JP2740990B2 - Low thermal expansion resin composition for pressure molding - Google Patents

Low thermal expansion resin composition for pressure molding

Info

Publication number
JP2740990B2
JP2740990B2 JP3310868A JP31086891A JP2740990B2 JP 2740990 B2 JP2740990 B2 JP 2740990B2 JP 3310868 A JP3310868 A JP 3310868A JP 31086891 A JP31086891 A JP 31086891A JP 2740990 B2 JP2740990 B2 JP 2740990B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
epoxy resin
curing
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3310868A
Other languages
Japanese (ja)
Other versions
JPH05148343A (en
Inventor
正次 尾形
州志 江口
正則 瀬川
裕之 宝蔵寺
博義 小角
泰英 菅原
利昭 石井
達男 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18010359&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2740990(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3310868A priority Critical patent/JP2740990B2/en
Publication of JPH05148343A publication Critical patent/JPH05148343A/en
Application granted granted Critical
Publication of JP2740990B2 publication Critical patent/JP2740990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エポキシ樹脂系の加圧
成形用樹脂組成物に係り、特に、低粘度、高流動性を有
し、成形後の硬化物は金属に匹敵する低熱膨張性を有す
る加圧成形用樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin-based resin composition for pressure molding, and in particular, has a low viscosity and high fluidity, and the cured product after molding has a low thermal expansion comparable to metal. The present invention relates to a resin composition for pressure molding having:

【0002】[0002]

【従来の技術】エポキシ樹脂は接着性、電気特性、機械
特性、耐熱性、耐薬品性等の諸特性が優れていることか
ら、現在、接着剤、積層材、機構部品、構造材料、塗料
などの各種工業分野で利用されている。しかし、エポキ
シ樹脂を始めとする各種有機材料は金属、セラミックス
等の無機材料に比べると、一般に熱膨張係数が1桁ない
し2桁大きい。そのため、無機材料と組み合わせた複合
成形体では熱膨張係数のミスマッチにより、剥離、変
形、クラック、寸法精度、寸法安定性、腐食等様々の不
良を発生する大きな原因になっている。特に、エポキシ
樹脂に各種充填剤を配合した注型または成形用材料はそ
の特性が良好なことから、半導体装置を始め各種電子、
電気機器、事務機器、自動車部品などの封止材料、絶縁
材料、構造機構部品等として広く用いられている。特
に、エポキシ樹脂に各種充填剤を配合した加圧成形用材
料は、充填剤を多量に配合することができ、また、加圧
成形によって樹脂組成物を硬化させるために硬化物物性
が優れていることなどから半導体用封止材料の他、絶
縁、構造、機構部品として種々の分野で利用されてい
る。
2. Description of the Related Art Epoxy resins have excellent properties such as adhesive properties, electrical properties, mechanical properties, heat resistance, chemical resistance, etc., and are currently used for adhesives, laminates, mechanical parts, structural materials, paints, etc. Is used in various industrial fields. However, various organic materials such as epoxy resins generally have a coefficient of thermal expansion one to two orders of magnitude higher than inorganic materials such as metals and ceramics. Therefore, in the composite molded article combined with the inorganic material, the mismatch of the thermal expansion coefficient is a major cause of various defects such as peeling, deformation, cracks, dimensional accuracy, dimensional stability, and corrosion. In particular, casting or molding materials in which various fillers are blended with epoxy resin have good properties, so that various electronic devices including semiconductor devices,
It is widely used as a sealing material, an insulating material, a structural mechanism component and the like for electric equipment, office equipment, automobile parts and the like. In particular, a pressure molding material in which various fillers are blended with an epoxy resin can be blended with a large amount of fillers, and has excellent cured material properties in order to cure the resin composition by pressure molding. For this reason, they are used in various fields as insulation, structures, and mechanical parts in addition to semiconductor sealing materials.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような用
途に用いられる充填剤は、通常それ自体の最大充填分率
が60vol%前後である。そのため、樹脂組成物に充
填剤をそれ以上配合しようとすると、充填材粒子と粒子
の間に空隙が発生してしまい、樹脂組成物は粘度が著し
く上昇し、流動性が急激に低下するという問題がある。
そのため、樹脂組成物の熱膨張係数を金属やセラミック
ス等の無機材料に近付けようとしてもそれにはおのずと
限界があった。そのため、このような材料で金属やセラ
ミックスをインサ−トした成形品を作製した場合、成形
品にクラックが生じたり、温度サイクル性が劣るといっ
た問題があり、成形品の各種信頼性を損なうことがあっ
た。
However, the filler used in such applications usually has a maximum filling fraction of about 60 vol%. Therefore, when the filler is further mixed into the resin composition, voids are generated between the filler particles and the particles, and the viscosity of the resin composition is significantly increased, and the fluidity is rapidly reduced. There is.
For this reason, there is naturally a limit to trying to bring the coefficient of thermal expansion of the resin composition closer to inorganic materials such as metals and ceramics. Therefore, when a molded product in which a metal or ceramic is inserted from such a material is produced, there are problems such as cracks occurring in the molded product and poor temperature cyclability, which may impair various reliability of the molded product. there were.

