JP2012153768A - Method for manufacturing thermosetting resin molded product - Google Patents

Method for manufacturing thermosetting resin molded product Download PDF

Info

Publication number
JP2012153768A
JP2012153768A JP2011012360A JP2011012360A JP2012153768A JP 2012153768 A JP2012153768 A JP 2012153768A JP 2011012360 A JP2011012360 A JP 2011012360A JP 2011012360 A JP2011012360 A JP 2011012360A JP 2012153768 A JP2012153768 A JP 2012153768A
Authority
JP
Japan
Prior art keywords
thermosetting resin
temperature
heating
curing agent
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012360A
Other languages
Japanese (ja)
Other versions
JP5536685B2 (en
Inventor
Taro Ishido
太郎 石堂
Hidemi Ibi
秀実 揖斐
Seishi Morita
清史 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011012360A priority Critical patent/JP5536685B2/en
Publication of JP2012153768A publication Critical patent/JP2012153768A/en
Application granted granted Critical
Publication of JP5536685B2 publication Critical patent/JP5536685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermosetting resin molded product for controlling generation of bubbles capable of securing productivity.SOLUTION: The method for manufacturing a thermosetting resin molded product, which is cast molded a thermosetting resin composition containing a thermosetting resin and a curing agent, includes steps of: injecting the thermosetting resin composition into a mold and heating and holding the thermosetting resin composition in a first temperature region in which a vapor pressure of the curing agent is 0.05-0.5 mmHg; heating and holding the thermosetting resin composition in a second temperature region in which a vapor pressure of the curing agent is 1.0-3.0 mmHg by rising the temperature from the first temperature region; and heating and holding the thermosetting resin composition in the third temperature region in which a vapor pressure of the curing agent is equal to or more than 5.0 mmHg by rising the temperature from the second temperature region.

Description

本発明は、熱硬化性樹脂および揮発性を有する硬化剤を含有する熱硬化性樹脂組成物を注型して成形する熱硬化性樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a thermosetting resin molded article in which a thermosetting resin composition containing a thermosetting resin and a volatile curing agent is cast and molded.

エポキシ樹脂硬化物は一般に、安価で、透明性、電気絶縁性、耐薬品性、耐湿性、接着性等に優れ、経済性と性能のバランスに優れていることから、電気絶縁材料、半導体装置材料、接着材料、塗料材料等の様々な分野に用いられている。   Epoxy resin cured products are generally inexpensive, have excellent transparency, electrical insulation, chemical resistance, moisture resistance, adhesion, etc., and have a good balance between economy and performance. It is used in various fields such as adhesive materials and paint materials.

中でも酸無水物硬化剤を用いたエポキシ樹脂硬化物は、透明性に優れ、硬化時の高温や硬化後の環境から受ける高温により着色しにくいことから成形等に広く用いられている。   Among these, epoxy resin cured products using acid anhydride curing agents are widely used for molding and the like because they are excellent in transparency and are difficult to be colored due to the high temperature during curing and the high temperature received from the environment after curing.

例えば、酸無水物硬化剤を用いたエポキシ樹脂成形品としては、発光ダイオード(LED)の発光素子のような光半導体を保護するための光半導体封止材料を挙げることができる(特許文献1参照)。   For example, as an epoxy resin molded product using an acid anhydride curing agent, an optical semiconductor sealing material for protecting an optical semiconductor such as a light emitting element of a light emitting diode (LED) can be cited (see Patent Document 1). ).

特許文献1には、酸無水物硬化剤を用いたエポキシ樹脂組成物に硬化促進剤として第4級アンモニウム塩を用いると、150℃以下の硬化温度においてほとんど変色のない透明性に優れる硬化物を与えることが記載されている。   In Patent Document 1, when a quaternary ammonium salt is used as a curing accelerator in an epoxy resin composition using an acid anhydride curing agent, a cured product excellent in transparency having almost no discoloration at a curing temperature of 150 ° C. or lower is disclosed. It is described to give.

また、100〜120℃の低温領域でも硬化促進剤の配合量を増やすことにより30〜60分程度の短時間で金型からの離型が可能であり、硬化物も変色のない透明品が得られることが記載されている。   In addition, by increasing the blending amount of the curing accelerator even in a low temperature range of 100 to 120 ° C., the mold can be released from the mold in a short time of about 30 to 60 minutes, and a cured product with no discoloration can be obtained. It is described that

特許第2534642号公報Japanese Patent No. 2534642

しかしながら、酸無水物硬化剤を用いたエポキシ樹脂成形品は、エポキシ樹脂成形品の寸法が比較的大きくなると、気泡が発生しやすくなる。   However, an epoxy resin molded product using an acid anhydride curing agent tends to generate bubbles when the size of the epoxy resin molded product is relatively large.

すなわち、特許文献1はLED等の光半導体の封止に関するものであり、エポキシ樹脂成形品の寸法が小さく形状も比較的単純である。具体的には、特許文献1のような寸法の小さいエポキシ樹脂成形品では硬化温度が100℃以上で成形しても問題ないとされている。ところが、住宅設備部材等のように寸法が大きくなると、硬化の初期段階においては酸無水物硬化剤の揮発による気泡の発生が問題となる。また、加熱による酸無水物硬化剤の揮発だけではなく、硬化反応が発熱反応であり、硬化中に多量の発熱を生じるため樹脂の反応熱による揮発をも抑制する必要がある。   That is, Patent Document 1 relates to sealing of an optical semiconductor such as an LED, and the epoxy resin molded product has a small size and a relatively simple shape. Specifically, an epoxy resin molded product having a small size as disclosed in Patent Document 1 has no problem even if it is molded at a curing temperature of 100 ° C. or higher. However, when the dimensions are increased as in the case of a housing equipment member or the like, generation of bubbles due to volatilization of the acid anhydride curing agent becomes a problem in the initial stage of curing. In addition to the volatilization of the acid anhydride curing agent due to heating, the curing reaction is an exothermic reaction, and a large amount of heat is generated during curing, so it is necessary to suppress volatilization due to the reaction heat of the resin.

特に、住宅設備部材等の製品は寸法が大きく形状も複雑なものが多いため、一旦気泡が発生すると抜けにくく、また硬化反応の反応熱も篭りやすいので、気泡の問題が発生しやすくなる。   In particular, since many products such as housing equipment members are large in size and complicated in shape, once bubbles are generated, they are difficult to be removed, and the reaction heat of the curing reaction is easily generated, so that the problem of bubbles is likely to occur.

そのため、酸無水物硬化剤の揮発による気泡の発生を抑制するためには、できる限り低温で穏和な条件で成形する必要がある。   Therefore, in order to suppress generation | occurrence | production of the bubble by volatilization of an acid anhydride hardening | curing agent, it is necessary to shape | mold on mild conditions as low as possible.

しかしながら、低温成形では、脱型が可能で耐熱性も高いエポキシ樹脂成形品を得ることが困難になり、あるいは成形に非常に長時間を要することになる。そのため、生産性が低下してしまう。   However, in low temperature molding, it becomes difficult to obtain an epoxy resin molded product that can be removed from the mold and has high heat resistance, or it takes a very long time for molding. Therefore, productivity will fall.

本発明は、以上の通りの事情に鑑みてなされたものであり、気泡の発生を抑制し、生産性も確保することができる熱硬化性樹脂成形品の製造方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and it is an object of the present invention to provide a method for producing a thermosetting resin molded product that can suppress the generation of bubbles and ensure productivity. .

