JP7136389B2 - Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate - Google Patents

Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate Download PDF

Info

Publication number
JP7136389B2
JP7136389B2 JP2022523252A JP2022523252A JP7136389B2 JP 7136389 B2 JP7136389 B2 JP 7136389B2 JP 2022523252 A JP2022523252 A JP 2022523252A JP 2022523252 A JP2022523252 A JP 2022523252A JP 7136389 B2 JP7136389 B2 JP 7136389B2
Authority
JP
Japan
Prior art keywords
laminate
composite layer
layers
glass
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022523252A
Other languages
Japanese (ja)
Other versions
JPWO2021256516A1 (en
Inventor
徳昭 村上
伸治 島岡
広明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2021256516A1 publication Critical patent/JPWO2021256516A1/ja
Priority to JP2022130410A priority Critical patent/JP2022171670A/en
Application granted granted Critical
Publication of JP7136389B2 publication Critical patent/JP7136389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers

Description

本実施形態は、積層板、プリント配線板、半導体パッケージ及び積層板の製造方法に関する。 The present embodiment relates to a laminate, a printed wiring board, a semiconductor package, and a method for manufacturing a laminate.

近年、電子機器の小型化及び高性能化によって、プリント配線板の配線密度の高度化及び高集積化が進展しており、これに伴って、プリント配線板に対する信頼性向上の要求が強まっている。特に、半導体パッケージでは、小型化及び薄型化に伴い、部品実装時及びパッケージ組み立て時における反りの発生が大きな課題となっている。 In recent years, due to the miniaturization and high performance of electronic devices, the wiring density and integration of printed wiring boards have been increasing. . In semiconductor packages, in particular, warping during component mounting and package assembly has become a major issue as the size and thickness of semiconductor packages have been reduced.

半導体パッケージが反る要因の1つとして、半導体素子と該半導体素子を搭載するプリント配線板との熱膨張率の差が挙げられる。一般的にプリント配線板の熱膨張率は、半導体素子の熱膨張率よりも大きいため、半導体素子を実装する際の加熱等の熱履歴を受けたパッケージには、上記熱膨張率差に起因する反り応力が発生する。そのため、半導体パッケージの反りを抑制する方法としては、プリント配線板の熱膨張率を小さくして半導体素子の熱膨張率との差を小さくする方法、プリント配線板を高弾性率化して剛性を高める方法等が有効である。 One factor that causes the semiconductor package to warp is the difference in coefficient of thermal expansion between the semiconductor element and the printed wiring board on which the semiconductor element is mounted. Generally, the coefficient of thermal expansion of a printed wiring board is larger than that of a semiconductor element. Warp stress occurs. Therefore, as a method of suppressing the warp of the semiconductor package, a method of reducing the thermal expansion coefficient of the printed wiring board to reduce the difference from the thermal expansion coefficient of the semiconductor element, and a method of increasing the elastic modulus of the printed wiring board to increase the rigidity. methods are effective.

プリント配線板の積層板としては、熱硬化性樹脂組成物をガラスクロス等の繊維基材に含浸又は塗工して得られるプリプレグを、積層して加熱硬化したものが一般的に用いられている。プリプレグに含有される樹脂成分は、プリプレグを構成する材料の中でも熱膨張率が高く弾性率が低いため、シリカ等の無機充填材を高充填化することによって、高弾性率化及び低熱膨張化を図っている(例えば、特許文献1参照)。
しかしながら、無機充填材の高充填化は、絶縁信頼性、銅箔との接着性、プレス加工性等を低下させる虞れがあるため、これらの性能を担保する観点から、無機充填材の高充填化のみによる積層板の高弾性率化及び低熱膨張化には限界がある。
As laminates for printed wiring boards, prepregs obtained by impregnating or coating a fiber base material such as glass cloth with a thermosetting resin composition are generally laminated and heat-cured. . The resin component contained in the prepreg has a high coefficient of thermal expansion and a low modulus of elasticity among the materials that make up the prepreg. (See, for example, Patent Document 1).
However, high filling of inorganic fillers may reduce insulation reliability, adhesion with copper foil, press workability, etc. Therefore, from the viewpoint of ensuring these performances, high filling of inorganic fillers There is a limit to increasing the modulus of elasticity and decreasing the thermal expansion of a laminate only by curing.

特開平5-148343号公報JP-A-5-148343

積層板を高弾性率化及び低熱膨張化する別の方法として、繊維基材の材質を、より熱膨張率が低く弾性率が高いものとする方法が考えられる。
しかしながら、本発明者等の検討によると、繊維基材の熱膨張率を低くすると共に、弾性率を高くすると、得られる積層板は、接続信頼性が悪くなる傾向にあることが判明している。
したがって、単純に繊維基材の熱膨張率及び弾性率を調整するのみでは、接続信頼性を良好に保ったまま、積層板を高弾性率化及び低熱膨張化することはできない。
As another method for increasing the modulus of elasticity and reducing the thermal expansion of the laminate, it is conceivable to use a material having a lower coefficient of thermal expansion and a higher modulus of elasticity for the fiber base material.
However, according to studies by the present inventors, it has been found that when the coefficient of thermal expansion of the fiber base material is decreased and the modulus of elasticity is increased, the resulting laminate tends to have poor connection reliability. .
Therefore, simply adjusting the coefficient of thermal expansion and the modulus of elasticity of the fiber base material cannot increase the modulus of elasticity and reduce the thermal expansion of the laminate while maintaining good connection reliability.

本実施形態は、上記事情に鑑みなされたものであり、高弾性率及び低熱膨張性を有しながらも接続信頼性に優れる積層板、該積層板を用いたプリント配線板及び半導体パッケージ、並びに積層板の製造方法を提供することを目的とする。 This embodiment has been made in view of the above circumstances, a laminate having excellent connection reliability while having a high elastic modulus and low thermal expansion, a printed wiring board and a semiconductor package using the laminate, and a laminate It is an object of the present invention to provide a method for manufacturing a plate.