【0004】本発明の目的は、樹脂組成物の流動性を損
なわずに充填剤を高充填し、従来材に比べて熱膨張係数
が極めて小さな成形品が得られる低熱膨張性加圧成形用
樹脂組成物を提供することにある。
[0004] It is an object of the present invention to provide a low-thermal-expansion pressure-molding resin in which a filler is highly filled without impairing the fluidity of the resin composition, and a molded article having an extremely small thermal expansion coefficient as compared with conventional materials is obtained. It is to provide a composition.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、エポキシ樹脂、硬化剤、硬化促進剤および充
填剤を必須成分とする低熱膨張性加圧成形用樹脂組成物
において、エポキシ樹脂がビフェニ−ル骨格あるいはナ
フタレン骨格を有する2官能型のエポキシ樹脂から選ば
れるものであり硬化剤が分子内にフェノール性水酸基
を2個以上含むフェノール系化合物であり、エポキシ樹
脂及び硬化剤からなる樹脂成分は、150℃における粘
度が3ポイズ以下にあり、充填剤は、その95%以上が
粒径0.1〜100μmの範囲にあると共に平均粒径が
2〜20μmの実質的に球状の溶融シリカ粉末であり、
且つ、この充填剤は、組成物全体に対して80vol%
を超え92.5vol%以下の範囲で配合されて成り、
当該樹脂組成物は、加圧成形過程における最低溶融粘度
が3000ポイズ以下であると共に加圧後は熱膨張係数
が1.0×10~5/℃以下から0.3×10~5/℃の範
囲にあることを特徴とするものである。
Means for Solving the Problems] To achieve the above object the present invention, an epoxy resin, in curing agent, a curing accelerator and a low thermal expansion compacting resin composition for a filler as essential components, an epoxy resin Is the biphenyl skeleton or na
Selected from bifunctional epoxy resins with phthalene skeleton
Is intended to be a phenolic hydroxyl group in the curing agent is a molecule
Is a phenolic compound containing two or more, a resin component composed of an epoxy resin and a curing agent has a viscosity at 150 ° C. of 3 poise or less, and 95% or more of the filler has a particle size of 0.1 to 100 μm. A substantially spherical fused silica powder having a range and an average particle size of 2 to 20 μm,
And, this filler is 80 vol% based on the whole composition.
Made are blended with 92.5Vol% or less in the range beyond the,
The resin composition, pressure is after pressurization with minimum melt viscosity of 3000 poise or less at molding process thermal expansion coefficient of 1.0 × 10 ~ 5 / ℃ the following 0.3 × of 10 ~ 5 / ° C. It is characterized by being within the range.

【0006】化促進剤はエポキシ樹脂及び硬化剤から
なる樹脂成分に0.1〜5wt%の範囲で配合され、加
圧成形温度の150〜200℃で硬化反応を促進させた
場合に、硬化反応の活性化エネルギ−が17kcal/mol
以上の値を示すリン系化合物、含窒素系化合物またはそ
の有機酸塩または有機ボロン塩であるものがよい。
[0006] hardening accelerator is blended in the range of 0.1-5 wt% in the resin component comprising an epoxy resin and a curing agent, when to accelerate the curing reaction at 150 to 200 ° C. of pressing temperature, curing Activation energy of the reaction is 17 kcal / mol
A phosphorus-based compound, a nitrogen-containing compound or an organic acid salt or an organic boron salt thereof having the above values is preferred.

【0007】また、充填剤である溶融シリカは、あらか
じめその表面がシラン、アルミキレ−トまたはチタネ−
ト系のカップリング剤の単分子層以上の厚みで被覆処理
されているものがよい。また、エポキシ樹脂及び硬化剤
からなる樹脂成分の0.1〜20wt%がシリコ−ン系化
合物、ポリブタジエン系ゴム、熱可塑性エラストマ−又
は熱可塑性樹脂で変性または改質されるものがよい。
Further, molten silica mosquito is charged Hamazai in advance the surface silane, Arumikire - bets or titanate -
It is preferable that the coupling agent is coated with a thickness of not less than a monomolecular layer of the coupling agent. Further, it is preferable that 0.1 to 20% by weight of a resin component composed of an epoxy resin and a curing agent is modified or modified with a silicone-based compound, a polybutadiene-based rubber, a thermoplastic elastomer, or a thermoplastic resin.

【0008】[0008]

【作用】本発明において、エポキシ樹脂と硬化剤からな
る樹脂成分の150℃におけ粘度を3ポイズ以下とする
のは、充填剤を多量に配合した樹脂組成物の加圧成形過
程における成形加工性を確保するためである。エポキシ
樹脂として、少なくともビフェニ−ル骨格あるいはナフ
タレン骨格を有する2官能型のエポキシ樹脂から選ばれ
る成分を用いる理由は、これらのエポキシ樹脂は溶融粘
度が低いうえに諸物性が良好な硬化物を得ることができ
るためである。なお、本発明の目的を損なわない範囲に
おいてこれらのエポキシ樹脂以外に各種のエポキシ樹脂
を併用しても良い。また、硬化剤として分子内にフェノ
−ル性水酸基を2個以上含むフェノ−ル系化合物を用い
る理由も、一般に硬化剤としてフェノ−ル化合物を用い
ると諸物性が良好な硬化物が得られるためである。
In the present invention, the viscosity of the resin component comprising the epoxy resin and the curing agent at 150 ° C. of 3 poise or less is determined by the molding processability of the resin composition containing a large amount of filler in the pressure molding process. This is to ensure. As the epoxy resin, small and Mobi phenylene - reason for using components selected from Le skeleton or bifunctional epoxy resin having a naphthalene skeleton, these epoxy resins have good curing product physical properties on top a low melt viscosity Is obtained. In addition, various epoxy resins may be used in addition to these epoxy resins as long as the object of the present invention is not impaired. The reason for using a phenolic compound containing two or more phenolic hydroxyl groups in the molecule as a curing agent is also because a phenol compound is generally used as a curing agent to obtain a cured product having good physical properties. It is.