上記の課題を解決するために、本発明の熱硬化性樹脂成形品の製造方法は、熱硬化性樹脂および揮発性を有する硬化剤を含有する熱硬化性樹脂組成物を注型して成形する熱硬化性樹脂成形品の製造方法において、金型に前記熱硬化性樹脂組成物を注入し、硬化剤の蒸気圧が0.05〜0.5mmHgとなる第1の温度領域に熱硬化性樹脂組成物を加熱保持する工程と、第1の温度領域から昇温して硬化剤の蒸気圧が1.0〜3.0mmHgとなる第2の温度領域に熱硬化性樹脂組成物を加熱保持する工程と、第2の温度領域から昇温して硬化剤の蒸気圧が5.0mmHg以上となる第3の温度領域に熱硬化性樹脂組成物を加熱保持する工程とを含むことを特徴としている。   In order to solve the above problems, the method for producing a thermosetting resin molded article of the present invention casts and molds a thermosetting resin composition containing a thermosetting resin and a volatile curing agent. In the method for producing a thermosetting resin molded article, the thermosetting resin composition is injected into a mold, and the thermosetting resin is in a first temperature range in which the vapor pressure of the curing agent is 0.05 to 0.5 mmHg. The process of heating and holding the composition, and heating and holding the thermosetting resin composition in the second temperature range where the vapor pressure of the curing agent is 1.0 to 3.0 mmHg by raising the temperature from the first temperature range. And a step of heating and holding the thermosetting resin composition in a third temperature region in which the vapor pressure of the curing agent is 5.0 mmHg or higher by raising the temperature from the second temperature region. .

この熱硬化性樹脂成形品の製造方法においては、第1の温度領域に加熱保持する時間が5.0〜15分、第2の温度領域に加熱保持する時間が2.5〜15分であることが好ましい。   In this method for producing a thermosetting resin molded product, the time for heating and holding in the first temperature range is 5.0 to 15 minutes, and the time for heating and holding in the second temperature range is 2.5 to 15 minutes. It is preferable.

この熱硬化性樹脂成形品の製造方法においては、硬化剤は、酸無水物硬化剤であり、前記熱硬化性樹脂は、エポキシ樹脂であることが好ましい。   In this method for producing a thermosetting resin molded article, the curing agent is preferably an acid anhydride curing agent, and the thermosetting resin is preferably an epoxy resin.

本発明の熱硬化性樹脂成形品の製造方法によれば、気泡の発生を抑制し、生産性も確保することができる。   According to the method for producing a thermosetting resin molded article of the present invention, the generation of bubbles can be suppressed and the productivity can be ensured.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

本発明の熱硬化性樹脂成形品の製造方法は、住宅設備部材等の比較的大きく形状も比較的複雑になることが多い熱硬化性樹脂成形品を注型により成形する際に、気泡を発生させず、かつ生産性を落とさないようにすることを考慮して完成したものである。これを実現するために、注型による成形の初期段階において2段階の低温加熱(第1の温度領域、第2の温度領域)を行うことを特徴としている。   The method for producing a thermosetting resin molded product of the present invention generates bubbles when molding a thermosetting resin molded product, such as a housing equipment member, which is relatively large and often complicated in shape by casting. It has been completed in consideration of preventing the loss of productivity and reducing productivity. In order to realize this, it is characterized by performing two-stage low-temperature heating (first temperature region and second temperature region) in the initial stage of molding by casting.

具体的には、ある程度まで反応が進行して3次元架橋が形成されるまでは比較的低温にて加熱し、気泡の発生および残留を抑制するようにしている。そして気泡がない状態である程度まで反応が進行した後は、十分な硬化を短時間で行うために高温での加熱を行う(第3の温度領域)。   Specifically, heating is performed at a relatively low temperature until the reaction proceeds to a certain extent and three-dimensional crosslinking is formed, thereby suppressing the generation and remaining of bubbles. Then, after the reaction has progressed to some extent in the absence of bubbles, heating is performed at a high temperature in order to perform sufficient curing in a short time (third temperature region).

本発明の熱硬化性樹脂成形品の製造方法は、以上のような観点に基づいて、第1の温度領域および第2の温度領域での2段階の低温加熱を経て最終的に第3の温度領域において成形を完了するようにしたことを特徴としている。   Based on the above viewpoint, the manufacturing method of the thermosetting resin molded product of the present invention is finally subjected to the third temperature through two-stage low-temperature heating in the first temperature region and the second temperature region. It is characterized in that the molding is completed in the region.

なお、本発明において硬化剤の蒸気圧は、次のようにして測定することができる。蒸気圧は、その物質の温度における液相と平衡状態にある蒸気相の圧力であり、静止法、気体流通法、沸点法、気体分子運動に基づく方法等の公知の蒸気圧測定方法により測定できる。   In the present invention, the vapor pressure of the curing agent can be measured as follows. Vapor pressure is the pressure of the vapor phase in equilibrium with the liquid phase at the temperature of the substance, and can be measured by a known vapor pressure measurement method such as a static method, a gas flow method, a boiling point method, or a method based on gas molecular motion. .

静止法は、密閉容器中からサンプリングし、試料温度を一定にしておき、その温度における平衡蒸気圧を、圧力計を用いて直接測定する方法である。   The static method is a method in which the sample temperature is sampled from a sealed container, the sample temperature is kept constant, and the equilibrium vapor pressure at that temperature is directly measured using a pressure gauge.

気体流通法は、一定温度の液体試料と接触するようにキャリアーガスを流して試料の蒸気を飽和させて蒸気密度(蒸発量/体積)を測定し、蒸気が理想気体の法則に従うと仮定して蒸気圧を求める方法である。   In the gas flow method, a carrier gas is made to contact a liquid sample at a constant temperature to saturate the vapor of the sample and measure the vapor density (evaporation volume / volume), assuming that the vapor follows the ideal gas law. This is a method for obtaining the vapor pressure.

沸点法は、種々の圧力における沸点を測定することにより蒸気圧曲線を得る方法である。
これらの測定方法は、併用することもできる。また、蒸気圧が測定限界を超えて低い場合は、測定可能領域の結果をグラフ化して、外挿した値を採用することができる。さらに、測定結果をClapeyron−Clausiusの式に当てはめて補外数値を求める等の手段を取ることは、正確な蒸気圧を知るために有効である。
The boiling point method is a method for obtaining a vapor pressure curve by measuring boiling points at various pressures.
These measuring methods can be used in combination. Further, when the vapor pressure is low beyond the measurement limit, the result of the measurable region can be graphed and an extrapolated value can be adopted. Furthermore, taking a measure such as applying the measurement result to the Clapeyron-Clauus equation to obtain an extrapolation value is effective for obtaining an accurate vapor pressure.

以下に、本発明の熱硬化性樹脂成形品の製造方法を具体的に説明する。   Below, the manufacturing method of the thermosetting resin molded product of this invention is demonstrated concretely.

本発明の熱硬化性樹脂成形品の製造方法は、熱硬化性樹脂および揮発性を有する硬化剤を含有する熱硬化性樹脂組成物を注型して成形するものである。   The method for producing a thermosetting resin molded article of the present invention is to cast and mold a thermosetting resin composition containing a thermosetting resin and a volatile curing agent.