本発明者等は、上記の課題を解決すべく鋭意研究を重ねた結果、下記の本実施形態によって、上記課題を解決できることを見出した。
すなわち、本実施形態は、下記[1]~[14]に関する。
[1]繊維基材と熱硬化性樹脂組成物の硬化物とを含有する複合層を2層以上含有する積層板であり、
前記2層以上の複合層が、1層以上の複合層(X)と、1層以上の複合層(Y)と、を含有し、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維が、前記第2のガラス繊維よりも、25℃における引張弾性率が高いものである、積層板。
[2]前記第1のガラス繊維の25℃における引張弾性率が、80GPa以上であり、
前記第2のガラス繊維の25℃における引張弾性率が、80GPa未満である、[1]に記載の積層板。
[3]前記第1のガラス繊維と前記第2のガラス繊維の25℃における引張弾性率の差が、10GPa以上である、[1]又は[2]に記載の積層板。
[4]繊維基材と熱硬化性樹脂組成物の硬化物とを含有する複合層を2層以上含有する積層板であり、
前記2層以上の複合層が、1層以上の複合層(X)と、1層以上の複合層(Y)と、を含有し、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維中におけるSiO及びAlの合計含有量が、前記第2のガラス繊維中におけるSiO及びAlの合計含有量よりも高いものである、積層板。
[5]前記第1のガラス繊維が、Sガラスである、[1]~[4]のいずれか1項に記載の積層板。
[6]前記第2のガラス繊維が、Eガラスである、[1]~[5]のいずれか1項に記載の積層板。
[7]前記複合層(X)の層数が、前記複合層(Y)の層数よりも多い、[1]~[6]のいずれか1項に記載の積層板。
[8]前記複合層(X)を1層以上、前記複合層(Y)を2層以上含有する積層板であり、
少なくとも1層の複合層(X)が、2層の複合層(Y)の間に配されてなる、[1]~[7]のいずれか1項に記載の積層板。
[9]前記複合層(X)を1層以上、前記複合層(Y)を2層以上含有する積層板であり、
該積層板の両面の最表層が前記複合層(Y)である、[1]~[8]のいずれか1項に記載の積層板。
[10]前記複合層(X)を1層以上、前記複合層(Y)を2層含有する積層板であり、 該積層板の両面の最表層が前記複合層(Y)である、[9]に記載の積層板。
[11]前記複合層(X)を2層以上含有する、[9]又は[10]に記載の積層板。
[12][1]~[11]のいずれか1項に記載の積層板を含有してなるプリント配線板。
[13] [12]に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
[14][1]~[11]のいずれか1項に記載の積層板を製造する方法であって、
前記第1のガラス繊維から構成される第1の繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(a)と、
前記第2のガラス繊維から構成される第2の繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(b)と、
を積層成形する、積層板の製造方法。
The present inventors have made intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by the present embodiment described below.
That is, the present embodiment relates to the following [1] to [14].
[1] A laminate containing two or more composite layers containing a fiber base material and a cured product of a thermosetting resin composition,
The two or more composite layers contain one or more composite layers (X) and one or more composite layers (Y),
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
The laminate, wherein the first glass fiber has a higher tensile modulus at 25° C. than the second glass fiber.
[2] the first glass fiber has a tensile modulus at 25° C. of 80 GPa or more;
The laminate according to [1], wherein the second glass fiber has a tensile modulus at 25°C of less than 80 GPa.
[3] The laminate according to [1] or [2], wherein the difference in tensile elastic modulus at 25° C. between the first glass fiber and the second glass fiber is 10 GPa or more.
[4] A laminate containing two or more composite layers containing a fiber base material and a cured product of a thermosetting resin composition,
The two or more composite layers contain one or more composite layers (X) and one or more composite layers (Y),
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
A laminate, wherein the total content of SiO2 and Al2O3 in the first glass fibers is higher than the total content of SiO2 and Al2O3 in the second glass fibers.
[5] The laminate according to any one of [1] to [4], wherein the first glass fiber is S glass.
[6] The laminate according to any one of [1] to [5], wherein the second glass fiber is E glass.
[7] The laminate according to any one of [1] to [6], wherein the composite layer (X) has a greater number of layers than the composite layer (Y).
[8] A laminate containing one or more composite layers (X) and two or more composite layers (Y),
The laminate according to any one of [1] to [7], wherein at least one composite layer (X) is arranged between two composite layers (Y).
[9] A laminate containing one or more composite layers (X) and two or more composite layers (Y),
The laminate according to any one of [1] to [8], wherein the outermost layer on both sides of the laminate is the composite layer (Y).
[10] A laminate containing one or more layers of the composite layer (X) and two layers of the composite layer (Y), and the outermost layer on both sides of the laminate is the composite layer (Y). ] The laminate according to .
[11] The laminate according to [9] or [10], which contains two or more composite layers (X).
[12] A printed wiring board comprising the laminate according to any one of [1] to [11].
[13] A semiconductor package obtained by mounting a semiconductor element on the printed wiring board according to [12].
[14] A method for producing a laminate according to any one of [1] to [11],
A prepreg (a) obtained by impregnating a thermosetting resin composition into a first fiber base material composed of the first glass fiber;
a prepreg (b) obtained by impregnating a second fiber base material composed of the second glass fiber with a thermosetting resin composition;
A method for producing a laminate, comprising laminating and molding.

本実施形態によると、高弾性率及び低熱膨張性を有しながらも接続信頼性に優れる積層板、該積層板を用いたプリント配線板及び半導体パッケージ、並びに積層板の製造方法を提供することができる。 According to the present embodiment, it is possible to provide a laminate having excellent connection reliability while having a high elastic modulus and low thermal expansion, a printed wiring board and a semiconductor package using the laminate, and a method for manufacturing the laminate. can.

複合層の断面を示す模式図である。It is a schematic diagram which shows the cross section of a composite layer. サンドイッチ積層部の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a sandwich laminate. サンドイッチ積層部の別の例を示す模式図である。FIG. 4 is a schematic diagram showing another example of a sandwich laminate; 本実施形態の積層板の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the laminated board of this embodiment. 本実施形態の積層板の別の例を示す模式図である。It is a schematic diagram which shows another example of the laminated board of this embodiment. 本実施形態の積層板の別の例を示す模式図である。It is a schematic diagram which shows another example of the laminated board of this embodiment. 本実施形態の積層板の別の例を示す模式図である。It is a schematic diagram which shows another example of the laminated board of this embodiment.

本明細書中に記載されている「~」を用いて示された数値範囲は、「~」の前に記載される数値を最小値、「~」の後に記載される数値を最大値として含む数値範囲を示す。例えば、数値範囲「X~Y」(X、Yは実数)という表記は、X以上であるY以下である数値範囲を意味する。そして、本明細書における「X以上」という記載は、X及びXを超える数値を意味する。また、本明細書における「Y以下」という記載は、Y及びY未満の数値を意味する。
本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書における記載事項を任意に組み合わせた態様も本実施形態に含まれる。
本明細書に記載されている作用機序は推測であって、本実施形態に係る樹脂組成物の効果を奏する機序を限定するものではない。
The numerical range indicated using "to" described in this specification includes the numerical value described before "to" as the minimum value and the numerical value described after "to" as the maximum value. Indicates a numeric range. For example, the notation of a numerical range “X to Y” (where X and Y are real numbers) means a numerical range that is greater than or equal to X and less than or equal to Y. And the description "X or more" in this specification means X and a numerical value exceeding X. In addition, the description “Y or less” in this specification means Y and a numerical value less than Y.
In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. Also, the lower and upper limits of a numerical range can be arbitrarily combined with the lower and upper limits of other numerical ranges, respectively.
In addition, each component and material exemplified in this specification may be used alone or in combination of two or more unless otherwise specified. As used herein, the content of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means
Aspects in which the items described in this specification are arbitrarily combined are also included in this embodiment.
The mechanism of action described in this specification is an assumption, and does not limit the mechanism of the effect of the resin composition according to the present embodiment.

[積層板]
本実施形態は、下記〔1〕に示す第1実施形態の積層板(以下、「積層板(1)」ともいう)、及び下記〔2〕に示す第2実施形態に係る積層板(以下、「積層板(2)」ともいう)を提供する。
[Laminate]
This embodiment includes the laminate of the first embodiment shown in [1] below (hereinafter also referred to as "laminate (1)"), and the laminate according to the second embodiment shown in [2] below (hereinafter, A "laminate (2)") is provided.

〔1〕繊維基材と熱硬化性樹脂組成物の硬化物とを含有する複合層を2層以上含有する積層板であり、
前記2層以上の複合層が、1層以上の複合層(X)と、1層以上の複合層(Y)と、を含有し、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維が、前記第2のガラス繊維よりも、25℃における引張弾性率が高いものである、積層板。
[1] A laminate containing two or more composite layers containing a fiber base material and a cured product of a thermosetting resin composition,
The two or more composite layers contain one or more composite layers (X) and one or more composite layers (Y),
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
The laminate, wherein the first glass fiber has a higher tensile modulus at 25° C. than the second glass fiber.

