USRE28498E - Method of producing a thick-walled cured plastics moulding - Google Patents

Method of producing a thick-walled cured plastics moulding Download PDF

Info

Publication number
USRE28498E
USRE28498E US44610474A USRE28498E US RE28498 E USRE28498 E US RE28498E US 44610474 A US44610474 A US 44610474A US RE28498 E USRE28498 E US RE28498E
Authority
US
United States
Prior art keywords
resin composition
temperature
mold
casting
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH938569A external-priority patent/CH509139A/en
Application filed filed Critical
Priority to US44610474 priority Critical patent/USRE28498E/en
Application granted granted Critical
Publication of USRE28498E publication Critical patent/USRE28498E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/40Compensating volume change, e.g. retraction
    • B29C39/405Compensating volume change, e.g. retraction by applying pressure to the casting composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material

Definitions

  • ABSTRACT Thick-walled, cured plastics mouldings are produced by pouring a preheated, highly reactive liquid casting resin composition. which is capable of setting within a period of three to sixty minutes, such as an epoxide resin composition, into a preheated mould substantially without the application of pressure so as substantially to fill the mould, the temperature of the mould being sufficient to initiate curing of the resin composition and the temperature of the composition being at least 10% below the temperature of the mould, said temperatures being measured in degrees centigrade; further composition is supplied to the mould with the application of gentle pressure to compensate for shrinkage until the composition has set. whereafter the set moulding can be removed from the mould.
  • the specified temperature difference between the mould and the composition ensure that relatively minor temperature gradients arise and enables good quality mouldings of any desired size to be made.
  • This invention relates to a method of producing a thick-walled cured plastics moulding, particularly electrical insulators, by casting.
  • the casting resin composition used in a casting process is poured into a mould substantially without the application of pressure and allowed to set in the mould. Since gravity is usually sufficient for filling the mould and the casting resin composition is not exposed to elevated pressure while it sets, as is the case in all pressing processes, casting can be performed with the aid of very simple and cheap equipment. The more expensive machines (usually hydraulic presses or injection moulding machines) required for pressing processes are unnecessary for casting, and tooling up is therefore also correspondingly cheaper and simpler.
  • casting processes hitherto proposed when compared with pressing processes have the drawback that the duration of the working cycle is very much longer. In casting processes, the fact must be accepted that the moulds remain filled for many hours.
  • a method of producing a thick-walled cured plastics moulding wherein a preheated, highly reactive liquid casting resin composition which is capable of setting with a period of three to sixty minutes is poured into a preheated mould substantially without the application of pressure so as substantially to fill the mould, the temperature of the mould being sufficient to initiate curing of the resin composition and the temperature of the composition being at least below the temperature of the mould, said temperatures being measured in degrees centigrade, and wherein further composition is supplied to the mould with the application of gentle.
  • the thick-walled mouldings which are produced by the present method are understood to be mouldings which comprise at least one compact zone having a volume sufficiently large to contain an inscribed sphere of 4 cm. diameter.
  • the highly reactive casting resin composition preferably comprises an epoxide resin which may include a mineral fi ler. such as silica or alumina.
  • the specified difference between the temperature of themould and the pouring temperature of the casting resin composition is capable of ensuring that relatively only minor temperature gradients will arise in different parts of the casting during the process of gelling and setting.
  • the two temperatures may be so chosen that the temperature in the center of the casting or of the casting composition will not reach the temperature level of the casting composition at the mould wall until the casting has sufficiently set to enable it to be removed from the mould. If at the same time care is taken to see that during the gelling phase more resin material can continue to flow into the mould to compensate shrinkage, castings having low internal stresses will be obtained. Mouldings that are free from cracks and internal cavities and that are of excellent quality can be produced.
  • the continued replenishing of casting resin composition during the gelling phase can be ensured for instance by keeping the temperature of the casting composition in the sprue as nearly as possible at the original temperature of the casting resin composition.
  • a plunger or a connection to a gas pipe may be provided to apply gentle pressure on the mass in the sprue.