熱硬化性樹脂組成物としては、液状の熱硬化性樹脂と揮発性を有する硬化剤とを含有し、これらを加熱して硬化するものを好適に用いることができる。すなわち、成形時の加熱温度により硬化剤が揮発し、気泡を発生しやすくなるものに好適に用いることができる。   As the thermosetting resin composition, a liquid thermosetting resin and a volatile curing agent which are cured by heating them can be suitably used. That is, it can be suitably used for those in which the curing agent volatilizes due to the heating temperature during molding and bubbles are easily generated.

なお、「揮発性を有する」硬化剤とは、成形時の加熱温度において揮発性を有する意味であり、本発明では常温(25℃)では固形であるが成形時の加熱温度において液状になり揮発性を有するようになる硬化剤を用いることもできる。   The “volatile” curing agent means that it is volatile at the heating temperature at the time of molding. In the present invention, it is solid at room temperature (25 ° C.) but becomes liquid at the heating temperature at the time of molding. It is also possible to use a curing agent that comes to have properties.

熱硬化性樹脂/硬化剤の組み合わせとして、具体的には、例えば、エポキシ樹脂/酸無水物硬化剤、エポキシ樹脂/脂肪族アミン硬化剤、エポキシ樹脂/芳香族アミン硬化剤、エポキシ樹脂/脂環族アミン硬化剤等を挙げることができる。   Specific combinations of thermosetting resin / curing agent include, for example, epoxy resin / acid anhydride curing agent, epoxy resin / aliphatic amine curing agent, epoxy resin / aromatic amine curing agent, epoxy resin / alicyclic ring. Group amine curing agents and the like.

これらの中でも、硬化剤は酸無水物硬化剤であり、熱硬化性樹脂はエポキシ樹脂であることが好ましい。このような熱硬化性樹脂組成物を用いると、気泡発生の抑制と生産性確保の両立に、後述する第1〜第3の温度領域による3段階の加熱が特に有効になる。   Among these, the curing agent is preferably an acid anhydride curing agent, and the thermosetting resin is preferably an epoxy resin. When such a thermosetting resin composition is used, the three-stage heating in the first to third temperature regions described later is particularly effective for suppressing the generation of bubbles and ensuring the productivity.

エポキシ樹脂としては、特に限定されないが、例えば、常温(25℃)で液状のエポキシ樹脂を用いることができる。   Although it does not specifically limit as an epoxy resin, For example, a liquid epoxy resin can be used at normal temperature (25 degreeC).

常温で液状のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the epoxy resin that is liquid at room temperature include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, and alicyclic epoxy resins. These may be used alone or in combination of two or more.

また、これらの常温で液状のエポキシ樹脂に、常温で固形のエポキシ樹脂、例えば、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、高分子量のビスフェノールA型エポキシ樹脂等を溶解したエポキシ樹脂を用いることもできる。   Further, an epoxy resin in which a normal epoxy resin such as a phenol novolac type epoxy resin, a triphenolmethane type epoxy resin, a high molecular weight bisphenol A type epoxy resin or the like is dissolved in the normal temperature liquid epoxy resin is used. You can also

これらの中でも、酸無水物硬化剤との併用や熱硬化性樹脂成形品の物性等を考慮すると、常温で液状のビスフェノール型エポキシ樹脂が好ましい。例えば、エポキシ当量150〜500g/eq、粘度1000〜50000mPa・s(25℃)のビスフェノール型エポキシ樹脂を用いることができる。   Among these, in consideration of combined use with an acid anhydride curing agent, physical properties of a thermosetting resin molded article, and the like, a bisphenol type epoxy resin that is liquid at room temperature is preferable. For example, a bisphenol type epoxy resin having an epoxy equivalent of 150 to 500 g / eq and a viscosity of 1000 to 50000 mPa · s (25 ° C.) can be used.

酸無水物硬化剤としては、例えば、脂環式酸無水物、脂肪族酸無水物等を用いることができる。   As the acid anhydride curing agent, for example, an alicyclic acid anhydride, an aliphatic acid anhydride, or the like can be used.

脂環式酸無水物としては、例えば、テトラヒドロ無水フタル酸、4−メチルテトラヒドロ無水フタル酸等のメチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸等のメチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the alicyclic acid anhydride include methyltetrahydrophthalic anhydride such as tetrahydrophthalic anhydride and 4-methyltetrahydrophthalic anhydride, and methylhexahydroanhydride such as hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride. Phthalic acid, methyl hymic anhydride and the like can be used. These may be used alone or in combination of two or more.

脂肪族酸無水物としては、例えば、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   As the aliphatic acid anhydride, for example, dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride and the like can be used. These may be used alone or in combination of two or more.

これらの中でも、耐熱性および機械的強度等を考慮すると、脂環式酸無水物が好ましい。脂環式酸無水物としては、例えば、酸無水物当量が150〜400g/eqのものを用いることができる。   Among these, alicyclic acid anhydrides are preferable in consideration of heat resistance and mechanical strength. As the alicyclic acid anhydride, for example, one having an acid anhydride equivalent of 150 to 400 g / eq can be used.

酸無水物硬化剤の配合量は、好ましくは、無水物基とエポキシ基との当量比(酸無水物当量/エポキシ基当量)が0.5〜1.5となる量であり、より好ましくは当量比が0.7〜1.2となる量である。当量比がこのような範囲内であると、硬化不足を抑制し、熱硬化性樹脂成形品の耐熱性や強度を高めることができる。   The compounding amount of the acid anhydride curing agent is preferably such that the equivalent ratio of the anhydride group to the epoxy group (acid anhydride equivalent / epoxy group equivalent) is 0.5 to 1.5, more preferably. This is an amount that provides an equivalent ratio of 0.7 to 1.2. When the equivalent ratio is within such a range, insufficient curing can be suppressed and the heat resistance and strength of the thermosetting resin molded product can be increased.

熱硬化性樹脂組成物には、エポキシ樹脂と酸無水物硬化剤との反応を促進する硬化促進剤を配合することができる。硬化促進剤としては、例えば、2−エチル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2−フェニル−4−ヒドロキシメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4、5−ジヒドロキシメチルイミダゾール等のイミダゾール類、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、2−(ジメチルアミノメチル)フェノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン類、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1,5−ジアザビシクロ[4.3.0]ノネン−5、5,6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のシクロアミジン類、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   The thermosetting resin composition can contain a curing accelerator that promotes the reaction between the epoxy resin and the acid anhydride curing agent. Examples of the curing accelerator include 2-ethyl-4-methylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 4-methyl. Imidazole, 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxy Imidazoles such as methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, triethylamine, triethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine, dimethylamino ester , Tertiary amines such as 2- (dimethylaminomethyl) phenol, tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-diazabicyclo [4. 3.0] cycloamidines such as nonene-5,5,6-dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7, quaternary ammonium salts such as tetrabutylammonium bromide, etc. be able to. These may be used alone or in combination of two or more.

硬化促進剤の配合量は、エポキシ樹脂と酸無水物硬化剤との合計量に対して0.3〜5.0質量%が好ましい。硬化促進剤の配合量をこのような範囲内にすると、硬化反応を促進しつつ硬化反応の過剰な進行も抑制することができる。   As for the compounding quantity of a hardening accelerator, 0.3-5.0 mass% is preferable with respect to the total amount of an epoxy resin and an acid anhydride hardening | curing agent. When the blending amount of the curing accelerator is within such a range, it is possible to suppress excessive progress of the curing reaction while promoting the curing reaction.