〔2〕繊維基材と熱硬化性樹脂組成物の硬化物とを含有する複合層を2層以上含有する積層板であり、
前記2層以上の複合層が、1層以上の複合層(X)と、1層以上の複合層(Y)と、を含有し、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維中におけるSiO及びAlの合計含有量が、前記第2のガラス繊維中におけるSiO及びAlの合計含有量よりも高いものである、積層板。
[2] A laminate containing two or more composite layers containing a fiber base material and a cured product of a thermosetting resin composition,
The two or more composite layers contain one or more composite layers (X) and one or more composite layers (Y),
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
A laminate, wherein the total content of SiO2 and Al2O3 in the first glass fibers is higher than the total content of SiO2 and Al2O3 in the second glass fibers.

なお、以下の説明は、特に断らない限り、本実施形態の積層板(1)及び積層板(2)に共通する説明であり、単に「積層板」と称する場合、本実施形態の積層板(1)及び積層板(2)の両者を指すものとする。 Unless otherwise specified, the following description is common to the laminate (1) and laminate (2) of the present embodiment, and when simply referred to as "laminate", the laminate ( 1) and laminate (2).

本実施形態の積層板が、高弾性率及び低熱膨張性を有しながらも接続信頼性に優れる積層板である理由は定かではないが、次の通り推測される。
ガラス繊維の弾性率又はSiO及びAlの含有量は、該ガラス繊維が構成する繊維基材の弾性率及び熱膨張率を決定する因子の1つである。具体的には、弾性率が低い又はSiOの含有量が低い第2のガラス繊維から構成される繊維基材は、低弾性率を有する複合層(Y)を与える。積層板を使用したパッケージのマザーボードとの接続信頼性については、低弾性率を有する複合層(Y)の影響が大きく、複合層(Y)の適用によって、複合層(X)のみの場合から、積層板は効果的に接続信頼性が向上する。
一方、積層板の硬化時の反りは、高弾性率及び/又はSiO及びAlの合計含有量が高い複合層(X)の層数に応じて良好になる。その結果、複合層(X)及び複合層(Y)を含有する積層板は、接続信頼性が複合層(Y)に近く、且つ弾性率及び熱膨張率は複合層(X)の層数に応じて良好なものになると考えられる。
以下、本実施形態の積層板が有する各部材について説明する。
Although the reason why the laminate of the present embodiment has excellent connection reliability while having a high elastic modulus and a low thermal expansion property is not clear, it is presumed as follows.
The elastic modulus of the glass fiber or the content of SiO 2 and Al 2 O 3 is one of the factors that determine the elastic modulus and thermal expansion coefficient of the fiber base material composed of the glass fiber. Specifically, a fibrous substrate composed of second glass fibers with a low modulus or a low SiO 2 content gives a composite layer (Y) with a low modulus. The connection reliability of a package using a laminate with a motherboard is greatly affected by the composite layer (Y) having a low elastic modulus. The laminate effectively improves connection reliability.
On the other hand, the warpage of the laminate during curing becomes better depending on the number of composite layers (X) with a high modulus of elasticity and/or a high total content of SiO 2 and Al 2 O 3 . As a result, the laminate containing the composite layer (X) and the composite layer (Y) has a connection reliability close to that of the composite layer (Y), and an elastic modulus and a thermal expansion coefficient that are equal to the number of the composite layers (X). It is thought that it will be a good one depending on the situation.
Each member included in the laminate of the present embodiment will be described below.

<複合層>
本実施形態の積層板は、繊維基材と熱硬化性樹脂組成物の硬化物とを含有する複合層を2層以上含有する。
なお、本実施形態における複合層の数は整数値である。したがって、例えば、2層以上16層以下の複合層とは、2~16の数値範囲に含まれる整数値であり、この場合、複合層の数の下限値及び上限値は、数値範囲に含まれる整数値を用いて任意に組み合わせられる。
また、本実施形態における1層の複合層とは、1層の繊維基材と該繊維基材中に含有される熱硬化性樹脂組成物の硬化物とからなる複合層を意味する。
また、1層の繊維基材とは、熱硬化性樹脂組成物と複合化する前に1枚のシートとして取り扱えるものであり、繊維同士の絡み合い、繊維用の結合剤等によって、繊維が一体となった、間隙を有するシート状の基材である。
本実施形態の積層板(1)は、第1のガラス繊維から構成される第1の繊維基材を含有する複合層(X)と、第2のガラス繊維から構成される第2の繊維基材を含有する複合層(Y)を含有する。本実施形態の積層板(1)において、前記第1のガラス繊維が、前記第2のガラス繊維よりも、25℃における引張弾性率が高いものである。
本実施形態の積層板(2)は、第1のガラス繊維から構成される第1の繊維基材を含有する複合層(X)と、第2のガラス繊維から構成される第2の繊維基材を含有する複合層(Y)を含有する。本実施形態の積層板(2)において、前記第1のガラス繊維中におけるSiO及びAlの合計含有量が、前記第2のガラス繊維中におけるSiO及びAlの合計含有量よりも高いものである、
図1には、本実施形態の積層板が含有する複合層の一例の断面模式図が示されている。
図1に示す通り、複合層1は、繊維基材2と、熱硬化性樹脂組成物の硬化物3と、を含有するものである。
複合層1において、繊維基材2は、単繊維であるガラス繊維を集束してなるストランドに撚りをかけたヤーンを、経糸2aと緯糸2bとして交織してなるガラスクロスである。
繊維基材と熱硬化性樹脂組成物の好適な態様は後述する通りである。
<Composite layer>
The laminate of the present embodiment contains two or more composite layers containing a fiber base material and a cured product of a thermosetting resin composition.
Note that the number of composite layers in this embodiment is an integer value. Therefore, for example, a composite layer of 2 to 16 layers is an integer value included in the numerical range of 2 to 16. In this case, the lower limit and upper limit of the number of composite layers are included in the numerical range. Arbitrarily combined using integer values.
In addition, the one-layer composite layer in the present embodiment means a composite layer composed of one fiber base material and a cured product of the thermosetting resin composition contained in the fiber base material.
In addition, the one-layer fiber base material is one that can be handled as a single sheet before being combined with the thermosetting resin composition, and the fibers are integrated by the entanglement of the fibers, the binder for the fibers, etc. It is a sheet-like substrate having a gap.
The laminate (1) of the present embodiment comprises a composite layer (X) containing a first fiber base made of first glass fibers and a second fiber base made of second glass fibers. It contains a composite layer (Y) containing a material. In the laminate (1) of the present embodiment, the first glass fibers have a higher tensile modulus at 25°C than the second glass fibers.
The laminate (2) of the present embodiment comprises a composite layer (X) containing a first fiber base made of first glass fibers and a second fiber base made of second glass fibers. It contains a composite layer (Y) containing a material. In the laminate (2) of the present embodiment, the total content of SiO 2 and Al 2 O 3 in the first glass fibers is the total content of SiO 2 and Al 2 O 3 in the second glass fibers. is higher than quantity,
FIG. 1 shows a schematic cross-sectional view of an example of the composite layer contained in the laminate of the present embodiment.
As shown in FIG. 1, the composite layer 1 contains a fiber base material 2 and a cured product 3 of a thermosetting resin composition.
In the composite layer 1, the fiber base material 2 is a glass cloth obtained by interweaving yarns obtained by twisting strands of glass fibers, which are monofilaments, as warp yarns 2a and weft yarns 2b.
Preferred aspects of the fiber base material and the thermosetting resin composition are as described below.