【0009】充填材としてその95重量%以上が粒径
0.1〜100μmの範囲にあり、かつ、平均粒径が2
〜20μmの実質的に球状の粉末を使用する理由は、こ
のような充填材はその最大充填分率が高いため、樹脂組
成物に高充填した場合に粘度上昇や流動性の低下を起し
にくいためである。特に、粒度分布をRRS粒度線図
(粉体工学ハンドブック、p.51〜52、朝倉書店(196
5))にプロットした場合に、分布が直線性を示し、その
勾配nが0.6〜1.0の範囲の値を示す、換言する
と、粒度分布が広い充填剤は充填剤自体の最大充填分率
が90%以上の高い値を示し、樹脂組成物の粘度上昇、
流動性の低下が起こりにくく、本発明の目的を達成する
のに有利である。このような充填剤としては、溶融シリ
カ、アルミナ、ジルコニア、ガラスの他ポリイミド、エ
ポキシ樹脂、フェノ−ル樹脂等のいわゆるポリマ−ビ−
ズ等種々の充填剤を用いることができるが、樹脂組成物
の熱膨張係数を小さくするためには特に溶融シリカを用
いることが望ましい。
At least 95% by weight of the filler has a particle size in the range of 0.1 to 100 μm and an average particle size of 2 to 100 μm.
The reason for using a substantially spherical powder having a particle size of about 20 μm is that such a filler has a high maximum filling fraction, so that it is unlikely to cause an increase in viscosity or a decrease in fluidity when the resin composition is highly filled. That's why. In particular, the particle size distribution was measured using the RRS particle size diagram (Powder Engineering Handbook, pp. 51-52, Asakura Shoten (196
When plotted in 5)), the distribution shows linearity, and the gradient n shows a value in the range of 0.6 to 1.0. In other words, the filler having a wide particle size distribution is the maximum filling of the filler itself. The fraction shows a high value of 90% or more, the viscosity of the resin composition increases,
Fluidity hardly decreases, which is advantageous for achieving the object of the present invention. Such fillers include so-called polymer beads such as fused silica, alumina, zirconia, and glass, as well as polyimide, epoxy resin, and phenol resin.
Although various fillers such as silica may be used, it is particularly desirable to use fused silica in order to reduce the coefficient of thermal expansion of the resin composition.

【0010】これらの充填剤は最小粒径0.1μm以
上、平均粒径2μm以上が望ましいのは、粒径が余り細
かい成分が多くなると材料の溶融粘度が高くなり流動性
が低下するためであり、また、最大粒径100μm以
下、平均粒径20μm以下とするのは、粒径が余り大き
な成分が多くなると成形時に金型の狭い隙間に充填剤が
目づまりし材料の充填性を低下させるためである。一
方、RRS粒度線図にプロットしたときの直線の勾配n
が0.6〜1.0の範囲が望ましい理由は、粒度分布を
0.1〜100μmの範囲に限定した場合、n=0.6
が直線がとりうる最小の勾配であり、また、nが1.0
以上になると粒度分布が狭すぎて充填剤自体の最大充填
分率があがらないためである。充填剤の配合量を80v
ol%を超え92.5vol%以下の範囲で用いるの
は、80vol%以下では樹脂組成物の熱膨張係数が大
きすぎるためであり、また、92.5vol%以上では
樹脂組成物中で充填剤同士がぶつかりあうために組成物
の粘度が急激に上昇し、流動性が著しく低下してしまう
ためである。ここで、充填剤の配合量を容量%で規定す
る理由は、充填剤はその種類によって比重が異なるため
である。すなわち、本発明のような樹脂組成物の粘度や
流動性は樹脂組成物中に占める充填剤の容量に大きく依
存するが、配合量を重量%で規定すると充填剤の種類に
よって配合量を別々に規定する必要が生じるためであ
る。
The reason why these fillers preferably have a minimum particle size of 0.1 μm or more and an average particle size of 2 μm or more is that if there are too many components having a very small particle size, the melt viscosity of the material increases and the fluidity decreases. The reason why the maximum particle size is 100 μm or less and the average particle size is 20 μm or less is that if the component having a too large particle size increases, the filler is clogged in a narrow gap of the mold at the time of molding and the filling property of the material is reduced. It is. On the other hand, the slope n of the straight line when plotted on the RRS particle size diagram
Is desirably in the range of 0.6 to 1.0 because, when the particle size distribution is limited to the range of 0.1 to 100 μm, n = 0.6
Is the minimum gradient that the straight line can take, and n is 1.0
This is because the particle size distribution is too narrow if it is above, and the maximum filling fraction of the filler itself does not increase. 80v of filler
used in 92.5Vol% less ranging exceed ol% is at 80 vol% or less is because the thermal expansion coefficient of the resin composition is too large, also, the filler in the resin composition in 92.5Vol% or more This is because the viscosities of the compositions suddenly increase due to collisions with each other, and the fluidity is significantly reduced. Here, the reason why the blending amount of the filler is specified by volume% is that the specific gravity of the filler differs depending on the type. That is, the viscosity and fluidity of the resin composition according to the present invention greatly depend on the volume of the filler occupying the resin composition. This is because it is necessary to specify.

【0011】次に本発明の樹脂組成物の最低溶融粘度を
3000ポイズ以下に規定する理由を説明する。本発明
の加圧成形用樹脂組成物は通常150〜200℃に加熱
された金型のキャビテ−部に移送して硬化を行なう。従
って、樹脂組成物は昇温加熱下で硬化する。この時、樹
脂組成物は最初は樹脂の硬化反応が余り進行しないため
温度の上昇に伴って粘度の低下を起こす。しかし、ある
温度以上になると樹脂の硬化反応が急激に進行するため
粘度の急上昇が起こる。そのため、本発明のような樹脂
組成物の硬化過程における粘度変化はUないしV字型の
挙動を示す。このような樹脂組成物を用いて実際に成形
品を作製する場合、インサ−トの変形や充填不良防止
し外観や諸物性が良好な成形品を得るために、金型内へ
の樹脂組成物の移送は樹脂の粘度が一定の値よりも低い
状態で行なう必要がある。その粘度範囲は目的に応じて
若干異なるが、例えば、半導体装置のように極めてデリ
ケ−トな構造を有するインサ−トを成形する場合には最
低溶融粘度(U字またはV字型カ−ブの底辺値)が30
00ポイズ以下にすることが望ましい。
Next, the reason why the minimum melt viscosity of the resin composition of the present invention is specified to be 3000 poise or less will be described. The resin composition for pressure molding of the present invention is usually transferred to a cavity of a mold heated to 150 to 200 ° C. and cured. Therefore, the resin composition cures under heating and heating. At this time, the viscosity of the resin composition decreases as the temperature rises because the curing reaction of the resin does not proceed much at first. However, when the temperature exceeds a certain temperature, the curing reaction of the resin rapidly progresses, so that the viscosity sharply increases. Therefore, the change in viscosity during the curing process of the resin composition as in the present invention exhibits a U-shaped or V-shaped behavior. When a molded article is actually produced using such a resin composition, the resin composition in a mold is required to prevent deformation and filling failure of the insert and obtain a molded article having good appearance and various physical properties. It is necessary to transfer the material while the viscosity of the resin is lower than a certain value. The viscosity range is slightly different depending on the purpose. For example, when molding an insert having an extremely delicate structure such as a semiconductor device, the minimum melt viscosity (U-shaped or V-shaped curve) is required. Base value) is 30
Desirably, the value is not more than 00 poise.