熱硬化性樹脂組成物には、本発明の効果を損なわない範囲内において、さらに他の成分を配合することができる。このような他の成分としては、例えば、無機充填剤、着色剤等を用いることができる。   The thermosetting resin composition may further contain other components within a range not impairing the effects of the present invention. As such other components, for example, inorganic fillers, colorants and the like can be used.

熱硬化性樹脂組成物は、次のようにして調製することができる。例えば、熱硬化性樹脂、硬化剤、および必要に応じて他の成分を配合し、これらを混合する。混合する方法は特に限定されないが、例えば、適当な容器中にて攪拌棒、へら等により手で混練する方法、プラネタリーミキサー、ビーズミル、3本ロール等の混練機により混練する方法等を適宜に用いることができる。   The thermosetting resin composition can be prepared as follows. For example, a thermosetting resin, a curing agent, and other components as necessary are blended and mixed. The method of mixing is not particularly limited, but for example, a method of kneading by hand with a stirring bar, spatula, etc. in a suitable container, a method of kneading with a kneader such as a planetary mixer, a bead mill, or a three-roller, etc. Can be used.

これらを混合後、真空脱泡して熱硬化性樹脂組成物を調製することができる。なお、これらの混合物は、保管時における硬化反応を抑制するために必要ならば、熱硬化性樹脂と硬化剤とを分けた2液以上の状態で保管し、使用時に混合して用いる。   After mixing these, vacuum defoaming can be performed to prepare a thermosetting resin composition. These mixtures are stored in a state of two or more liquids in which a thermosetting resin and a curing agent are separated if necessary for suppressing a curing reaction during storage, and are mixed and used at the time of use.

このようにして調製される熱硬化性樹脂組成物は、粘度が1000〜100000mPa・s(25℃)であることが好ましく、1000〜50000mPa・s(25℃)がより好ましい。このような粘度範囲にすると、注型成形における作業性等を良好なものとすることができる。   The thermosetting resin composition thus prepared preferably has a viscosity of 1000 to 100,000 mPa · s (25 ° C.), more preferably 1000 to 50000 mPa · s (25 ° C.). If it is in such a viscosity range, workability | operativity etc. in cast molding can be made favorable.

熱硬化性樹脂組成物の成形は、注型用の金型を用いて行うことができる。例えば、金型の上型と下型との間にキャビティを形成し、キャビティに注入ノズル等により熱硬化性樹脂組成物を注入する。そして金型に設けた加熱装置によりキャビティ内の熱硬化性樹脂組成物を加熱し、成形後は脱型して成形品を取り出すことにより成形を行うことができる。   The thermosetting resin composition can be molded using a casting mold. For example, a cavity is formed between the upper mold and the lower mold of the mold, and the thermosetting resin composition is injected into the cavity with an injection nozzle or the like. And the thermosetting resin composition in a cavity is heated with the heating apparatus provided in the metal mold | die, after shaping | molding, it can shape | mold by taking out and taking out a molded article.

本発明の熱硬化性樹脂成形品の製造方法は、気泡が発生しやすく生産性も要求される、寸法が比較的大きく形状も複雑な用途に好適である。   The method for producing a thermosetting resin molded article of the present invention is suitable for applications in which bubbles are easily generated and productivity is required, and the dimensions are relatively large and the shape is complicated.

具体的には、1回の注型量が数百グラムから数十キログラムの比較的大型の熱硬化性樹脂成形品に好適であり、例えば、住宅設備部材に好適である。   Specifically, it is suitable for a relatively large thermosetting resin molded product having a single casting amount of several hundred grams to several tens of kilograms, for example, suitable for a housing equipment member.

住宅設備部材としては、例えば、キッチンカウンター、キッチンシンク、洗面カウンター、洗面ボウル、洗面キャビネット、浴槽、浴槽蓋、浴槽パン、浴室床、浴室壁、浴室天井、浴室カウンター、便器、手洗いボウル等を挙げることができる。   Examples of housing equipment include kitchen counters, kitchen sinks, wash counters, wash bowls, wash cabinets, bathtubs, bathtub lids, bathtub pans, bathroom floors, bathroom walls, bathroom ceilings, bathroom counters, toilet bowls, hand-washing bowls, etc. be able to.

本発明の熱硬化性樹脂成形品の製造方法では、以上に説明したような熱硬化性樹脂組成物を金型に注入し、硬化剤の蒸気圧が0.05〜0.5mmHg、好ましくは0.1〜0.3mmHgとなる第1の温度領域に熱硬化性樹脂組成物を加熱保持する。このような第1の温度領域に熱硬化性樹脂組成物を加熱保持することで、気泡の発生を抑制することができる。   In the method for producing a thermosetting resin molded article of the present invention, the thermosetting resin composition as described above is injected into a mold, and the vapor pressure of the curing agent is 0.05 to 0.5 mmHg, preferably 0. The thermosetting resin composition is heated and held in a first temperature range of 1 to 0.3 mmHg. Generation | occurrence | production of a bubble can be suppressed by heating and holding a thermosetting resin composition in such a 1st temperature range.

すなわち、この第1の温度領域に熱硬化性樹脂組成物を加熱保持することで、急激な昇温による硬化剤の蒸気圧の急激な上昇や反応熱による気泡の発生を抑制する。そして熱硬化性樹脂組成物の3次元架橋をある程度まで進行させることによっても気泡の発生を抑制する。   That is, by holding the thermosetting resin composition in this first temperature range, rapid increase in the vapor pressure of the curing agent due to rapid temperature rise and generation of bubbles due to reaction heat are suppressed. And generation | occurrence | production of a bubble is also suppressed by advancing the three-dimensional bridge | crosslinking of a thermosetting resin composition to some extent.

この第1の温度領域に熱硬化性樹脂組成物を加熱保持せずに直接に後述の第2の温度領域以上の温度まで上昇させると、急激な昇温等に起因して気泡が発生しやすくなる。   If the thermosetting resin composition is directly heated to a temperature equal to or higher than the second temperature range described later without holding the thermosetting resin composition in the first temperature range, bubbles are likely to be generated due to rapid temperature rise or the like. Become.

また、第1の温度領域に加熱保持したまま成形を試みても、硬化が十分に進行せず熱硬化性樹脂成形品を得ることができないか、あるいはガラス転移温度が非常に低いものとなってしまう。   Further, even if molding is attempted while being heated and held in the first temperature range, curing does not proceed sufficiently and a thermosetting resin molded product cannot be obtained, or the glass transition temperature becomes very low. End up.

硬化剤として酸無水物硬化剤、特にテトラヒドロ無水フタル酸等の脂環式酸無水物を用いた場合には、第1の温度領域は、例えば、50〜70℃程度である。   When an acid anhydride curing agent, particularly an alicyclic acid anhydride such as tetrahydrophthalic anhydride is used as the curing agent, the first temperature range is, for example, about 50 to 70 ° C.

第1の温度領域に加熱保持する時間は、5.0〜15分が好ましく、5.0〜10分がより好ましい。第1の温度領域に加熱保持する時間をこのような範囲内にすることで、気泡の発生を抑制し、生産性も確保することができる。   The time for heating and holding in the first temperature region is preferably 5.0 to 15 minutes, and more preferably 5.0 to 10 minutes. By setting the time for heating and holding in the first temperature range to be within such a range, generation of bubbles can be suppressed and productivity can be ensured.