<積層板の構成>
本実施形態の積層板が含有する複合層の合計層数は、積層板の用途に応じて適宜調整すればよいが、積層板の機械強度を良好にする観点からは、3層以上が好ましく、4層以上がより好ましく、5層以上がさらに好ましい。また、複合層の合計層数は、プリント配線板の小型化及び積層板の加工性等の観点からは、20層以下が好ましく、18層以下がより好ましく、16層以下がさらに好ましい。
<Structure of laminate>
The total number of composite layers contained in the laminate of the present embodiment may be appropriately adjusted according to the application of the laminate, but from the viewpoint of improving the mechanical strength of the laminate, it is preferably 3 or more layers, More preferably 4 layers or more, more preferably 5 layers or more. The total number of composite layers is preferably 20 layers or less, more preferably 18 layers or less, and even more preferably 16 layers or less, from the viewpoints of miniaturization of the printed wiring board and workability of the laminate.

本実施形態の積層板が含有する複合層(X)の層数は、特に限定されないが、反りを良好にする観点からは、2層以上が好ましい。また、複合層(X)の層数は、プリント配線板の小型化及び積層板の加工性等の観点からは、16層以下が好ましく、15層以下がより好ましく、14層以下がさらに好ましい。
本実施形態の積層板中に占める複合層(X)の体積比率は、特に限定されないが、反りを良好にする観点からは、50体積%以上が好ましく、55体積%以上がより好ましく、60体積%以上がさらに好ましい。また、複合層(X)の体積比率は、プリント配線板の小型化及び積層板の加工性等の観点からは、95体積%以下が好ましく、90体積%以下がより好ましく、88体積%以下がさらに好ましい。
The number of layers of the composite layer (X) contained in the laminate of the present embodiment is not particularly limited, but from the viewpoint of improving warpage, two or more layers are preferable. The number of layers of the composite layer (X) is preferably 16 layers or less, more preferably 15 layers or less, and even more preferably 14 layers or less, from the viewpoints of miniaturization of the printed wiring board and workability of the laminate.
The volume ratio of the composite layer (X) in the laminate of the present embodiment is not particularly limited, but from the viewpoint of improving warpage, it is preferably 50% by volume or more, more preferably 55% by volume or more, and 60% by volume. % or more is more preferable. In addition, the volume ratio of the composite layer (X) is preferably 95% by volume or less, more preferably 90% by volume or less, and 88% by volume or less from the viewpoint of miniaturization of the printed wiring board and workability of the laminate. More preferred.

本実施形態の積層板が含有する複合層(Y)の層数は、特に限定されないが、接続信頼性の観点からは、1層以上が好ましく、2層以上がより好ましい。また、複合層(Y)の層数は、積層板の高弾性率化及び低熱膨張化の観点からは、6層以下が好ましく、5層以下がより好ましく、4層以下がさらに好ましい。
本実施形態の積層板中に占める複合層(Y)の体積比率は、特に限定されないが、積層板の接続信頼性の観点からは、5体積%以上が好ましく、10体積%以上がより好ましく、12体積%以上がさらに好ましい。また、複合層(Y)の体積比率は、反りを良好にする観点からは、50体積%以下が好ましく、45体積%以下がより好ましく、40体積%以下がさらに好ましい。
The number of composite layers (Y) contained in the laminate of the present embodiment is not particularly limited, but from the viewpoint of connection reliability, it is preferably one or more, more preferably two or more. The number of layers of the composite layer (Y) is preferably 6 or less, more preferably 5 or less, and still more preferably 4 or less, from the viewpoint of increasing the modulus of elasticity and reducing the thermal expansion of the laminate.
The volume ratio of the composite layer (Y) in the laminate of the present embodiment is not particularly limited, but from the viewpoint of the connection reliability of the laminate, it is preferably 5% by volume or more, more preferably 10% by volume or more. 12% by volume or more is more preferable. Moreover, the volume ratio of the composite layer (Y) is preferably 50% by volume or less, more preferably 45% by volume or less, and even more preferably 40% by volume or less, from the viewpoint of improving warpage.

本実施形態の積層板が含有する複合層(X)の層数は、反りを良好にする観点からは、複合層(Y)の層数よりも多いことが好ましい。
複合層(X)の層数と、複合層(Y)の層数との差〔複合層(X)-複合層(Y)〕は、特に限定されないが、反りを良好にする観点からは、1層以上が好ましく、2層以上がより好ましく、3層以上がさらに好ましい。また、上記層数の差は、プリント配線板の小型化及び積層板の加工性等の観点からは、15層以下が好ましく、14層以下がより好ましく、13層以下がさらに好ましい。
The number of layers of the composite layer (X) contained in the laminate of the present embodiment is preferably larger than the number of layers of the composite layer (Y) from the viewpoint of improving warpage.
The difference between the number of layers of the composite layer (X) and the number of layers of the composite layer (Y) [composite layer (X) - composite layer (Y)] is not particularly limited, but from the viewpoint of improving warpage, One or more layers are preferred, two or more layers are more preferred, and three or more layers are even more preferred. The difference in the number of layers is preferably 15 layers or less, more preferably 14 layers or less, and even more preferably 13 layers or less, from the viewpoint of miniaturization of the printed wiring board, workability of the laminate, and the like.

本実施形態の積層板が含有する複合層の一層当たりの厚さは、特に限定されないが、絶縁信頼性、加工性等の観点からは、0.01mm以上が好ましく、0.02mm以上がより好ましく、0.025mm以上がさらに好ましい。また、複合層の一層当たりの厚さは、プリント配線板の薄型化の観点からは、0.5mm以下が好ましく、0.3mm以下がより好ましく、0.2mm以下がさらに好ましい。 The thickness of each composite layer contained in the laminate of the present embodiment is not particularly limited, but from the viewpoint of insulation reliability, workability, etc., it is preferably 0.01 mm or more, more preferably 0.02 mm or more. , more preferably 0.025 mm or more. In addition, the thickness of each composite layer is preferably 0.5 mm or less, more preferably 0.3 mm or less, and even more preferably 0.2 mm or less, from the viewpoint of thinning the printed wiring board.

本実施形態の積層板の厚さは、特に限定されないが、積層板の機械強度、加工性等の観点からは、0.3mm以上が好ましく、0.4mm以上がより好ましく、0.5mm以上がさらに好ましい。また、積層板の厚さは、プリント配線板の薄型化の観点からは、5mm以下が好ましく、3mm以下がより好ましく、2mm以下がさらに好ましく、1.6mm以下が特に好ましい。
なお、上記積層板の厚さには、後述する任意で設けてもよい外層の金属箔等の厚さは含めないものとする。
The thickness of the laminate of the present embodiment is not particularly limited, but from the viewpoint of mechanical strength, workability, etc. of the laminate, it is preferably 0.3 mm or more, more preferably 0.4 mm or more, and 0.5 mm or more. More preferred. Moreover, the thickness of the laminate is preferably 5 mm or less, more preferably 3 mm or less, even more preferably 2 mm or less, and particularly preferably 1.6 mm or less, from the viewpoint of thinning the printed wiring board.
It should be noted that the thickness of the laminated plate does not include the thickness of the metal foil or the like of the outer layer, which may be provided arbitrarily, as described later.