【0012】本発明においては硬化促進剤が重要な役割
を持つ。この硬化促進剤は樹脂の硬化反応を促進するた
めに用いるものである。しかし、通常硬化促進剤は比較
的低温でも樹脂の硬化反応を促進する。本発明の樹脂組
成物はロ−ルや押出し機を用いて樹脂成分と充填剤成分
の混合を行なうが、このような硬化促進剤を用いると混
練時の摩擦によって樹脂が加熱され、樹脂の硬化反応
(Bステ−ジ化)が進行し、最低溶融粘度が低い樹脂組
成物が得られなくなってしまう。また、このような硬化
促進剤を用いた樹脂組成物は金型内に移送して成形を行
なう際、比較的低い温度から樹脂の硬化反応が進行す
る。そのため、温度上昇によって樹脂粘度が余り下がら
ないうちに硬化反応による粘度の上昇が始まり、その結
果、最低溶融粘度がかなり高い値を示すようになり、デ
リケ−トな構造を有するインサ−トを成形する場合イン
サ−トの変形や充填不良を発生し易くなる。
In the present invention, a curing accelerator plays an important role. This curing accelerator is used to accelerate the curing reaction of the resin. However, the curing accelerator usually accelerates the curing reaction of the resin even at a relatively low temperature. In the resin composition of the present invention, the resin component and the filler component are mixed by using a roll or an extruder. When such a curing accelerator is used, the resin is heated by friction during kneading, and the resin is cured. The reaction (B stage formation) proceeds, and a resin composition having a low minimum melt viscosity cannot be obtained. In addition, when a resin composition using such a curing accelerator is transferred into a mold and molded, the curing reaction of the resin proceeds from a relatively low temperature. Therefore, the viscosity of the resin starts to increase due to the curing reaction before the viscosity of the resin decreases significantly due to the temperature rise. As a result, the minimum melt viscosity shows a considerably high value, and an insert having a delicate structure is formed. In this case, deformation of the insert and defective filling are likely to occur.

【0013】このような問題を解決するためには、比較
的低温では樹脂の硬化反応を促進せず、高温で速やかに
樹脂の硬化反応を促進するいわゆる潜在性硬化促進剤の
利用が効果的である。このような潜在性硬化促進剤とし
ては、硬化促進剤を配合した樹脂組成物を加圧成形過程
すなわち150〜200℃の温度範囲でゲル化時間を測
定した場合に、ゲル化反応の活性化エネルギ−が高い値
を示す硬化促進剤が該当する。活性化エネルギ−として
は17kcal/mol以上の値を示す硬化促進剤が望まし
い。このような硬化促進剤としては具体的には、リン系
または含窒素系の各種化合物やそれらの有機酸塩、ボロ
ン塩等が挙げられる。
In order to solve such a problem, it is effective to use a so-called latent curing accelerator which does not accelerate the curing reaction of the resin at a relatively low temperature, but rapidly promotes the curing reaction of the resin at a high temperature. is there. As such a latent curing accelerator, the activation energy of the gelation reaction is measured when the resin composition containing the curing accelerator is subjected to a pressure molding process, that is, when the gelation time is measured in a temperature range of 150 to 200 ° C. The curing accelerators exhibiting a high value of-correspond. A curing accelerator exhibiting a value of 17 kcal / mol or more as the activation energy is desirable. Specific examples of such a curing accelerator include various phosphorus-based or nitrogen-containing compounds, their organic acid salts, and boron salts.

【0014】ところで、本発明の樹脂組成物は充填剤を
多量に配合するため、成形品が固く脆くなる傾向があ
る。そのためシリコ−ン系化合物やポリブタジエン系ゴ
ム、熱可塑性エラストマ−を用いてエポキシ樹脂や硬化
剤としてのフェノ−ル系化合物または両者の混合物を変
性または改質することが望ましい。それによって、成形
品の靭性が改良され、成形品の耐熱衝撃性や機械的な衝
撃強度、接着力などを改善できる。
By the way, since the resin composition of the present invention contains a large amount of a filler, a molded article tends to be hard and brittle. Therefore, it is desirable to modify or modify the epoxy resin or the phenolic compound as a curing agent or a mixture of both using an epoxy resin, a polybutadiene rubber, or a thermoplastic elastomer. Thereby, the toughness of the molded product is improved, and the thermal shock resistance, mechanical impact strength, adhesive strength, and the like of the molded product can be improved.

【0015】本発明の組成物には必要に応じて樹脂成分
と充填剤との濡れを良くするためのカップリング剤を始
め着色材、難燃化剤、離形剤等を配合することができ
る。特に、カップリング剤としてはシラン系、アルミキ
レ−ト系、チタネ−ト系等の種々の化合物を用いること
ができるが、これらのカップリング剤は予め充填剤の表
面に単分子層以上の厚みで被覆処理して用いると成形品
の諸物性を一段と改善することができる。
The composition of the present invention may optionally contain a coloring agent, a flame retardant, a release agent, etc., as well as a coupling agent for improving the wetting between the resin component and the filler. . In particular, as the coupling agent, various compounds such as silane type, aluminum chelate type and titanate type can be used.These coupling agents have a thickness of at least a monomolecular layer on the surface of the filler in advance. When used after coating, the physical properties of the molded article can be further improved.