なお、第1の温度領域に加熱保持する際に、第1の温度領域の範囲内において2段階以上の加熱温度を設定し、全体として上記のような時間の範囲内にて加熱保持するようにしてもよい。   When heating and holding in the first temperature range, two or more stages of heating temperature are set within the range of the first temperature range, and the heating is held within the above time range as a whole. May be.

次に、本発明の熱硬化性樹脂成形品の製造方法では、第1の温度領域から昇温して硬化剤の蒸気圧が1.0〜3.0mmHgとなる第2の温度領域に熱硬化性樹脂組成物を加熱保持する。このような第2の温度領域に熱硬化性樹脂組成物を加熱保持することで、気泡の発生を抑制することができる。   Next, in the method for producing a thermosetting resin molded product of the present invention, the temperature is raised from the first temperature range and the curing temperature is set to a second temperature range where the vapor pressure of the curing agent is 1.0 to 3.0 mmHg. The heat-resistant resin composition is heated and held. Generation | occurrence | production of a bubble can be suppressed by heating and holding a thermosetting resin composition in such a 2nd temperature range.

すなわち、この第2の温度領域に熱硬化性樹脂組成物を加熱保持することで、第1の温度領域から後述する第3の温度領域への急激な昇温による硬化剤の蒸気圧の急激な上昇や反応熱による気泡の発生を抑制する。そして加熱保持することにより熱硬化性樹脂組成物の3次元架橋をさらに進行させて、後述する第3の温度領域への昇温による気泡の発生を抑制する。   That is, by keeping the thermosetting resin composition heated in this second temperature range, the vapor pressure of the curing agent is rapidly increased due to a rapid temperature rise from the first temperature range to the third temperature range described later. Suppresses the generation of bubbles due to rising and reaction heat. And by carrying out heat holding, the three-dimensional bridge | crosslinking of a thermosetting resin composition is advanced further, and generation | occurrence | production of the bubble by the temperature rising to the 3rd temperature range mentioned later is suppressed.

この第2の温度領域に熱硬化性樹脂組成物を加熱保持せずに直接に第1の温度領域から後述の第3の温度領域以上の温度まで上昇させると、急激な昇温により気泡が発生する。   When the thermosetting resin composition is directly heated from the first temperature region to a temperature equal to or higher than the third temperature region described later without holding the thermosetting resin composition in the second temperature region, bubbles are generated due to rapid temperature increase. To do.

また、第2の温度領域に加熱保持したままそれ以上昇温せずに成形を試みても、硬化が十分に進行せず熱硬化性樹脂成形品を得ることができないか、あるいはガラス転移温度が非常に低いものとなってしまう。例えば、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂、硬化剤としてテトラヒドロ無水フタル酸等の脂環式酸無水物を用いた熱硬化性樹脂組成物では、ガラス転移温度が100℃以上の熱硬化性樹脂成形品を得ることが困難になる場合が多い。   Further, even if the molding is attempted without increasing the temperature while being heated and held in the second temperature range, the curing does not proceed sufficiently and a thermosetting resin molded product cannot be obtained, or the glass transition temperature is low. It will be very low. For example, in a thermosetting resin composition using a bisphenol A type epoxy resin as a thermosetting resin and an alicyclic acid anhydride such as tetrahydrophthalic anhydride as a curing agent, the thermosetting resin having a glass transition temperature of 100 ° C. or higher. It is often difficult to obtain a resin molded product.

硬化剤として酸無水物硬化剤、特にテトラヒドロ無水フタル酸等の脂環式酸無水物を用いた場合には、第2の温度領域は、例えば、85〜90℃程度である。   When an acid anhydride curing agent, particularly an alicyclic acid anhydride such as tetrahydrophthalic anhydride, is used as the curing agent, the second temperature range is, for example, about 85 to 90 ° C.

第2の温度領域に加熱保持する時間は、2.5〜15分が好ましく、3.0〜8.0分がより好ましい。第2の温度領域に加熱保持する時間をこのような範囲内にすることで、気泡の発生を抑制し、生産性も確保することができる。   The time for heating and holding in the second temperature region is preferably 2.5 to 15 minutes, and more preferably 3.0 to 8.0 minutes. By setting the time for heating and holding in the second temperature range to be within such a range, the generation of bubbles can be suppressed and the productivity can be secured.

なお、第2の温度領域に加熱保持する際に、第2の温度領域の範囲内において2段階以上の加熱温度を設定し、全体として上記のような時間の範囲内にて加熱保持するようにしてもよい。   When heating and holding in the second temperature range, two or more heating temperatures are set within the range of the second temperature range, and the heating and holding is performed within the above time range as a whole. May be.

次に、本発明の熱硬化性樹脂成形品の製造方法では、第2の温度領域から昇温して硬化剤の蒸気圧が5.0mmHg以上、好ましくは8.0mmHg以上となる第3の温度領域に熱硬化性樹脂組成物を加熱保持する。このような第3の温度領域に熱硬化性樹脂組成物を加熱保持することで、熱硬化性樹脂組成物の硬化を短時間で十分に進行させることができる。   Next, in the method for producing a thermosetting resin molded article of the present invention, the third temperature at which the vapor pressure of the curing agent is increased to 5.0 mmHg or more, preferably 8.0 mmHg or more by raising the temperature from the second temperature range. The thermosetting resin composition is heated and held in the region. By heating and holding the thermosetting resin composition in such a third temperature range, the thermosetting resin composition can be sufficiently cured in a short time.

すなわち、第1および第2の温度領域に熱硬化性樹脂組成物を加熱保持する工程を経ることで、気泡が発生しない状態で3次元架橋が相当程度まで進行しているため、第2の温度領域から第3の温度領域に昇温しても、硬化剤の蒸気圧の上昇や反応熱による気泡の発生を抑制することができる。   That is, since the three-dimensional crosslinking has progressed to a considerable extent in a state where no bubbles are generated by passing the step of heating and holding the thermosetting resin composition in the first and second temperature regions, the second temperature Even if the temperature is increased from the region to the third temperature region, it is possible to suppress an increase in the vapor pressure of the curing agent and generation of bubbles due to reaction heat.

この第3の温度領域に熱硬化性樹脂組成物を加熱保持して硬化することで、硬化が十分に進行し、十分に高いガラス転移温度を持つ熱硬化性樹脂成形品を得ることができる。例えば、熱硬化性樹脂としてビスフェノールA型エポキシ樹脂、硬化剤としてテトラヒドロ無水フタル酸等の脂環式酸無水物を用いた熱硬化性樹脂組成物では、ガラス転移温度が100℃以上、好ましくは110℃以上の熱硬化性樹脂成形品を得ることができる。   When the thermosetting resin composition is heated and held in this third temperature region and cured, the curing proceeds sufficiently and a thermosetting resin molded article having a sufficiently high glass transition temperature can be obtained. For example, in a thermosetting resin composition using a bisphenol A type epoxy resin as a thermosetting resin and an alicyclic acid anhydride such as tetrahydrophthalic anhydride as a curing agent, the glass transition temperature is 100 ° C. or higher, preferably 110 A thermosetting resin molded article having a temperature of 0 ° C. or higher can be obtained.

硬化剤として酸無水物硬化剤、特にテトラヒドロ無水フタル酸等の脂環式酸無水物を用いた場合には、第3の温度領域は、例えば100℃以上、好ましくは110〜125℃程度である。   When an acid anhydride curing agent, particularly an alicyclic acid anhydride such as tetrahydrophthalic anhydride, is used as the curing agent, the third temperature range is, for example, 100 ° C. or higher, preferably about 110 to 125 ° C. .