  • the times the castings remain in the moulds are substantially shorter, and the risk of cavity formation inside the casting is eliminated. Furthermore, internal stresses are reduced and the shaped bodies produced have good mechanical strengths, there being no risk of crack formation and the mechanical properties of castings produced in the same way being less liable to fluctuate, due to the lower temperature gradients in the casting composition at different points inside the mould during curing.
  • the present method is suitable for the production of large mouldings, particularly of mouldings which comprise parts that vary considerably in cross-section or shape, such as insulators, in the form of solid bodies with thin fins or sheds.
  • a casting mould 1 for casting a finned solid electrical insulator the mould having a sprue 2 and a venting riser 3.
  • the sprue 2 is connected to a cylinder 4 into which a plunger 5 for the generation of after-pressure is insertable after the mould has been filled with a casting resin composition.
  • the riser 3 is provided with a closure 6, preferably constructed in the manner of a pressure valve.
  • the casting mould is provided with locating means 7a, 7b and 8 for fittings 9 that are to be embedded in the casting.
  • EXAMPLE 1 1,500 parts by weight of a mineral filler obtainable in the trade under the name quartz meal K8" were mixed at a temperature of 120 to 130 C. with 750 parts by weight of a polyglycidyl ether resin which was solid at room temperature and had an epoxide content of 2.6 epoxide equivalents per kg, the resin having been produced by reacting epichlorohydrin with bis-(4- hydroxyphenol)-dimethylmethane in the presence of alkali. The mixture was deaerated in the vacuum generated by a water jet pump.
  • the insulator thus produced was bubble-free and had a flawless surface.
  • the breaking strength measured according to DIN 48, 136 (Deutsche lndustrie Normen) proved to have the high value of 1700 kg.
  • EXAMPLE 2 160 parts by weight of dibutyl phthalate and 1,200 parts by weight of the aluminum oxide trihydrate that is available in the trade under the name DT 080 and produced by Ciba A.G. of Basel, Switzerland, were mixed at a temperature of 40 to 50 C. with 640 parts by weight of a polyglycidyl ether resin which was liquid at room temperature, had an epoxide content of 5.4 epoxide equivalents per kg. and had a viscosity of about 10,000 cp., measured at 25 C. (the resin having been produced by reacting epichlorohydrin with bis-(4- hydroxyphenyl)-dimethylmethane).
  • the mixture was deaerated in the vacuum generated by a water jet pump and then mixed with 60 parts by weight of triethylene tetramine as a hardener and again briefly evacuated.
  • the resultant casting resin composition was poured at a temperature of 40 to 50 C. into the mould which is shown in the drawing, and which had been preheated to 90 C. It was allowed to set with the application of after-pressure. After 10 minutes, the casting could be removed from the mould.
  • the insulator thus produced notwithstanding the highly exothermic curing reaction, was surprisingly free from bubbles and had a flawless surface. After having cooled to room temperature, the insulator had a breaking strength according to DIN 48,136 of about 1,000
  • EXAMPLE 3 At a temperature 80 to 90 C., 375 parts by weight of hexahydrophthalic anhydride as a hardener and 1,650 parts by weight of the aluminium oxide trihydrate described in Example 2 as a filler was added to 375 parts of a diglycidyl-3,4-tetrahydrophthalate which was liquid at room temperature and had an epoxide content of 6.3 "I03 epoxide equivalents per kg. and a viscosity at 25 C. of 450 to 550 cp.
  • As an accelerator 23 parts by weight of a mixture consisting of 21 parts by weight ofa sodium alcoholate obtained by dissolving 0.82 part of sodium metal at 120 C.
  • a method of producing a cured plastic molding which is comprised of the steps of providing a mold having an inlet gate and having a volume of at least several hundred cubic centimeters and at least one compact zone with a volume sufficiently large to contain an inscribed sphere of at least four centimeters and which will produce a thick walled molding, providing a highly reactive crosslinkable resin composition which is capable of setting within a period of from three to sixty minutes and has a setting temperature at which said setting takes place and which has an exothermic curing reaction, preheating the mold to a temperature sufficient to initiate curing of said resin composition, and pouring the resin composition into the mold to form a casting, the improvements comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Thick-walled, cured plastics mouldings are produced by pouring a preheated, highly reactive liquid casting resin composition, which is capable of setting within a period of three to sixty minutes, such as an epoxide resin composition, into a preheated mould substantially without the application of pressure so as substantially to fill the mould, the temperature of the mould being sufficient to initiate curing of the resin composition and the temperature of the composition being at least 10% below the temperature of the mould, said temperatures being measured in degrees centigrade; further composition is supplied to the mould with the application of gentle pressure to compensate for shrinkage until the composition has set, whereafter the set moulding can be removed from the mould. The specified temperature difference between the mould and the composition ensure that relatively minor temperature gradients arise and enables good quality mouldings of any desired size to be made.