【0016】本発明の樹脂組成物は上述のように二軸ロ
−ルや押出し機を用いて製造することができ、また、成
形はトランスファ−プレスを用いて従来と全く同様の方
法で行なうことができる。
The resin composition of the present invention can be produced by using a twin-screw roll or an extruder as described above, and the molding is carried out using a transfer press in exactly the same manner as in the prior art. Can be.

【0017】[0017]

【実施例】以下、本発明を実施例によってより詳細に説
明する 実施例) エポキシ樹脂として、ビフェニル骨格を有する2官能性
のエポキシ樹脂100重量部に、硬化剤としてフェノ−
ルノボラック樹脂56重量部(エポキシ当量/フェ−ノ
−ル性水酸基当量比1/1、これら樹脂成分の150℃
における粘度は0.8ポイズである)、硬化促進剤とし
て、テトラフェニルホスホニウム・テトラフェニルボレ
−ト3重量部、充填剤として全体の99重量%が0.1
〜100μmの範囲にあって、しかも平均粒径がそれぞ
れ15μmで粒度分布をRRS粒度線図にプロットした
場合の直線の傾きが、それぞれ0.75の球状溶融シリ
カ1190重量部(80vol%)、1670重量部(8
5vol%)及び2635重量部(90vol%)、カップリ
ング剤としてエポキシシラン系を10重量部、離形剤と
してモンタン酸エステルを2重量部、着色剤としてカ−
ボンブラックを2重量部計量し、これらを二軸ロ−ルを
用いて80℃で15分間混練し目的とする3種類の加圧
成形用樹脂組成物を作製した。各硬化物の成形性並びに
成形品の主な物性を表に示す。なお。表中の成形品
はトランスファ−プレスを用い、成形温度180℃、成
形圧力70kg/cm2、成形時間1.5分で成形し、
金型から取りだしたあと180℃で5時間の後硬化を行
なった。表より、本発明の樹脂組成物は成形性が良好
で、しかも成形品は熱膨張性が無機物並に小さいことが
分かる。
The present invention will be described in more detail with reference to the following examples . ( Examples 1 to 3 ) 100 parts by weight of a bifunctional epoxy resin having a biphenyl skeleton was used as an epoxy resin, and phenol was used as a curing agent.
56 parts by weight of lunovolak resin (epoxy equivalent / phenolic hydroxyl equivalent ratio 1/1, 150 ° C. of these resin components)
Is 0.8 poise), 3 parts by weight of tetraphenylphosphonium / tetraphenylborate as a curing accelerator and 99% by weight of the filler as 0.1%.
1100 parts by weight (80 vol%) of spherical fused silica having a mean particle size of 15 μm and a particle size distribution of 0.75, respectively, when plotted on an RRS particle size diagram. Parts by weight (8
5vol%) and 2635 parts by weight (90vol%), 10 parts by weight of an epoxysilane as a coupling agent, 2 parts by weight of a montanic acid ester as a release agent, and a carton as a coloring agent.
Bonn black was weighed at 2 parts by weight and kneaded at 80 ° C. for 15 minutes using a biaxial roll to prepare three types of desired resin compositions for pressure molding. Table 1 shows the moldability of each cured product and the main physical properties of the molded product. In addition. The molded products in Table 1 were molded using a transfer press at a molding temperature of 180 ° C., a molding pressure of 70 kg / cm 2 , and a molding time of 1.5 minutes.
After removal from the mold, post-curing was performed at 180 ° C. for 5 hours. Table 1 shows that the resin composition of the present invention has good moldability, and that the molded product has a thermal expansion property as small as that of an inorganic substance.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例) エポキシ樹脂として、ナフタレン骨格を有する2官能性
のエポキシ樹脂100重量部に、硬化剤としてフェノ−
ルノボラック樹脂72重量部(エポキシ当量/フェ−ノ
−ル性水酸基当量比1/1、これら樹脂成分の150℃
における粘度は0.4ポイズである)、硬化促進剤とし
て上記DBUのテトラフェニルボロン塩1重量部(上記
樹脂系における150から200℃でのゲル化反応の活
性化エネルギ−は17.5kcal/molである)、充填剤と
して表面を予めエポキシシラン系カップリング剤で処理
し、かつ、全体の99重量%が0.1〜100μmの範
囲にあって、しかも平均粒径がそれぞれ15μmで粒度
分布をRRS粒度線図にプロットした場合の直線の傾き
が、それぞれ0.75の球状溶融シリカ1295重量部
(80vol%)、1670重量部(85vol%)及び2635
重量部(90vol%)、離形剤としてモンタン酸エステル
を2重量部、着色剤としてカ−ボンブラックを2重量部
計量し、これらを二軸ロ−ルを用いて80℃で15分間
混練し目的とする3種類の加圧成形用樹脂組成物を作製
した。
(Examples 4 to 6 ) 100 parts by weight of a bifunctional epoxy resin having a naphthalene skeleton was used as an epoxy resin, and phenol was used as a curing agent.
Lunovolak resin 72 parts by weight (epoxy equivalent / phenolic hydroxyl equivalent ratio 1/1, 150 ° C. of these resin components)
Is 0.4 poise), and 1 part by weight of a tetraphenylboron salt of DBU as a curing accelerator (the activation energy of the gelation reaction at 150 to 200 ° C. in the resin system is 17.5 kcal / mol) ), The surface of which is previously treated with an epoxysilane-based coupling agent as a filler, and 99% by weight of the whole is in the range of 0.1 to 100 μm, and the average particle size is 15 μm and the particle size distribution is 1295 parts by weight of spherical fused silica having a slope of 0.75 each when plotted on an RRS particle size diagram.
(80 vol%), 1670 parts by weight (85 vol%) and 2635
Parts by weight (90 vol%), 2 parts by weight of montanic acid ester as a releasing agent, and 2 parts by weight of carbon black as a coloring agent, and knead them at 80 ° C. for 15 minutes using a biaxial roll. Three types of target resin compositions for pressure molding were produced.