第3の温度領域に加熱保持する時間は、20〜100分が好ましく、30〜60分がより好ましい。第3の温度領域に加熱保持する時間をこのような範囲内にすることで、十分に高いガラス転移温度が得られる程度まで硬化を進行させ、かつ生産性も確保することができる。   The time for heating and holding in the third temperature range is preferably 20 to 100 minutes, more preferably 30 to 60 minutes. By setting the time for heating and holding in the third temperature range to be within such a range, curing can be advanced to such an extent that a sufficiently high glass transition temperature is obtained, and productivity can be secured.

なお、第3の温度領域に加熱保持する際に、第3の温度領域の範囲内において2段階以上の加熱温度を設定して、全体として上記のような時間の範囲内にて加熱保持するようにしてもよい。   In addition, when heating and holding in the third temperature range, two or more heating temperatures are set within the range of the third temperature range, and the heating is held within the time range as described above as a whole. It may be.

本発明の熱硬化性樹脂成形品の製造方法における第1の温度領域から第3の温度領域までの多段階の加熱による全体の硬化時間は、45〜120分が好ましく、45〜90分がより好ましい。全体の硬化時間をこのような範囲内にすることで、生産性を確保することができる。   In the method for producing a thermosetting resin molded article of the present invention, the entire curing time by multi-stage heating from the first temperature region to the third temperature region is preferably 45 to 120 minutes, more preferably 45 to 90 minutes. preferable. Productivity can be secured by setting the entire curing time within such a range.

なお、金型のキャビティ内にて第1の温度領域から第3の温度領域までの多段階の加熱による硬化、成形を行い、脱型した後に、さらに所定の温度に加熱保持して後硬化を行うようにしてもよい。   It should be noted that curing and molding are performed by multi-step heating from the first temperature range to the third temperature range in the mold cavity, and after demolding, the mold is further heated and held at a predetermined temperature for post-curing. You may make it perform.

本発明の熱硬化性樹脂成形品の製造方法によれば、気泡がなく外観が良好で、耐熱性も有する熱硬化性樹脂成形品を得ることができる。   According to the method for producing a thermosetting resin molded article of the present invention, it is possible to obtain a thermosetting resin molded article having no bubbles and good appearance and having heat resistance.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

エポキシ樹脂として液状のビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON(登録商標)840S」、エポキシ当量180〜190g/eq、粘度9000 〜11000mPa(25℃))を用いた。   As the epoxy resin, a liquid bisphenol A type epoxy resin (“EPICLON (registered trademark) 840S” manufactured by DIC Corporation, epoxy equivalent of 180 to 190 g / eq, viscosity of 9000 to 11000 mPa (25 ° C.)) was used.

酸無水物硬化剤としてテトラヒドロ無水フタル酸(DIC株式会社製「EPICLON(登録商標)B−570H」、酸無水物当量166g/eq、粘度40mPa・s(25℃))を用いた。   Tetrahydrophthalic anhydride (“EPICLON (registered trademark) B-570H” manufactured by DIC Corporation, acid anhydride equivalent 166 g / eq, viscosity 40 mPa · s (25 ° C.)) was used as the acid anhydride curing agent.

硬化促進剤として2−エチル−4−メチルイミダゾール(四国化成工業株式会社製「キュアゾール(登録商標)2E4MZ」)を用いた。   As a curing accelerator, 2-ethyl-4-methylimidazole (“Cureazole (registered trademark) 2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used.

エポキシ樹脂100質量部、酸無水物硬化剤100質量部、硬化促進剤2質量部を配合し、これらを混合後、真空脱泡してエポキシ樹脂組成物を調製した。   An epoxy resin composition was prepared by blending 100 parts by mass of an epoxy resin, 100 parts by mass of an acid anhydride curing agent, and 2 parts by mass of a curing accelerator, and mixing them, followed by vacuum degassing.

注型用の金型として、サイズが30cm×20cm×深さ15cmの楕円形のシンクのミニチュアが形成される上型および下型により構成されるキャビティを有する金型を用いた。この金型にエポキシ樹脂組成物を注型し、表2、3に示す条件にて加熱し成形を行った。   As a casting mold, a mold having a cavity constituted by an upper mold and a lower mold in which an elliptical sink miniature having a size of 30 cm × 20 cm × depth 15 cm is formed was used. The epoxy resin composition was cast into this mold and molded by heating under the conditions shown in Tables 2 and 3.

なお、酸無水物硬化剤について、静止法により蒸気圧を測定した。25℃〜120℃の蒸気圧を表1に示す。

Figure 2012153768
以上のようにして成形したエポキシ樹脂成形品について次の評価を行った。 Note that the vapor pressure of the acid anhydride curing agent was measured by a static method. Table 1 shows the vapor pressure of 25 ° C to 120 ° C.
Figure 2012153768
The following evaluation was performed about the epoxy resin molded product shape | molded as mentioned above.

[気泡の評価]
エポキシ樹脂成形品ついて気泡の有無を目視で確認し、次の基準により評価した。
○:成形品に気泡は全く見られず、あるいは数個のみでほとんど観察されなかった。
△:成形品に目視で観察できる気泡が若干見られた。
×:成形品に目視で観察できる気泡が多数見られた。
[Evaluation of bubbles]
The epoxy resin molded product was visually checked for the presence of bubbles and evaluated according to the following criteria.
◯: No bubbles were observed in the molded product, or only a few were observed.
(Triangle | delta): The bubble which can be visually observed in the molded article was seen a little.
X: Many air bubbles which can be observed visually in a molded article were seen.

[ガラス転移温度]
エポキシ樹脂成形品の硬化のレベルを評価するため、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会杜製「EXSTAR DSC6000」)を用いて示差走査熱量測定によりガラス転移温度を測定した。
[Glass-transition temperature]
In order to evaluate the curing level of the epoxy resin molded product, the glass transition temperature was measured by differential scanning calorimetry using a differential scanning calorimeter (“EXSTAR DSC6000” manufactured by SII NanoTechnology Co., Ltd.).

評価結果を表2、表3に示す。

Figure 2012153768
Figure 2012153768
The evaluation results are shown in Tables 2 and 3.
Figure 2012153768
Figure 2012153768

表3より、比較例1、2に示されるように、1段階目の加熱で90℃以上(硬化剤蒸気圧0.5mmHg以上)とすると、エポキシ樹脂成形品に気泡が発生してしまう。   From Table 3, as shown in Comparative Examples 1 and 2, if the heating at the first stage is 90 ° C. or higher (hardening agent vapor pressure of 0.5 mmHg or higher), bubbles are generated in the epoxy resin molded product.

そこで、気泡の発生を避けるため、比較例3に示されるように1段階目の加熱を70℃(硬化剤蒸気圧0.5mmHg以下)とし、昇温せずにそのまま70℃とすると、気泡の発生は避けられるが、反応が穏やかに進行するためにエポキシ樹脂組成物の硬化が不十分となり、ガラス転移点の測定ができなかった。   Therefore, in order to avoid the generation of bubbles, as shown in Comparative Example 3, when heating at the first stage is set to 70 ° C. (hardening agent vapor pressure of 0.5 mmHg or less) and the temperature is set to 70 ° C. without increasing the temperature, Although generation | occurrence | production is avoided, since reaction advances moderately, hardening of an epoxy resin composition became inadequate and the glass transition point was not able to be measured.