Description

United Stat Kusenberg et al.
ssued July 29, 1975 Switzerland {73] Assignee: Cibs-Geigy AG, Basel, Switzerland (22] Filed: Feb. 26, 1974 [21] Appl. No.: 446,104
Related U.S. Patent Documents Reissue of:
[64] Patent No.: 3,777,000
issued: Dec. 4, 1973 Appl. No.2 273,171 Filed: July I9, 1972 U.S. Applications: Continuation of Ser. No. 45.!23. June 10. 1970.
abandoned.
1301 Foreign Application Priority om June [9. 1969 Switzerland 9385/69 [52] U.S. Cl 264/327: 264/328 [51] int. Cl. 829g 7/00 [58] Field oi Search 264/327. 328
[56] References Cited UNITED STATES PATENTS 2.738.551 3/1956 Howald 264/328 3.33750 9/l965 Firth 264/328 X 2.372.2l4 3/1968 Murcey 264/25 t sos.44s 4/1910 Zijp 264/328 OTHER PUBLICATIONS Lekutherm X20. Publication of Farbenfabriken Bayer AG Leverkusen June 1960. p. ii & l2'relied on.
Primary Examiner-Richard R. Kucia Attorney, Agent. or Firm-Wenderoth. Lind & Ponack [5 7] ABSTRACT Thick-walled, cured plastics mouldings are produced by pouring a preheated, highly reactive liquid casting resin composition. which is capable of setting within a period of three to sixty minutes, such as an epoxide resin composition, into a preheated mould substantially without the application of pressure so as substantially to fill the mould, the temperature of the mould being sufficient to initiate curing of the resin composition and the temperature of the composition being at least 10% below the temperature of the mould, said temperatures being measured in degrees centigrade; further composition is supplied to the mould with the application of gentle pressure to compensate for shrinkage until the composition has set. whereafter the set moulding can be removed from the mould. The specified temperature difference between the mould and the composition ensure that relatively minor temperature gradients arise and enables good quality mouldings of any desired size to be made.
Reiaued July 29, 1975 INVENTORS EUGEN KUSENBERG ERNST HU BLER HANS "RUDOLF AUS DER AU OTTO ERN ST M/Zdgfia/ ATTORNEYS METHOD OF PRODUCING A THICK-WALLED CURED PLASTICS MOULDING I Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This is a continuation of application Ser. No. 45,l23, filed June I0, 1970 and now abandoned.
This invention relates to a method of producing a thick-walled cured plastics moulding, particularly electrical insulators, by casting.
Contrary to the processes of die pressing, extruding and injection moulding the casting resin composition used in a casting process is poured into a mould substantially without the application of pressure and allowed to set in the mould. Since gravity is usually sufficient for filling the mould and the casting resin composition is not exposed to elevated pressure while it sets, as is the case in all pressing processes, casting can be performed with the aid of very simple and cheap equipment. The more expensive machines (usually hydraulic presses or injection moulding machines) required for pressing processes are unnecessary for casting, and tooling up is therefore also correspondingly cheaper and simpler.
These advantages of casting over pressing are particularly pronounced when heavy mouldings are required or when a relatively small number of similar mouldings are to be produced and the cast of the moulds and machines would constitute a particularly high proportion of the production cost.
On the other hand, casting processes hitherto proposed when compared with pressing processes have the drawback that the duration of the working cycle is very much longer. In casting processes, the fact must be accepted that the moulds remain filled for many hours.
According to the present invention there is provided a method of producing a thick-walled cured plastics moulding, wherein a preheated, highly reactive liquid casting resin composition which is capable of setting with a period of three to sixty minutes is poured into a preheated mould substantially without the application of pressure so as substantially to fill the mould, the temperature of the mould being sufficient to initiate curing of the resin composition and the temperature of the composition being at least below the temperature of the mould, said temperatures being measured in degrees centigrade, and wherein further composition is supplied to the mould with the application of gentle.
pressure for compensating for shrinkage of the composition until the composition has set, whereafter the set moulding is removed from the mould.
The thick-walled mouldings which are produced by the present method are understood to be mouldings which comprise at least one compact zone having a volume sufficiently large to contain an inscribed sphere of 4 cm. diameter.
Surprisingly it has been found that in practice the present method permits compact bodies of any size and of unexceptionable quality to be produced in times averaging from five to fifteen minutes.
The highly reactive casting resin composition preferably comprises an epoxide resin which may include a mineral fi ler. such as silica or alumina.