本実施形態の積層板は、複合層(X)を1層以上、複合層(Y)を2層以上含有し、少なくとも1層の複合層(X)が、2層の複合層(Y)の間に配されてなる積層部(以下、「サンドイッチ積層部」ともいう)を少なくとも一部に有することが好ましい。 The laminate of the present embodiment contains one or more composite layers (X) and two or more composite layers (Y), and at least one composite layer (X) is composed of two composite layers (Y). It is preferable to have at least a part of the laminated portion (hereinafter, also referred to as a “sandwich laminated portion”) interposed therebetween.

図2及び図3に、サンドイッチ積層部の一例を示す。
図2に示すサンドイッチ積層部4Aは、2層の複合層(Y)の間に1層の複合層(X)が配された構成を有する。
図3に示すサンドイッチ積層部4Bは、2層の複合層(Y)の間に10層の複合層(X)が配された構成を有する。
2 and 3 show an example of a sandwich laminate.
The sandwich laminated part 4A shown in FIG. 2 has a structure in which one composite layer (X) is arranged between two composite layers (Y).
The sandwich laminated portion 4B shown in FIG. 3 has a structure in which ten composite layers (X) are arranged between two composite layers (Y).

サンドイッチ積層部において、両側2層の複合層(Y)の間に配される複合層(X)の層数は、特に限定されないが、反りを良好にする観点からは、2層以上が好ましく、3層以上がより好ましく、4層以上がさらに好ましい。また、両側2層の複合層(Y)の間に配される複合層(X)の層数は、特に限定されないが、プリント配線板の小型化及び積層板の加工性等の観点からは、16層以下が好ましく、15層以下がより好ましく、14層以下がさらに好ましい。 In the sandwich laminate, the number of layers of the composite layer (X) arranged between the two layers of the composite layer (Y) on both sides is not particularly limited, but from the viewpoint of improving the warp, two or more layers are preferable. Three or more layers are more preferred, and four or more layers are even more preferred. In addition, the number of layers of the composite layer (X) arranged between the two composite layers (Y) on both sides is not particularly limited. 16 layers or less are preferable, 15 layers or less are more preferable, and 14 layers or less are even more preferable.

本実施形態の積層板は、サンドイッチ積層部を、積層板の少なくとも一部に有することが好ましく、サンドイッチ積層部のみから構成されるものであってもよい。
サンドイッチ積層部を、積層板の少なくとも一部に有するものの例としては、例えば、サンドイッチ積層部を構成する両側又は片側の複合層(Y)よりも、外側に複合層(X)及び複合層(Y)からなる群から選択される1層以上を有するものが挙げられる。
図4及び図5に、サンドイッチ積層部を積層板の一部に有するものの一例を示す。
図4には、サンドイッチ積層部4Bを構成する両側の複合層(Y)よりも外側に1層ずつの複合層(Y)を有する積層板10が示されている。
図5には、サンドイッチ積層部4Bを構成する両側の複合層(Y)よりも外側に1層ずつの複合層(X)を有する積層板11が示されている。
サンドイッチ積層部のみから構成されるものの例としては、例えば、図2及び図3に示されるサンドイッチ積層部4A又は4Bのみから構成される積層板等が挙げられる。
The laminated plate of the present embodiment preferably has a sandwich laminated portion in at least a portion of the laminated plate, and may be composed only of the sandwich laminated portion.
Examples of those having a sandwich laminated portion in at least a part of a laminated plate include, for example, a composite layer (X) and a composite layer (Y ) having one or more layers selected from the group consisting of
4 and 5 show an example of a laminate having a sandwich laminate as a part of the laminate.
FIG. 4 shows a laminated plate 10 having one composite layer (Y) outside the composite layers (Y) on both sides constituting the sandwich laminate portion 4B.
FIG. 5 shows a laminated plate 11 having one composite layer (X) outside the composite layers (Y) on both sides constituting the sandwich laminate portion 4B.
As an example of the one composed only of the sandwich laminate portion, there is a laminated plate composed only of the sandwich laminate portion 4A or 4B shown in FIGS. 2 and 3, for example.

本実施形態の積層板は、複合層(Y)を2層以上含有する積層板であり、該積層板の両面の最表層が複合層(Y)であることが好ましい。
このとき、両側の最表層の複合層(Y)の間に配される複合層は、少なくとも1層の複合層(X)を含有するものであればよく、1層以上の複合層(X)と1層以上の複合層(Y)との組み合わせであってもよいが、1層以上の複合層(X)のみであることが好ましい。
すなわち、本実施形態の積層板は、複合層(X)を1層以上、複合層(Y)を2層のみ含有する積層板であり、該積層板の両側の最表層が複合層(Y)であることが好ましい(以下、当該態様を「サンドイッチ積層板」とも称する。サンドイッチ積層板は、上記したサンドイッチ積層部のみから構成される積層板に相当するものである)。
The laminate of the present embodiment is a laminate containing two or more composite layers (Y), and the outermost layer on both sides of the laminate is preferably the composite layer (Y).
At this time, the composite layer disposed between the outermost composite layers (Y) on both sides may contain at least one composite layer (X), and one or more composite layers (X) and one or more composite layers (Y), but preferably one or more composite layers (X) alone.
That is, the laminate of the present embodiment is a laminate containing only one or more composite layers (X) and two composite layers (Y), and the outermost layer on both sides of the laminate is the composite layer (Y). (This aspect is hereinafter also referred to as a "sandwich laminate". A sandwich laminate corresponds to a laminate composed only of the sandwich laminate portion described above).

サンドイッチ積層板において、両側2層の複合層(Y)の間に配される複合層(X)の層数は、上記したサンドイッチ積層部における好ましい範囲と同じである。
また、最表層の複合層(Y)1層が、本実施形態の積層板中に占める体積比率は、特に限定されないが、接続信頼性の観点からは、3体積%以上が好ましく、5体積%以上がより好ましく、6体積%以上がさらに好ましい。また、最表層の複合層(Y)1層が、本実施形態の積層板中に占める体積比率は、特に限定されないが、反りを良好にする観点からは、25体積%以下が好ましい。
In the sandwich laminate, the number of composite layers (X) arranged between the two composite layers (Y) on both sides is the same as the preferred range for the above-described sandwich laminate.
In addition, the volume ratio of the outermost composite layer (Y) in the laminate of the present embodiment is not particularly limited, but from the viewpoint of connection reliability, it is preferably 3% by volume or more, and 5% by volume. The above is more preferable, and 6% by volume or more is even more preferable. The volume ratio of the composite layer (Y), which is the outermost layer, in the laminate of the present embodiment is not particularly limited, but is preferably 25% by volume or less from the viewpoint of improving warpage.

図6に、サンドイッチ積層板の一例を示す。
図6に示すサンドイッチ積層板12は、両側2層の複合層(Y)の間に12層の複合層(X)が配された構成を有する。
FIG. 6 shows an example of a sandwich laminate.
The sandwich laminate plate 12 shown in FIG. 6 has a structure in which 12 composite layers (X) are arranged between two composite layers (Y) on both sides.