そこで、気泡の発生を避けつつ硬化を十分にするため、比較例4に示されるように1段階目の加熱を70℃/20分(硬化剤蒸気圧0.5mmHg以下)、2段階目の加熱を120℃/26分(硬化剤蒸気圧13mmHg)とすると、エポキシ樹脂成形品に気泡が発生してしまう。これは、1段階目での反応の進行が僅かであり3次元架橋がほとんど形成されていないにも関わらず、2段階目で120℃まで昇温したためと考えられる。   Therefore, in order to sufficiently cure while avoiding the generation of bubbles, as shown in Comparative Example 4, the first stage heating is 70 ° C./20 minutes (hardening agent vapor pressure 0.5 mmHg or less), the second stage heating. Is 120 ° C./26 minutes (curing agent vapor pressure 13 mmHg), bubbles are generated in the epoxy resin molded product. This is presumably because the temperature was raised to 120 ° C. in the second stage even though the reaction progressed slightly in the first stage and almost no three-dimensional crosslinking was formed.

そこで、確実に気泡の発生を避けつつ硬化を十分にするため、比較例5に示されるように1段階目の加熱を70℃/20分(硬化剤蒸気圧0.5mmHg以下)、2段階目の加熱を85℃/26分(硬化剤蒸気圧1.5mmHg)とすると、気泡の発生は避けられたもののガラス転移点が75℃と低く、所定の時間内では要求される硬化レベルを満たさなかった。比較例6に示されるように1段階目の加熱を70℃/20分(硬化剤蒸気圧0.5mmHg)、2段階目の加熱を90℃/26分(硬化剤蒸気圧2.5mmHg)としても同様であった。   Therefore, in order to ensure sufficient hardening while avoiding the generation of bubbles, as shown in Comparative Example 5, the first stage heating is 70 ° C./20 minutes (hardening agent vapor pressure 0.5 mmHg or less), the second stage. When heating at 85 ° C./26 minutes (curing agent vapor pressure 1.5 mmHg), although the generation of bubbles was avoided, the glass transition point was as low as 75 ° C., and the required curing level was not satisfied within a predetermined time. It was. As shown in Comparative Example 6, the first stage heating was 70 ° C./20 minutes (curing agent vapor pressure 0.5 mmHg), and the second stage heating was 90 ° C./26 minutes (hardening agent vapor pressure 2.5 mmHg). Was the same.

以上の点を前提として、気泡の発生を避けつつ硬化を十分にするために、3段階以上の加熱を試みた。表2より、実施例1に示されるように、1段階目の加熱を70℃/7分(硬化剤蒸気圧0.5mmHg以下)、2段階目の加熱を90℃/3.5分(硬化剤蒸気圧2.5mmHg)とすることで、徐々に反応を進行させつつある程度まで3次元架橋を形成し、さらに3段階目の加熱を110℃/3.5分、4段階目の加熱を120℃/32分(硬化剤蒸気圧13mmHg)とすることで、エポキシ樹脂を十分に硬化させることができた。   On the premise of the above points, three or more stages of heating were attempted in order to sufficiently cure while avoiding the generation of bubbles. From Table 2, as shown in Example 1, heating at the first stage is 70 ° C./7 minutes (hardening agent vapor pressure 0.5 mmHg or less), heating at the second stage is 90 ° C./3.5 minutes (curing) By setting the agent vapor pressure to 2.5 mmHg), a three-dimensional cross-linking is formed to some extent while the reaction is proceeding gradually, and further, the third stage heating is 110 ° C./3.5 minutes, and the fourth stage heating is 120 degrees. By setting the temperature to 32 ° C./32 minutes (curing agent vapor pressure 13 mmHg), the epoxy resin could be sufficiently cured.

実施例2に示されるように、実施例1よりも低温からの加熱としたが、90℃での加熱時間を実施例1よりも長くすることで、110℃での加熱を省略して120℃とし、実施例1と同様に気泡がなく十分に硬化したエポキシ樹脂成形品を得ることができた。   As shown in Example 2, the heating was performed at a temperature lower than that of Example 1, but the heating time at 90 ° C. was set longer than that of Example 1, thereby omitting the heating at 110 ° C. to 120 ° C. In the same manner as in Example 1, a sufficiently cured epoxy resin molded product without bubbles was obtained.

実施例3に示されるように、初期の加熱は実施例1と同様にしつつ、最高加熱温度を110℃として成形条件を簡素化しても、実施例1と同様に気泡がなく十分に硬化したエポキシ樹脂成形品を得ることができた。   As shown in Example 3, while the initial heating is the same as in Example 1, even if the maximum heating temperature is 110 ° C. and the molding conditions are simplified, there is no air bubble as in Example 1, and the epoxy is sufficiently cured. A resin molded product could be obtained.

実施例4に示されるように、実施例3から2段階目の加熱を85℃(硬化剤蒸気圧1.5mmHg)に変更しても気泡の発生は抑制された。   As shown in Example 4, even if the second stage heating from Example 3 was changed to 85 ° C. (curing agent vapor pressure 1.5 mmHg), the generation of bubbles was suppressed.

実施例5に示されるように、実施例3から最高加熱温度を100℃に変更しても、ガラス転移温度に低下が見られたものの硬化したエポキシ樹脂成形品が得られ、気泡の発生も抑制された。   As shown in Example 5, even when the maximum heating temperature was changed to 100 ° C. from Example 3, a cured epoxy resin molded product was obtained although a decrease in the glass transition temperature was observed, and the generation of bubbles was also suppressed. It was done.

なお、表2、表3における気泡の評価では、実施例1〜5においては気泡は全くもしくは殆ど発生せず全て○の評価であり、比較例1、2、4においては気泡が多数発生して全て×の評価であり、前記の△に相当する結果はなかった。   In the evaluation of bubbles in Tables 2 and 3, no or almost no bubbles were generated in Examples 1 to 5, and all were evaluated as ◯. In Comparative Examples 1, 2, and 4, many bubbles were generated. All were evaluated as x, and there was no result corresponding to the above Δ.

以上より、硬化剤の蒸気圧が0.05〜0.5mmHgとなる第1の温度領域に熱硬化性樹脂組成物を加熱保持する工程と、第1の温度領域から昇温して硬化剤の蒸気圧が1.0〜3.0mmHgとなる第2の温度領域に熱硬化性樹脂組成物を加熱保持する工程と、第2の温度領域から昇温して硬化剤の蒸気圧が5.0mmHg以上となる第3の温度領域に熱硬化性樹脂組成物を加熱保持する工程とを含むことにより、気泡の発生を抑制し、生産性も確保することができた。   From the above, the step of heating and holding the thermosetting resin composition in the first temperature region where the vapor pressure of the curing agent is 0.05 to 0.5 mmHg, and the temperature of the curing agent by raising the temperature from the first temperature region A step of heating and holding the thermosetting resin composition in a second temperature range where the vapor pressure is 1.0 to 3.0 mmHg, and a temperature rise from the second temperature range to set the vapor pressure of the curing agent to 5.0 mmHg By including the step of heating and holding the thermosetting resin composition in the third temperature region as described above, it was possible to suppress the generation of bubbles and ensure productivity.

