A (en) Epoxy resin composition
JP2740990B2 (en) Low thermal expansion resin composition for pressure molding
JP2001234032A (en) Epoxy resin composition for optical semiconductor sealing use
US4925886A (en) High temperature epoxy tooling composition of bifunctional epoxy, trifunctional epoxy, anhydride, imidazole and interstitially matched filler
JPS58198525A (en) Epoxy resin composition
EP0107104B1 (en) A process for fabricating thermoset resin articles
EP0533465B1 (en) Resin formulation
JPS63264625A (en) Mold-making resinous material for molding
JP2002285008A (en) Resin composition for artificial marble
JPH11323097A (en) Epoxy resin composition and sealing agent using the same
USRE28498E (en) Method of producing a thick-walled cured plastics moulding
JPH03162909A (en) Mold made of epoxy resin and manufacture thereof
JP2003266434A (en) Manufacturing method for resin molded body and manufacturing method for bulk mold compound for preparing resin molded body
CA2207782A1 (en) Preparation of mouldings by the automatic pressure gelation technique using a one-component composition
JPS59103715A (en) Manufacture for rolling-over mold
TW570950B (en) Method for producing thermosetting artificial wood for making prototype mold or cast mold and artificial wood made therefrom
CN116218324A (en) Epoxy resin composition for curing at normal temperature and wide temperature range as well as preparation method and application thereof
JPS6169855A (en) Composition for resin molding
JP2000204137A (en) Resin molded product, resin molded article and their production
JPH1036520A (en) Production of molded article by automatic pressure gelling technique
JP2003206372A (en) Method for producing syntactic foam
JP2006315374A (en) Manufacturing method of bathtub
JPH04175333A (en) Epoxy resin composition for resin mold and resin mold obtained therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14