【0020】各硬化物の成形性並びに成形品の主な物性
を表に示す。尚、表中の成形品はトランスファ−プ
レスを用い、成形温度180℃、成形圧力70kg/c
2、成形時間1.5分で成形し、金型から取りだした
あと180℃で5時間の後硬化を行なった。表より、
本発明の樹脂組成物は成形性が良好でしかも成形品は熱
膨張性が無機物並に小さいことが分かる。
Table 1 shows the moldability of each cured product and the main physical properties of the molded product. The molded products in Table 1 were formed using a transfer press at a molding temperature of 180 ° C. and a molding pressure of 70 kg / c.
Molding was performed for 1.5 minutes at m 2 , and after the mold was removed from the mold, post-curing was performed at 180 ° C. for 5 hours. From Table 1 ,
It can be seen that the resin composition of the present invention has good moldability, and that the molded product has a thermal expansion property as small as that of an inorganic substance.

【0021】(比較例) エポキシ樹脂として、ビフェニル骨格を有する2官能性
のエポキシ樹脂100重量部に、硬化剤としてフェノ−
ルノボラック樹脂56重量部(エポキシ当量/フェ−ノ
−ル性水酸基当量比1/1)、硬化促進剤として、テト
ラフェニルホスホニウム・テトラフェニルボレ−ト3重
量部、充填剤として全体の99重量%が0.1〜100
μmの範囲にあって、しかも平均粒径がそれぞれ15μ
mで粒度分布をRRS粒度線図にプロットした場合の直
線の傾きが、それぞれ0.75の角状(破砕品)溶融シ
リカ1295重量部(80vol%)、カップリング剤とし
てエポキシシラン系を10重量部、離形剤としてモンタ
ン酸エステルを2重量部、着色剤としてカ−ボンブラッ
クを2重量部計量し、これらを二軸ロ−ルを用い80℃
で混練を試みた。しかし、これらの樹脂組成物はパテ状
になってロ−ルに巻き付かず、ロ−ルから直ぐ落下して
しまい目的とする加圧成形用樹脂組成物を得ることがで
きなかった。また、試しにロ−ルから落下した樹脂組成
物を上記実施例と同様の条件でトランスファプレスを用
いて成形してみたが全く流動せず、目的とする試験片を
成形することができなかった。
Comparative Example 1 100 parts by weight of a bifunctional epoxy resin having a biphenyl skeleton was used as an epoxy resin, and phenol was used as a curing agent.
56 parts by weight of lunovolak resin (epoxy equivalent / phenolic hydroxyl group equivalent ratio 1/1), 3 parts by weight of tetraphenylphosphonium / tetraphenylborate as a curing accelerator, and 99% by weight as a filler. 0.1-100
μm range and the average particle size is 15μ each.
When the particle size distribution is plotted on the RRS particle size diagram in m, the slope of a straight line is 0.75 square (crushed product) fused silica 1295 parts by weight (80 vol%), and the epoxysilane-based coupling agent is 10 parts by weight. Parts, 2 parts by weight of montanic acid ester as a release agent and 2 parts by weight of carbon black as a colorant, and weigh them at 80 ° C. using a biaxial roll.
Tried kneading. However, these resin compositions were putty-shaped, did not wind around the roll, and dropped immediately from the roll, so that the desired resin composition for pressure molding could not be obtained. In addition, the resin composition dropped from the roll in a trial was molded using a transfer press under the same conditions as in the above example, but it did not flow at all, and the target test piece could not be molded. .

【0022】(比較例) エポキシ樹脂として、ナフタレン骨格を有する2官能性
のエポキシ樹脂100重量部に、硬化剤としてフェノ−
ルノボラック樹脂72重量部(エポキシ当量/フェ−ノ
−ル性水酸基当量比1/1)、硬化促進剤としてテトラ
フェニルホスホニウム・テトラフェニルボレ−ト2.5
重量部、充填剤として表面を予めエポキシシラン系カッ
プリング剤で処理し、且つ、全体の99重量%が0.1
〜100μmの範囲にあって、しかも平均粒径がそれぞ
れ15μmで粒度分布をRRS粒度線図にプロットした
場合の直線の傾きが、それぞれ0.75の球状溶融シリ
カ1295重量部(80vol%)、離形剤としてモンタン
酸エステルを2重量部、着色剤としてカ−ボンブラック
を2重量部計量し、これらを二軸ロ−ルを用い80℃で
混練を試みた。しかし、これらの樹脂組成物は上記比較
と同様パテ状になってロ−ルに巻き付かず、ロ−ル
から直ぐ落下してしまい目的とする加圧成形用樹脂組成
物を得ることができなかった。また、試しにロ−ルから
落下した樹脂組成物をトランスファプレスを用いて成形
してみたが全く流動せず、目的とする試験片を成形する
ことができなかった。
(Comparative Example 2 ) 100 parts by weight of a bifunctional epoxy resin having a naphthalene skeleton was used as an epoxy resin, and phenol was used as a curing agent.
72 parts by weight of lunovolac resin (epoxy equivalent / phenolic hydroxyl group equivalent ratio 1/1), and as a curing accelerator, tetraphenylphosphonium / tetraphenylborate 2.5
Parts by weight, the surface was previously treated with an epoxy silane coupling agent as a filler, and 99% by weight of the whole was 0.1%.
When the average particle size is 15 μm and the particle size distribution is plotted on an RRS particle size diagram, the slope of a straight line is 1295 parts by weight (80 vol%) of spherical fused silica of 0.75 each. 2 parts by weight of a montanic acid ester as a shaping agent and 2 parts by weight of a carbon black as a coloring agent were weighed at 80 ° C. using a biaxial roll. However, these resin compositions are putty-like in the same manner as in Comparative Example 1 and do not wind around the rolls, but fall directly from the rolls to obtain the desired resin composition for pressure molding. could not. When the resin composition dropped from the roll was molded by using a transfer press, it did not flow at all, and the target test piece could not be molded.