本実施形態の積層板において、複合層(X)を2層以上含有する場合、2層以上の複合層(X)同士は同一のものであっても、異なるものであってもよい。
また、本実施形態の積層板において、複合層(Y)を2層以上含有する場合、2層以上の複合層(Y)同士は同一のものであっても、異なるものであってもよい。
例えば、図3に示したサンドイッチ積層部4A、及び図6に示したサンドイッチ積層板12の場合、両側2層の複合層(Y)同士は、厚さ等の構造、弾性率等の物性、組成などが互いに同一であっても異なっていてもよい。同様に、両側2層の複合層(Y)の間に配された2層以上の複合層(X)同士は、厚さ等の構造、弾性率等の物性、組成などが互いに同一であっても異なっていてもよい。
When the laminate of the present embodiment contains two or more composite layers (X), the two or more composite layers (X) may be the same or different.
When the laminate of the present embodiment contains two or more composite layers (Y), the two or more composite layers (Y) may be the same or different.
For example, in the case of the sandwich laminate portion 4A shown in FIG. 3 and the sandwich laminate plate 12 shown in FIG. etc. may be the same or different. Similarly, the two or more composite layers (X) disposed between the two composite layers (Y) on both sides are identical in structure such as thickness, physical properties such as elastic modulus, and composition. may also be different.

以上の積層板の構成は本実施形態の積層板の一例であり、本実施形態はこれらの構成を有する積層板に限定されるものではない。
次に、本実施形態の複合層を構成する材料の好適な態様について説明する。
The configuration of the laminate described above is an example of the laminate of this embodiment, and this embodiment is not limited to laminates having these configurations.
Next, preferred aspects of the material that constitutes the composite layer of this embodiment will be described.

<繊維基材>
繊維基材の形状としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用でき、例えば、経糸と緯糸が交織されてなる織布(すなわち、ガラスクロス)、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状が挙げられる。これらの中でも、繊維基材はガラスクロスであることが好ましい。
繊維基材は、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性、加工性等の面から好適である。
<Fibrous base material>
As the shape of the fiber base material, well-known shapes used for various laminates for electrical insulating materials can be used. , chopped strand mat, surfacing mat and the like. Among these, the fiber base material is preferably glass cloth.
The fiber substrate is preferably surface-treated with a silane coupling agent or the like or mechanically fiber-opened from the standpoint of heat resistance, moisture resistance, processability, and the like.

繊維基材の厚さは、特に限定されないが、絶縁信頼性、加工性等の観点からは、0.01mm以上が好ましく、0.02mm以上がより好ましく、0.025mm以上がさらに好ましい。また、繊維基材の厚さは、プリント配線板の薄型化の観点からは、0.5mm以下が好ましく、0.3mm以下がより好ましく、0.2mm以下がさらに好ましい。 Although the thickness of the fiber base material is not particularly limited, it is preferably 0.01 mm or more, more preferably 0.02 mm or more, and even more preferably 0.025 mm or more from the viewpoint of insulation reliability, processability, and the like. Moreover, the thickness of the fiber base material is preferably 0.5 mm or less, more preferably 0.3 mm or less, and even more preferably 0.2 mm or less, from the viewpoint of thinning the printed wiring board.

<ガラス繊維>
次に、繊維基材を構成するガラス繊維について説明する。
なお、以下の説明は、特に断らない限り、第1のガラス繊維及び第2のガラス繊維に共通する説明であり、単に「ガラス繊維」と称する場合、第1のガラス繊維及び第2のガラス繊維の両者を指すものとする。
<Glass fiber>
Next, the glass fibers constituting the fiber base material will be described.
In addition, unless otherwise specified, the following description is common to the first glass fiber and the second glass fiber. shall refer to both

ガラス繊維は、特に限定されるものではないが、例えば、数10~数100本が集束されたストランド又はストランドに撚りをかけたヤーンとして用いられることが好ましく、本実施形態に用いる繊維基材は、上記ヤーンを経糸と緯糸として交織してなるガラスクロスであることが好ましい。
ガラス繊維の単繊維径は、特に限定されないが、2~12μmが好ましく、3~11μmがより好ましく、4~10μmがさらに好ましい。
ガラス繊維の集束本数は、特に限定されないが、40~1000本が好ましく、45~700本がより好ましく、50~400本がさらに好ましい。
The glass fiber is not particularly limited, but for example, it is preferably used as a strand in which several tens to several hundreds are bundled or as a yarn twisted to the strand. A glass cloth obtained by interweaving the above yarns as warp and weft is preferable.
The single fiber diameter of the glass fiber is not particularly limited, but is preferably 2 to 12 μm, more preferably 3 to 11 μm, and even more preferably 4 to 10 μm.
The number of bundled glass fibers is not particularly limited, but is preferably 40 to 1,000, more preferably 45 to 700, and even more preferably 50 to 400.

(ガラス繊維の引張弾性率)
本実施形態の積層板(1)においては、第1のガラス繊維は、第2のガラス繊維よりも25℃における引張弾性率(以下、単に「引張弾性率」と記載する場合は、25℃における引張弾性率を示す。)が高いものであり、本実施形態の積層板(2)においても、第1のガラス繊維は、第2のガラス繊維よりも引張弾性率が高いことが好ましい。
(tensile modulus of glass fiber)
In the laminate (1) of the present embodiment, the first glass fiber has a higher tensile modulus at 25°C than the second glass fiber (hereinafter simply referred to as "tensile modulus" at 25°C). ) is high, and also in the laminate (2) of the present embodiment, the first glass fiber preferably has a higher tensile modulus than the second glass fiber.

ガラス繊維の引張弾性率は、特に限定されないが、第1のガラス繊維の引張弾性率は、80GPa以上が好ましく、第2のガラス繊維の引張弾性率は、80GPa未満が好ましい。第1及び第2のガラス繊維の引張弾性率が上記範囲であると、得られる積層板は、より一層、発明の効果に優れるものとなる。 The tensile modulus of the glass fiber is not particularly limited, but the tensile modulus of the first glass fiber is preferably 80 GPa or more, and the tensile modulus of the second glass fiber is preferably less than 80 GPa. When the tensile modulus of elasticity of the first and second glass fibers is within the above range, the resulting laminated board is even more excellent in the effects of the invention.

上記と同様の観点から、第1のガラス繊維の引張弾性率は、82GPa以上がより好ましく、84GPa以上がさらに好ましく、85GPa以上が特に好ましい。また、第1のガラス繊維の引張弾性率は、ドリル加工性及び絶縁信頼性を良好に保つ観点からは、110GPa以下が好ましく、100GPa以下がより好ましく、90GPa以下がさらに好ましい。
また、上記と同様の観点から、第2のガラス繊維の引張弾性率は、79GPa未満がより好ましく、78GPa未満がさらに好ましく、75GPa未満が特に好ましい。また、第2のガラス繊維の引張弾性率は、ドリル加工性及び絶縁信頼性を良好に保つ観点からは、53GPa以上が好ましく、69GPa以上がより好ましく、70GPa以上がさらに好ましい。
なお、ガラス繊維の25℃における引張弾性率は、例えば、モノフィラメントを測定対象としてテンシロンを用いて公知の引張弾性率の測定方法によって測定することができる。
From the same viewpoint as above, the tensile modulus of the first glass fiber is more preferably 82 GPa or more, further preferably 84 GPa or more, and particularly preferably 85 GPa or more. In addition, the tensile modulus of the first glass fiber is preferably 110 GPa or less, more preferably 100 GPa or less, and even more preferably 90 GPa or less, from the viewpoint of maintaining good drillability and insulation reliability.
From the same viewpoint as above, the tensile modulus of the second glass fiber is more preferably less than 79 GPa, still more preferably less than 78 GPa, and particularly preferably less than 75 GPa. In addition, the tensile modulus of the second glass fiber is preferably 53 GPa or more, more preferably 69 GPa or more, and even more preferably 70 GPa or more, from the viewpoint of keeping good drillability and insulation reliability.
The tensile elastic modulus of glass fiber at 25° C. can be measured by a known tensile elastic modulus measuring method using Tensilon, for example, using a monofilament as an object to be measured.