Claims (3)

熱硬化性樹脂および揮発性を有する硬化剤を含有する熱硬化性樹脂組成物を注型して成形する熱硬化性樹脂成形品の製造方法において、金型に前記熱硬化性樹脂組成物を注入し、前記硬化剤の蒸気圧が0.05〜0.5mmHgとなる第1の温度領域に前記熱硬化性樹脂組成物を加熱保持する工程と、前記第1の温度領域から昇温して前記硬化剤の蒸気圧が1.0〜3.0mmHgとなる第2の温度領域に前記熱硬化性樹脂組成物を加熱保持する工程と、前記第2の温度領域から昇温して前記硬化剤の蒸気圧が5.0mmHg以上となる第3の温度領域に前記熱硬化性樹脂組成物を加熱保持する工程とを含むことを特徴とする熱硬化性樹脂成形品の製造方法。   In a method for producing a thermosetting resin molded article, in which a thermosetting resin composition containing a thermosetting resin and a volatile curing agent is cast and molded, the thermosetting resin composition is injected into a mold. And heating and holding the thermosetting resin composition in a first temperature range where the vapor pressure of the curing agent is 0.05 to 0.5 mmHg, and raising the temperature from the first temperature range to A step of heating and holding the thermosetting resin composition in a second temperature region where the vapor pressure of the curing agent is 1.0 to 3.0 mmHg; and a temperature rise from the second temperature region to And a step of heating and holding the thermosetting resin composition in a third temperature range where the vapor pressure is 5.0 mmHg or more. 前記第1の温度領域に加熱保持する時間が5.0〜15分、前記第2の温度領域に加熱保持する時間が2.5〜15分であることを特徴とする請求項1に記載の熱硬化性樹脂成形品の製造方法。   The time for heating and holding in the first temperature region is 5.0 to 15 minutes, and the time for heating and holding in the second temperature region is 2.5 to 15 minutes. Manufacturing method of thermosetting resin molded product. 前記硬化剤は、酸無水物硬化剤であり、前記熱硬化性樹脂は、エポキシ樹脂であることを特徴とする請求項1または2に記載の熱硬化性樹脂成形品の製造方法。   The method for producing a thermosetting resin molded article according to claim 1, wherein the curing agent is an acid anhydride curing agent, and the thermosetting resin is an epoxy resin.
JP2011012360A 2011-01-24 2011-01-24 Method for producing thermosetting resin molded product Expired - Fee Related JP5536685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012360A JP5536685B2 (en) 2011-01-24 2011-01-24 Method for producing thermosetting resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012360A JP5536685B2 (en) 2011-01-24 2011-01-24 Method for producing thermosetting resin molded product

Publications (2)

Publication Number Publication Date
JP2012153768A true JP2012153768A (en) 2012-08-16
JP5536685B2 JP5536685B2 (en) 2014-07-02

Family

ID=46835849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012360A Expired - Fee Related JP5536685B2 (en) 2011-01-24 2011-01-24 Method for producing thermosetting resin molded product

Country Status (1)

Country Link
JP (1) JP5536685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031888A (en) * 2022-06-24 2022-09-09 广东电网有限责任公司 Detection device and detection method for lowest air pressure of resin castable in vacuum defoaming

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571765A (en) * 1978-11-24 1980-05-30 Hitachi Chem Co Ltd Method of forming coating film
JPH0253850A (en) * 1988-08-18 1990-02-22 Nippon Kogyo Kk Epoxy resin composition
JPH0455426A (en) * 1990-06-23 1992-02-24 Hitachi Ltd Epoxy resin composition for coil insulation and coil molded with the same composition
JP2003266453A (en) * 2002-03-19 2003-09-24 Toshiba Corp Manufacturing method for epoxy cast article
JP2004269645A (en) * 2003-03-07 2004-09-30 Toto Ltd Resin molded article and method for producing the same
JP2007021824A (en) * 2005-07-14 2007-02-01 Toshiba Corp Epoxy resin cast product, its manufacturing method and gas insulating device equipped with epoxy resin cast product
JP2008274167A (en) * 2007-05-02 2008-11-13 Yamaguchi Univ Phenol novolak resin and method for producing the same, curing agent for epoxy resin and cured product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571765A (en) * 1978-11-24 1980-05-30 Hitachi Chem Co Ltd Method of forming coating film
JPH0253850A (en) * 1988-08-18 1990-02-22 Nippon Kogyo Kk Epoxy resin composition
JPH0455426A (en) * 1990-06-23 1992-02-24 Hitachi Ltd Epoxy resin composition for coil insulation and coil molded with the same composition
JP2003266453A (en) * 2002-03-19 2003-09-24 Toshiba Corp Manufacturing method for epoxy cast article
JP2004269645A (en) * 2003-03-07 2004-09-30 Toto Ltd Resin molded article and method for producing the same
JP2007021824A (en) * 2005-07-14 2007-02-01 Toshiba Corp Epoxy resin cast product, its manufacturing method and gas insulating device equipped with epoxy resin cast product
JP2008274167A (en) * 2007-05-02 2008-11-13 Yamaguchi Univ Phenol novolak resin and method for producing the same, curing agent for epoxy resin and cured product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031888A (en) * 2022-06-24 2022-09-09 广东电网有限责任公司 Detection device and detection method for lowest air pressure of resin castable in vacuum defoaming
CN115031888B (en) * 2022-06-24 2023-04-25 广东电网有限责任公司 Detection device and detection method for vacuum defoamation minimum air pressure of resin castable

Also Published As

Publication number Publication date
JP5536685B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6461475B2 (en) Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same
EP2647667B1 (en) Curable epoxy resin composition
JP6216345B2 (en) Resin composition
JP2014173063A (en) Method for producing electric/electronic component and electric/electronic component
CN105647114A (en) Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same
JP6217099B2 (en) Epoxy resin molding material, molded coil manufacturing method, and molded coil
JP2012059731A (en) Resin composition for casting thermistor sensor and thermistor sensor
JP2018530628A (en) Thermosetting epoxy resin composition for the manufacture of outdoor products and products obtained therefrom
TW201217421A (en) Production method for curing articles and curing articles
JP2017501265A (en) Curable composition
JP5536685B2 (en) Method for producing thermosetting resin molded product
CN105602256A (en) Low-compression-deformation two-component addition-type low-hardness silicone rubber and preparation method thereof
JP2013216871A (en) Epoxy resin curing accelerator
TW201811914A (en) Optical semiconductor resin composition and its manufacturing method, and optical semiconductor device characterized by comprising a resin epoxy resin including solid epoxy resin, liquid acid anhydride, curing accelerator, and carbon black having an average primary particle diameter of 1 to 50 nm
JP6213099B2 (en) Epoxy resin molding material, molded coil manufacturing method, and molded coil
JP2018002923A (en) Method for producing electric/electronic component, epoxy resin composition for injection molding, and electric/electronic component
JP6491459B2 (en) Thermistor sensor casting resin composition and thermistor sensor
JP2013118338A (en) Resin composition for film capacitor and film capacitor
JP2016169301A (en) Resin composition for casting thermistor sensor and thermistor sensor
JP2017095548A (en) Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same
JP6318518B2 (en) Epoxy resin molding material, molded coil manufacturing method, and molded coil
KR20130094970A (en) Ultrahigh heat resistant epoxy resin composition
TW201710319A (en) Bismaleimide resins for one drop fill sealant application
JP2000239489A (en) Liquid epoxy resin composition for sealing material and cured product thereof
CN107090060B (en) One kind can dual cure modified acrylonitrile-butadiene-styrene copolymer and its preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

LAPS Cancellation because of no payment of annual fees