There has been a prejudice among persons skilled in the art against the use of particularly highly reactive casting resin compositions because such composii .nsparticularly in large compact masses-are known to become very hot because of their exothermic curing reaction, and in certain circumstances this is liable not only to result in poor quality castings but also to cause carbonization of the casting resin composition itself.
In the present method. the specified difference between the temperature of themould and the pouring temperature of the casting resin composition is capable of ensuring that relatively only minor temperature gradients will arise in different parts of the casting during the process of gelling and setting. The two temperatures may be so chosen that the temperature in the center of the casting or of the casting composition will not reach the temperature level of the casting composition at the mould wall until the casting has sufficiently set to enable it to be removed from the mould. If at the same time care is taken to see that during the gelling phase more resin material can continue to flow into the mould to compensate shrinkage, castings having low internal stresses will be obtained. Mouldings that are free from cracks and internal cavities and that are of excellent quality can be produced. The continued replenishing of casting resin composition during the gelling phase can be ensured for instance by keeping the temperature of the casting composition in the sprue as nearly as possible at the original temperature of the casting resin composition. At the same time, a plunger or a connection to a gas pipe may be provided to apply gentle pressure on the mass in the sprue.
With the present method of casting, the times the castings remain in the moulds are substantially shorter, and the risk of cavity formation inside the casting is eliminated. Furthermore, internal stresses are reduced and the shaped bodies produced have good mechanical strengths, there being no risk of crack formation and the mechanical properties of castings produced in the same way being less liable to fluctuate, due to the lower temperature gradients in the casting composition at different points inside the mould during curing.
The present method is suitable for the production of large mouldings, particularly of mouldings which comprise parts that vary considerably in cross-section or shape, such as insulators, in the form of solid bodies with thin fins or sheds.
In order toenable the invention to be more readily understood, reference will now be made to the accompanying drawing, which illustrates diagrammatically and by way of example a cross-section through a casting mould for use in the method of the present invention.
Referring now to the drawing, there is shown a casting mould 1 for casting a finned solid electrical insulator, the mould having a sprue 2 and a venting riser 3. The sprue 2 is connected to a cylinder 4 into which a plunger 5 for the generation of after-pressure is insertable after the mould has been filled with a casting resin composition. The riser 3 is provided with a closure 6, preferably constructed in the manner of a pressure valve. The casting mould is provided with locating means 7a, 7b and 8 for fittings 9 that are to be embedded in the casting.
The invention will now be further illustrated by the following examples of casting operations usingthe casting mould just described.
EXAMPLE 1 1,500 parts by weight of a mineral filler obtainable in the trade under the name quartz meal K8" were mixed at a temperature of 120 to 130 C. with 750 parts by weight of a polyglycidyl ether resin which was solid at room temperature and had an epoxide content of 2.6 epoxide equivalents per kg, the resin having been produced by reacting epichlorohydrin with bis-(4- hydroxyphenol)-dimethylmethane in the presence of alkali.The mixture was deaerated in the vacuum generated by a water jet pump. After the addition of 225 parts by weight of phthalic anhydride, parts by weight of isomerised methyl tetrahydrophthalic anhydride, 0.33 to 066 part by weight of benzyl dimethy1- amine and up to 0.39 part by weight of tetrabutyltitanate the mixture was again briefly vacuum treated. The resultant casting composition was poured at a temperature of 120 to 130 C. into a 10 kvl insulator mould as shown in the drawing, the mould having been preheated to 160 C. The casting was allowed to gel and set with the application of gentle after-pressure (3 kg./sq. cm.). The casting could be removed from the mould at the end of 10 minutes.
The insulator thus produced was bubble-free and had a flawless surface. The breaking strength measured according to DIN 48, 136 (Deutsche lndustrie Normen) proved to have the high value of 1700 kg.