上記と同様の観点から、前記第1のガラス繊維と前記第2のガラス繊維の25℃における引張弾性率の差は、10GPa以上が好ましく、11GPa以上がより好ましく、12GPa以上がさらに好ましい。 From the same viewpoint as above, the difference in tensile elastic modulus at 25° C. between the first glass fiber and the second glass fiber is preferably 10 GPa or more, more preferably 11 GPa or more, and even more preferably 12 GPa or more.

(ガラス繊維の組成)
第2のガラス繊維中におけるSiOの含有量に対するAlの含有量の比〔Alの含有量/SiOの含有量〕(質量基準)は、0.35以下であることが好ましく、0.32以下であることがより好ましく、0.30以下であることがさらに好ましい。SiOの含有量に対するAlの含有量の比がこの範囲であれば、より接続信頼性に優れた積層板が得られる。
(Composition of glass fiber)
The ratio of the content of Al 2 O 3 to the content of SiO 2 in the second glass fiber [content of Al 2 O 3 /content of SiO 2 ] (based on mass) is 0.35 or less. is preferred, 0.32 or less is more preferred, and 0.30 or less is even more preferred. If the ratio of the content of Al 2 O 3 to the content of SiO 2 is within this range, a laminate with more excellent connection reliability can be obtained.

第1のガラス繊維中におけるSiO及びAlの合計含有量は、特に限定されないが、80質量%以上が好ましく、第2のガラス繊維中におけるSiO及びAlの合計含有量は、特に限定されないが、80質量%未満が好ましい。第1及び第2のガラス繊維中におけるSiO及びAlの合計含有量が上記範囲であると、得られる積層板は、より一層、接続信頼性及び反りに優れるものとなる。The total content of SiO 2 and Al 2 O 3 in the first glass fiber is not particularly limited, but is preferably 80% by mass or more, and the total content of SiO 2 and Al 2 O 3 in the second glass fiber is not particularly limited, but is preferably less than 80% by mass. When the total content of SiO 2 and Al 2 O 3 in the first and second glass fibers is within the above range, the resulting laminate will be even more excellent in connection reliability and warpage.

上記と同様の観点から、第1のガラス繊維中におけるSiO及びAlの合計含有量は、81質量%以上がより好ましく、82質量%以上がさらに好ましい。また、第1のガラス繊維中におけるSiO及びAlの合計含有量は、ドリル加工性及び絶縁信頼性を良好に保つ観点からは、96質量%以下が好ましく、94質量%以下がより好ましく、92質量%以下がさらに好ましく、90質量%以下が特に好ましい。
また、上記と同様の観点から、第2のガラス繊維中におけるSiO及びAlの合計含有量は、78質量%未満がより好ましく、76質量%未満がさらに好ましく、74質量%未満が特に好ましい。また、第2のガラス繊維中におけるSiO及びAlの合計含有量は、積層板を高弾性率化及び低熱膨張化する観点からは、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上がさらに好ましい。
From the same viewpoint as above, the total content of SiO 2 and Al 2 O 3 in the first glass fiber is more preferably 81% by mass or more, and even more preferably 82% by mass or more. In addition, the total content of SiO 2 and Al 2 O 3 in the first glass fiber is preferably 96% by mass or less, more preferably 94% by mass or less, from the viewpoint of maintaining good drillability and insulation reliability. It is preferably 92 mass % or less, more preferably 90 mass % or less.
Also, from the same viewpoint as above, the total content of SiO 2 and Al 2 O 3 in the second glass fiber is more preferably less than 78% by mass, still more preferably less than 76% by mass, and less than 74% by mass. Especially preferred. Further, the total content of SiO 2 and Al 2 O 3 in the second glass fiber is preferably 50% by mass or more, more preferably 55% by mass or more, from the viewpoint of increasing the elastic modulus and decreasing the thermal expansion of the laminate. More preferably, 60% by mass or more is even more preferable.

第1のガラス繊維は、上記SiO及びAlの合計含有量を充足するものであり、且つ、Alの含有量は、20質量%以上が好ましく、20~30質量%がより好ましく、20~25質量%がさらに好ましい。
第2のガラス繊維は、上記SiO及びAlの合計含有量を充足するものであり、且つ、Alの含有量は、24質量%未満が好ましく、22質量%未満がより好ましく、20質量%未満がさらに好ましい。
The first glass fiber satisfies the total content of SiO 2 and Al 2 O 3 , and the content of Al 2 O 3 is preferably 20% by mass or more, and 20 to 30% by mass. More preferably, 20 to 25% by mass is even more preferable.
The second glass fiber satisfies the total content of SiO 2 and Al 2 O 3 , and the content of Al 2 O 3 is preferably less than 24% by mass, more preferably less than 22% by mass. Preferably, less than 20% by mass is more preferable.

ガラス繊維は、SiO及びAl以外にも、Fe、B、CaO、MgO、NaO、KO、LiO、TiO、ZnO、ZrO、F等のその他の成分を含有していてもよい。ガラス繊維が含有するSiO及びAl以外の成分は、上記その他の成分のうちの1種以上であることが好ましい。
これらの中でも、第1のガラス繊維は、上記SiO及びAlの合計含有量を充足するものであり、且つ、MgOの含有量は、8質量%以上が好ましく、9質量%以上がより好ましく、10質量%以上がさらに好ましい。また、第2のガラス繊維は、上記SiO及びAlの合計含有量を充足するものであり、且つ、MgOの含有量は、8質量%未満が好ましく、7質量%未満がより好ましい。
Glass fibers include Fe2O3 , B2O3 , CaO, MgO, Na2O , K2O , Li2O , TiO2 , ZnO , ZrO2 , F, in addition to SiO2 and Al2O3 . 2 or the like may be contained. Components other than SiO 2 and Al 2 O 3 contained in the glass fiber are preferably one or more of the above other components.
Among these, the first glass fiber satisfies the total content of SiO 2 and Al 2 O 3 , and the content of MgO is preferably 8% by mass or more, and 9% by mass or more. More preferably, 10% by mass or more is even more preferable. In addition, the second glass fiber satisfies the total content of SiO 2 and Al 2 O 3 , and the content of MgO is preferably less than 8% by mass, more preferably less than 7% by mass. .

(ガラス繊維の熱膨張率)
ガラス繊維の熱膨張率は、特に限定されないが、第1のガラス繊維の熱膨張率は、4.0ppm/℃未満であることが好ましい。第1のガラス繊維の熱膨張率が上記範囲であると、得られる積層板は、より一層、低熱膨張性及び高弾性率を有する。同様の観点から、第1のガラス繊維の熱膨張率は、3.8ppm/℃未満が好ましく、3.5ppm/℃未満がより好ましく、3.0ppm/℃未満がさらに好ましい。また、第1のガラス繊維の熱膨張率は、他の物性とのバランスを考慮して、2.0ppm/℃以上であってもよく、2.3ppm/℃以上であってもよく、2.5ppm/℃以上であってもよい。
(Thermal expansion coefficient of glass fiber)
The coefficient of thermal expansion of the glass fiber is not particularly limited, but the coefficient of thermal expansion of the first glass fiber is preferably less than 4.0 ppm/°C. When the coefficient of thermal expansion of the first glass fiber is within the above range, the laminate obtained has even lower thermal expansion and a higher elastic modulus. From the same point of view, the coefficient of thermal expansion of the first glass fiber is preferably less than 3.8 ppm/°C, more preferably less than 3.5 ppm/°C, and even more preferably less than 3.0 ppm/°C. In addition, the coefficient of thermal expansion of the first glass fiber may be 2.0 ppm/° C. or more, or 2.3 ppm/° C. or more, in consideration of the balance with other physical properties. It may be 5 ppm/°C or more.