【0023】[0023]

【発明の効果】本発明の樹脂組成物は成形性が良好で、
しかも、熱膨張係数が無機物並に小さな成形品を容易に
得ることができる。したがって、これらの樹脂組成物を
金属あるいはセラミックス等と複合化した成形品に適用
した場合、熱膨張係数のミスマッチが少なくなり、成形
品の耐クラック性や寸法安定性、各種信頼性などの大幅
な向上が図れる。
The resin composition of the present invention has good moldability,
In addition, a molded product having a coefficient of thermal expansion as small as an inorganic material can be easily obtained. Therefore, when these resin compositions are applied to molded products that are composited with metals or ceramics, mismatches in the coefficient of thermal expansion are reduced, and crack resistance, dimensional stability, and various reliability of molded products are greatly reduced. Improvement can be achieved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 63/00 C08L 63/00 C (72)発明者 瀬川 正則 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 宝蔵寺 裕之 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 小角 博義 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 菅原 泰英 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 石井 利昭 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 河田 達男 茨城県結城市大字鹿窪1772番地の1 日 立化成工業株式会社 南結城工場内 (56)参考文献 特開 平1−101363(JP,A) 特開 平2−1754(JP,A)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 63/00 C08L 63/00 C (72) Inventor Masanori Segawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. 72) Inventor Hiroyuki Horazoji 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Laboratory (72) Inventor Hiroyoshi Okado 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Laboratory, Hitachi Ltd. 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Toshiaki Ishii 4026 Kuji-machi, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. One day at 1772 Riksei Kasei Kogyo Co., Ltd. Minami Yuki Plant (56) References 1363 (JP, A) Japanese Patent Laid-Open No. 2-1754 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エポキシ樹脂、硬化剤、硬化促進剤及び
充填剤を必須成分とする低熱膨張性加圧成形用樹脂組成
物において、前記エポキシ樹脂がビフェニ−ル骨格ある
いはナフタレン骨格を有する2官能型のエポキシ樹脂か
ら選ばれるものであり前記硬化剤が分子内にフェノー
ル性水酸基を2個以上含むフェノール系化合物であり
前記エポキシ樹脂及び硬化剤からなる樹脂成分は、15
0℃における粘度が3ポイズ以下にあり、前記充填剤
は、その95%以上が粒径0.1〜100μmの範囲に
あると共に平均粒径が2〜20μmの実質的に球状の
融シリカ粉末であり、且つ、この充填剤は、組成物全体
に対して80vol%を超え92.5vol%以下の範
囲で配合されて成り、当該樹脂組成物は、加圧成形過程
における最低溶融粘度が3000ポイズ以下であると共
に加圧後は熱膨張係数が1.0×10~5/℃以下から
0.3×10~5/℃の範囲にあることを特徴とする低熱
膨張性加圧成形用樹脂組成物。
1. A low-thermal-expansion pressure-molding resin composition comprising an epoxy resin , a curing agent, a curing accelerator, and a filler as essential components, wherein the epoxy resin has a biphenyl skeleton.
Is bifunctional epoxy resin with naphthalene skeleton
Those selected et al., Wherein the curing agent phenol in a molecule
A phenolic compound containing at least two hydroxyl groups ,
The resin component consisting of the epoxy resin and the curing agent is 15
0 There viscosity below 3 poise at ° C., the filler is dissolved average particle size of substantially spherical 2~20μm with more than the 95% in the particle size range of 0.1~100μm
A melting silica powder, and, the filler is composed are mixed within a range of less 92.5Vol% exceeded 80 vol% of the total composition, the resin composition, the lowest melt viscosity at pressure molding process Is less than 3000 poise and has a coefficient of thermal expansion after pressing of from 1.0 × 10 5 / ° C. to 0.3 × 10 5 / ° C. Resin composition.
【請求項2】 請求項1において、硬化促進剤はエポキ
シ樹脂及び硬化剤からなる樹脂成分に0.1〜5wt%
の範囲で配合され、加圧成形温度の150〜200℃で
硬化反応を促進させた場合に、硬化反応の活性化エネル
ギ−が17kcal/mol 以上の値を示すリン系化合物、含
窒素系化合物またはその有機酸塩または有機ボロン塩で
あることを特徴とする低熱膨張性加圧成形用樹脂組成
物。
Wherein Oite to claim 1, curing accelerator 0.1-5 wt% in the resin component comprising an epoxy resin and a curing agent
When the curing reaction is accelerated at a pressure molding temperature of 150 to 200 ° C., the activation energy of the curing reaction is 17 kcal / mol or more, a phosphorus compound, a nitrogen-containing compound or A low thermal expansion resin composition for pressure molding, which is an organic acid salt or an organic boron salt.
【請求項3】 請求項1又は2において、充填剤はあら
かじめその表面がシラン、アルミキレ−トまたはチタネ
−ト系のカップリング剤の単分子層以上の厚みで被覆処
理されていることを特徴とする低熱膨張性加圧成形用樹
脂組成物。
3. Oite to claim 1 or 2, charge Hamazai beforehand the surface silane, Arumikire - bets or titanate - that it is coated with the monomolecular layer over the thickness of bets based coupling agent A low-thermal-expansion resin composition for pressure molding characterized by the following.
【請求項4】 請求項1〜3のいずれかにおいて、エポ
キシ樹脂及び硬化剤からなる樹脂成分の0.1〜20wt
%がシリコ−ン系化合物、ポリブタジエン系ゴム、熱可
塑性エラストマ−又は熱可塑性樹脂で変性または改質さ
れることを特徴とする低熱膨張性加圧成形用樹脂組成
物。
4. The claim 1 to 3, 0.1-20 weight of the resin component comprising an epoxy resin and a curing agent
%, Which is modified or modified with a silicone-based compound, a polybutadiene-based rubber, a thermoplastic elastomer or a thermoplastic resin.
JP3310868A 1991-11-26 1991-11-26 Low thermal expansion resin composition for pressure molding Expired - Lifetime JP2740990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3310868A JP2740990B2 (en) 1991-11-26 1991-11-26 Low thermal expansion resin composition for pressure molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310868A JP2740990B2 (en) 1991-11-26 1991-11-26 Low thermal expansion resin composition for pressure molding