EXAMPLE 2 160 parts by weight of dibutyl phthalate and 1,200 parts by weight of the aluminum oxide trihydrate that is available in the trade under the name DT 080 and produced by Ciba A.G. of Basel, Switzerland, were mixed at a temperature of 40 to 50 C. with 640 parts by weight of a polyglycidyl ether resin which was liquid at room temperature, had an epoxide content of 5.4 epoxide equivalents per kg. and had a viscosity of about 10,000 cp., measured at 25 C. (the resin having been produced by reacting epichlorohydrin with bis-(4- hydroxyphenyl)-dimethylmethane). The mixture was deaerated in the vacuum generated by a water jet pump and then mixed with 60 parts by weight of triethylene tetramine as a hardener and again briefly evacuated. The resultant casting resin composition was poured at a temperature of 40 to 50 C. into the mould which is shown in the drawing, and which had been preheated to 90 C. It was allowed to set with the application of after-pressure. After 10 minutes, the casting could be removed from the mould.
The insulator thus produced, notwithstanding the highly exothermic curing reaction, was surprisingly free from bubbles and had a flawless surface. After having cooled to room temperature, the insulator had a breaking strength according to DIN 48,136 of about 1,000
EXAMPLE 3 At a temperature 80 to 90 C., 375 parts by weight of hexahydrophthalic anhydride as a hardener and 1,650 parts by weight of the aluminium oxide trihydrate described in Example 2 as a filler was added to 375 parts of a diglycidyl-3,4-tetrahydrophthalate which was liquid at room temperature and had an epoxide content of 6.3 "I03 epoxide equivalents per kg. and a viscosity at 25 C. of 450 to 550 cp. As an accelerator, 23 parts by weight of a mixture consisting of 21 parts by weight ofa sodium alcoholate obtained by dissolving 0.82 part of sodium metal at 120 C. in 100 parts of 2,4- dihydroxyJ-hydroxymethylpentane, and 2 parts by weight of benzyldimethylamine, were added, the mixture being briefly deaerated in the vacuum of a water jet pump and at a temperature of to C., poured into the mould shown in the drawing, which had been preheated to a temperature of 137 C., and in which the composition was allowed to set under gentle afterpressure (3 kgjsq. cm.). The resulting insulator could be taken out of the mould at the end of 5 minutes.
No casting flows were detectable on the insulator thus produced. The breaking strength according to DIN 48, 136 was measured and found to be 1,400 kg., whereas the resistance to an electric arc according to DIN 53,484 attained the highest grade L4. Moreover, the material of this insulator is not easily flammable and can be installed indoors as well as in the open.
We claim:
1. In a method of producing a cured plastic molding which is comprised of the steps of providing a mold having an inlet gate and having a volume of at least several hundred cubic centimeters and at least one compact zone with a volume sufficiently large to contain an inscribed sphere of at least four centimeters and which will produce a thick walled molding, providing a highly reactive crosslinkable resin composition which is capable of setting within a period of from three to sixty minutes and has a setting temperature at which said setting takes place and which has an exothermic curing reaction, preheating the mold to a temperature sufficient to initiate curing of said resin composition, and pouring the resin composition into the mold to form a casting, the improvements comprising:
a. prior to the step of pouring, preheating the resin composition to a pouring temperature at which the resin composition is liquid and which is I: at least 10% 1 from 10-56% below the temperature to which the mold has been preheated, the temperature to which the mold has been preheated and the pouring temperature being so chosen that, at the rate of pouring, the temperature in the center of the resin composition in the mold will not reach the temperature of the resin composition at the mold wall until the casting has sufficiently set to enable it to be removed from the mold,
b. during the pouring step, maintaining the supply of liquid resin composition into the mold during the gelling phase of the resin composition in the mold and maintaining the temperature of the liquid resin composition flowing through the inlet gate of the mold at least approximately at the pouring temperature, and
c. at least from the point of time at which the mold is substantially filled, exerting pressure on the supply of liquid resin composition for supplying the composition with the mold at a pressure sufficient to compensate for shrinkage, whereby only minor temperature gradients arise in different parts of the casting during the gelling and setting of the resin composition, and the casting can be removed from the mold after short periods of time.
2. A method as claimed in claim 1, wherein at the commencement of the pouring operation the tempera- 6 ture of the resin composition is between 18 to 56% casting resin composition is capable of setting in at below the temperature to which the mould has been least ten i Preheated' I 5. A method as claimed in claim 1, wherein the 3. A method as claimed in claim 1, wherein the supply of further liquid resin composition is effected with 5 a pressure of about 3 kg./sq.cm.
[ 4. A method as claimed in claim I, wherein the casting resin composition is capable of setting in at least five minutes]