Publications (2)

Publication Number Publication Date
JPH05148343A JPH05148343A (en) 1993-06-15
JP2740990B2 true JP2740990B2 (en) 1998-04-15

Family

ID=18010359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310868A Expired - Lifetime JP2740990B2 (en) 1991-11-26 1991-11-26 Low thermal expansion resin composition for pressure molding

Country Status (1)

Country Link
JP (1) JP2740990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001047T5 (en) 2006-04-28 2009-04-16 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
WO2012099131A1 (en) 2011-01-18 2012-07-26 日立化成工業株式会社 Prepreg, and laminate board and printed wiring board using same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698528B2 (en) * 1993-03-26 1998-01-19 日本碍子株式会社 Electrical insulator used for non-ceramic insulator housing
CN100379832C (en) 1998-08-13 2008-04-09 日立化成工业株式会社 Adhesive for circuit components connection circuit board and producing method thereof
KR101733646B1 (en) 2009-03-27 2017-05-10 히타치가세이가부시끼가이샤 Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
CN103328577A (en) 2011-01-18 2013-09-25 日立化成株式会社 Resin composition, and printed wiring board, laminated sheet, and prepreg using same
CN103328543B (en) 2011-01-18 2015-07-15 日立化成株式会社 Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
KR102138449B1 (en) 2011-01-18 2020-07-27 히타치가세이가부시끼가이샤 Resin composition, and printed wiring board, laminated sheet, and prepreg using same
JP6217165B2 (en) * 2013-06-20 2017-10-25 住友ベークライト株式会社 Prepreg with primer layer, metal foil with primer layer, metal-clad laminate, printed wiring board, semiconductor package and semiconductor device
JP6248524B2 (en) * 2013-10-07 2017-12-20 日立化成株式会社 Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
WO2017209108A1 (en) 2016-06-02 2017-12-07 日立化成株式会社 Thermosetting resin compositin, prepreg, laminated board, printed wiring board, and high-speed communication-compatible module
CN111406085B (en) * 2017-11-30 2023-04-14 昭和电工材料株式会社 Composite powder
JP7420071B2 (en) 2018-06-21 2024-01-23 株式会社レゾナック Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
WO2020130007A1 (en) 2018-12-18 2020-06-25 日立化成株式会社 Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate
JP7136389B2 (en) 2020-06-17 2022-09-13 昭和電工マテリアルズ株式会社 Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511282B2 (en) * 1987-10-15 1996-06-26 株式会社日立製作所 Epoxy resin composition
JPH07113078B2 (en) * 1988-06-10 1995-12-06 株式会社日立製作所 Molding phenol resin composition, method for producing the same, and semiconductor device sealed with the composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001047T5 (en) 2006-04-28 2009-04-16 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
US9078365B2 (en) 2006-04-28 2015-07-07 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate, and wiring board
DE112007001047B4 (en) 2006-04-28 2020-06-04 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
WO2012099131A1 (en) 2011-01-18 2012-07-26 日立化成工業株式会社 Prepreg, and laminate board and printed wiring board using same
KR20180121679A (en) 2011-01-18 2018-11-07 히타치가세이가부시끼가이샤 Prepreg, and laminate board and printed wiring board using same

Also Published As

Publication number Publication date
JPH05148343A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
JP2740990B2 (en) Low thermal expansion resin composition for pressure molding
KR930008739B1 (en) Epoxy resin composition and semiconductor sealing material comprising same
EP1176171B1 (en) Electric insulating material and method of manufacture thereof
JPH0329259B2 (en)
US4732962A (en) High temperature epoxy tooling composition of bisphenol-A epoxy, trifunctional epoxy, anhydride curing agent and an imidazole catalyst
US20100130646A1 (en) Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
Ku et al. Contrast on tensile and flexural properties of glass powder reinforced epoxy composites: pilot study
US4925886A (en) High temperature epoxy tooling composition of bifunctional epoxy, trifunctional epoxy, anhydride, imidazole and interstitially matched filler
JP2011246596A (en) Sheet-like resin composition and circuit component sealed by using the same
EP0325022A2 (en) Rubber-modified phenolic resin composition and method of manufacturing the same
JPH06505529A (en) Resin compositions, especially casting resins
JP3368306B2 (en) Resin compound
US20040036199A1 (en) Silicone-modified single-component casting compound
US3018260A (en) Room temperature curing molding and forming composition
JPS6257420A (en) Curable powder composition
JPS58138729A (en) Thermosetting molding composition
CN107353598A (en) Glass epoxy molding plastic and preparation method thereof
CN103483551A (en) Preparation method and application of co-polymer of epoxy resin and unsaturated resin
JPS63264625A (en) Mold-making resinous material for molding
JP3450260B2 (en) Epoxy resin composition and coil casting
JPH05295083A (en) Epoxy resin composition for mold and resin mold made thereof
JPH1080929A (en) Manufacture of molding by automatic pressurizing gelation technology using one component type composition
JPS61101523A (en) Sealing resin composition
TW201629145A (en) Curable resin composition, article, and method for fabricating the same
JPS59108332A (en) Sealing method of electronic parts