Claims (3)

1. IN A METHOD OF PRODUCING A CURED PLASTIC MOLDING WHICH IS COMPRISED OF THE STEPS OF POVIDING A MOLD HAVING AN INLET GATE AND HAVING A VOLUME OF AT LEAST SEVERAL HUNDRED CUBIC CENTIMETERS AND AT LEAST ONE COMPACT ZONE WITH A VOLUME SUFFICIENTY LARGE TO CONTAIN AN INSCRIBED SPHERE OF AT LEAST FOUR CENTIMETERS AN WHICH WILL PRODUCE A THICK WALLED MOLDING, PROVIDING A HIGHLY REACTIVE CROSSLINKABLE RESIN COMPOSITION WHICH IS CAPABLE OF SETTING WITHIN A PERIOD OF FROM THREE TO SIXTY MINUTES AND HAS A SETTING TEMPERATURE AT WHICH SAID SETTING TAKES PLACE AND WHICH HAS AN EXOTHERMIC CURING REACTION, PREHEATING THE MOLD TO A TEMPERATURE SUFFICIENT TO INITATE CURING OF SAID RESIN COMPOSITION, AND POURING THE RESIN COMPOSITION INTO THE MOLD TO FORM A CASTING, THE IMPROVEMENTS COMPRISING: A. PRIOR TO THE STEP OF POURING, PREHEATING THE RESIN COMPOSITION TO A POURING TEMPERATURE AT WHICH THE RESIN COMPOSITION IS LIQUID AND WHICH IS (AT LEAST 10% ) FROM 10-56 BELOW THE TEMPERATURE TO WHICH THE MOLD HAS BEEN PREHEATED, THE TEMPERATURE TO WHICH THE MOLD HAS BEEN PREHEATED AND THE POURING TEMPERATURE BEING SO CHOSEN THAT, AT THE RATE OF PORING, THE TEMPERATRE IN THE CENTER OF THE RESIN COMPOSITION IN THE MOLD WILL NOT REACH THE TEMPERATURE OF THE RESIN COMPOSITION AT THE MOLD WALL UNTIL THE CASTING HAS SUFFICIENTLY SET TO ENABLE IT TO BE REMOVED FROM THE MOLD, B. DURING THE POURING STEP, MAINTAINING THE SUPPLY OF LIQUID RESIN COMPOSITION INTO THE MOLD DURING THE GELLING PHASE OF THE RESIN COMPOSITION IN THE MOLD AND MAINTAINING THE TEMPERATURE OF THE LIQUID RESIN COMPOSITION FLOWING THROUGH THE INLET GATE OF THE MOLD AT LEAST APPROXIMATELY AT THE POURING TEMPERATURE, AN C. AT LEAST FROM THE POINT OF TIME AT WHICH THE MOLD IS SUBSTANTIALLY FILLED, EXERTING PRESSURE ON THE SUPPLY OF LIQUID RESIN COMPOSITION FOR SUPPLYING THE COMPOSITION WITH THE MOLD AT A PRESSURE SUFFICIENT TO COMPENSATE FOR SHRINKAGE, WHEREBY ONLY MINOR TEMPERATURE GRADIENTS ARISE IN DIFFERENT PARTS OF THE CASTING DURING THE GELLING AN SETTING OF THE RESIN COMPOSITION, AND THE CASTING CAN BE REMOVED FROM THE MOLD AFTER SHORT PERIODS OF TIME
2. A method as claimed in claim 1, wherein at the commencement of the pouring operation the temperature of the resin composition is between 18 to 56% below the temperature to which the mould has been preheated.
3. A method as claimed in claim 1, wherein the supply of further liquid resin composition is effected with a pressure of about 3 kg./sq.cm. ( 4. A method as claimed in claim 1, wherein the casting resin composition is capable of setting in at least ten minutes.) ( 5. A method as claimed in claim 1, wherein the casting resin composition is capable of setting in at least five minutes.)
US44610474 1969-06-19 1974-02-26 Method of producing a thick-walled cured plastics moulding Expired USRE28498E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US44610474 USRE28498E (en) 1969-06-19 1974-02-26 Method of producing a thick-walled cured plastics moulding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH938569A CH509139A (en) 1969-06-19 1969-06-19 Process for the production of hardened plastic moldings
US27317172A 1972-07-19 1972-07-19
US44610474 USRE28498E (en) 1969-06-19 1974-02-26 Method of producing a thick-walled cured plastics moulding

Publications (1)

Publication Number Publication Date
USRE28498E true USRE28498E (en) 1975-07-29

Family

ID=27176213

Family Applications (1)

Application Number Title Priority Date Filing Date
US44610474 Expired USRE28498E (en) 1969-06-19 1974-02-26 Method of producing a thick-walled cured plastics moulding

Country Status (1)

Country Link
US (1) USRE28498E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604089A1 (en) * 1992-12-19 1994-06-29 Ciba-Geigy Ag Curable compositions
WO1996022871A1 (en) * 1995-01-27 1996-08-01 Mcdonnell Douglas Helicopter Company Method of resin transfer molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738551A (en) * 1952-04-26 1956-03-20 Glaskyd Inc Transfer molding method
US3208750A (en) * 1960-03-14 1965-09-28 Voit Rubber Corp Bowling ball with epoxy resin cover
US3372214A (en) * 1963-05-29 1968-03-05 Ncr Co Method of dielectrically heatmolding epoxy resins
US3505448A (en) * 1966-04-29 1970-04-07 Stamicarbon Process for the preparation of polylactams of high molecular weight

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738551A (en) * 1952-04-26 1956-03-20 Glaskyd Inc Transfer molding method
US3208750A (en) * 1960-03-14 1965-09-28 Voit Rubber Corp Bowling ball with epoxy resin cover
US3372214A (en) * 1963-05-29 1968-03-05 Ncr Co Method of dielectrically heatmolding epoxy resins
US3505448A (en) * 1966-04-29 1970-04-07 Stamicarbon Process for the preparation of polylactams of high molecular weight

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lekutherm X20, Publication of Farbenfabriken Bayer AG Leverkusen June 1960, p. 11 & 12 relied on. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604089A1 (en) * 1992-12-19 1994-06-29 Ciba-Geigy Ag Curable compositions
WO1996022871A1 (en) * 1995-01-27 1996-08-01 Mcdonnell Douglas Helicopter Company Method of resin transfer molding

Similar Documents

Publication Publication Date Title
US3777000A (en) Method of producing a thick-walled cured plastics moulding
US5064585A (en) Process of manufacturing a thin-walled plastics moulding
CN111014617B (en) Forming method of thin-wall volute casing with spiral structure based on antigravity casting
USRE28498E (en) Method of producing a thick-walled cured plastics moulding
CN107932810A (en) The modeling method and mold ship bracket of a kind of hull bottom model
US2738551A (en) Transfer molding method
SU843716A3 (en) Method of making articles from thermosetting plastic material
CN107901311A (en) A kind of method being modeled using mold ship bracket system and mold ship bracket system
JPH0755979B2 (en) Epoxy resin composition
CN113043625A (en) RTM (resin transfer molding) process for producing sanitary appliance made of artificial stone light material
DE2017506A1 (en) Process for the production of plastic molded parts
CA2207782A1 (en) Preparation of mouldings by the automatic pressure gelation technique using a one-component composition
CN110591000B (en) High-temperature-resistant die material of poly-dicyclopentadienyl and preparation method thereof
JPH0739464B2 (en) Molding agent for molding
KR950001986B1 (en) Preparation method of artificial marble
CN114654641A (en) Method for realizing surface leveling of polyurethane adhesive encapsulation
CN107987483B (en) Method for quickly manufacturing injection mold
JP2979758B2 (en) Method for producing inorganic silicate foam cylinder
JPS5911370B2 (en) Synthetic resin coated press mold
JPH07256681A (en) Manufacture of thick-walled molded article
JPS6354220A (en) Manufacture of insulating gas charged cast article
SU1103934A1 (en) Method of manufacturing casting moulds by vacuum shaping
JP2010253781A (en) Method of producing bowl-shaped resin molding
KR0136535B1 (en) Production of thermosetting resin
CN112606420A (en) Production method of solid silica gel foam