第2のガラス繊維の熱膨張率も、積層板の熱膨張率を低くする観点から小さい程好ましい。同様の観点から、第2のガラス繊維の熱膨張率は、6.5ppm/℃未満が好ましく、6.0ppm/℃未満がより好ましく、5.7ppm/℃未満がさらに好ましい。一方、第2のガラス繊維の熱膨張率は、その組成、他の物性とのバランスを考慮すると、第1のガラス繊維の熱膨張率よりも大きくなる傾向にある。そのような観点からは、第2のガラス繊維の熱膨張率は、4.0ppm/℃以上であってもよく、4.5ppm/℃以上であってもよく、5.0ppm/℃以上であってもよく、5.3ppm/℃以上であってもよい。 The thermal expansion coefficient of the second glass fiber is also preferably as small as possible from the viewpoint of lowering the thermal expansion coefficient of the laminate. From the same point of view, the coefficient of thermal expansion of the second glass fiber is preferably less than 6.5 ppm/°C, more preferably less than 6.0 ppm/°C, and even more preferably less than 5.7 ppm/°C. On the other hand, the coefficient of thermal expansion of the second glass fiber tends to be higher than that of the first glass fiber, considering its composition and balance with other physical properties. From such a point of view, the coefficient of thermal expansion of the second glass fiber may be 4.0 ppm/°C or higher, 4.5 ppm/°C or higher, or 5.0 ppm/°C or higher. may be 5.3 ppm/° C. or higher.

(ガラス繊維の種類)
繊維基材を構成するガラス繊維としては、Eガラス、Sガラス、Cガラス、Dガラス、Tガラス、NEガラス、Aガラス、Hガラス、石英ガラス等が挙げられ、これらの中から、上記した第1のガラス繊維、第2のガラス繊維として好ましい物性、組成等を考慮して、適宜選択すればよい。
(type of glass fiber)
Examples of the glass fiber constituting the fiber base material include E glass, S glass, C glass, D glass, T glass, NE glass, A glass, H glass, quartz glass, and the like. The material may be appropriately selected in consideration of the physical properties, composition, etc., that are preferable for the first glass fiber and the second glass fiber.

なお、Eガラス、Sガラス、Cガラス、Dガラス、Tガラス、NEガラスの代表的な組成は次の通りである。
Eガラス:SiO(52~56質量%)、Al(12~16質量%)、Fe(0~0.8質量%)、B(5~10質量%)、CaO(16~25質量%)、MgO(0~6質量%)、NaO+KO(0~2質量%)、TiO(0~1.5質量%)、F(0~1質量%)
Sガラス:SiO(62~65質量%)、Al(20~25質量%)、CaO(0~0.01質量%)、MgO(10~15質量%)、B(0~0.01質量%)、NaO及びKO(0~1質量%)
Cガラス:SiO(65質量%)、Al(4質量%)、B(5質量%)、CaO(7質量%)、MgO(3質量%)、NaO(11質量%)、KO(1質量%)、LiO(0.5質量%)、ZnO(3.5質量%)
Dガラス:SiO(74質量%)、Al(0.5質量%)、B(22質量%)、CaO(0.5質量%)、NaO(1質量%)、KO(1.5質量%)、LiO(0.5質量%)、
Tガラス:SiO(64~66質量%)、Al(24~26質量%)、MgO(9~11質量%)
NEガラス:SiO(52~56質量%)、CaO(0~10質量%)、Al(10~15質量%)、B(15~20質量%)、MgO(0~5質量%)、NaO+KO(0~1質量%)、TiO(0.5~5質量%)
Typical compositions of E-glass, S-glass, C-glass, D-glass, T-glass and NE-glass are as follows.
E glass: SiO 2 (52 to 56% by mass), Al 2 O 3 (12 to 16% by mass), Fe 2 O 3 (0 to 0.8% by mass), B 2 O 3 (5 to 10% by mass) , CaO (16-25% by mass), MgO (0-6% by mass), Na 2 O + K 2 O (0-2% by mass), TiO 2 (0-1.5% by mass), F 2 (0-1 mass%)
S glass: SiO 2 (62 to 65% by mass), Al 2 O 3 (20 to 25% by mass), CaO (0 to 0.01% by mass), MgO (10 to 15% by mass), B 2 O 3 ( 0-0.01% by weight), Na 2 O and K 2 O (0-1% by weight)
C glass: SiO 2 (65% by mass), Al 2 O 3 (4% by mass), B 2 O 3 (5% by mass), CaO (7% by mass), MgO (3% by mass), Na 2 O (11% by mass) % by mass), K 2 O (1% by mass), Li 2 O (0.5% by mass), ZnO (3.5% by mass)
D glass: SiO2 (74% by mass), Al2O3 ( 0.5% by mass) , B2O3 ( 22% by mass), CaO (0.5% by mass), Na2O (1% by mass) , K2O ( 1.5% by weight), Li2O ( 0.5% by weight),
T glass: SiO 2 (64-66% by mass), Al 2 O 3 (24-26% by mass), MgO (9-11% by mass)
NE glass: SiO 2 (52-56% by mass), CaO (0-10% by mass), Al 2 O 3 (10-15% by mass), B 2 O 3 (15-20% by mass), MgO (0- 5% by mass), Na 2 O + K 2 O (0 to 1% by mass), TiO 2 (0.5 to 5% by mass)

これらの材質を有するガラス繊維の中でも、第1のガラス繊維は、Sガラスであることが好ましく、第2のガラス繊維は、Eガラスであることが好ましい。
すなわち、本実施形態の積層板に用いる第1の繊維基材は、Sガラス繊維から構成される繊維基材であることが好ましく、第2の繊維基材は、Eガラス繊維から構成される繊維基材であることが好ましい。
また、第1の繊維基材は、Sガラス繊維から構成されるガラスクロス(以下、「Sガラスクロス」ともいう)であることがより好ましく、第2の繊維基材は、Eガラス繊維から構成されるガラスクロス(以下、「Eガラスクロス」ともいう)であることがより好ましい。
Sガラスクロス及びEガラスクロスは、各々、Sガラス繊維及びEガラス繊維以外のガラス繊維を含有していてもよいが、その含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、含有していないことが特に好ましい。
Among the glass fibers having these materials, the first glass fiber is preferably S glass, and the second glass fiber is preferably E glass.
That is, the first fiber base material used in the laminate of the present embodiment is preferably a fiber base material made of S glass fiber, and the second fiber base material is a fiber made of E glass fiber. It is preferably a substrate.
Further, it is more preferable that the first fiber base material is glass cloth made of S glass fiber (hereinafter also referred to as "S glass cloth"), and the second fiber base material is made of E glass fiber. It is more preferable that the glass cloth (hereinafter also referred to as “E glass cloth”) is used.
The S glass cloth and the E glass cloth may contain glass fibers other than the S glass fiber and the E glass fiber, respectively, but the content thereof is preferably 10% by mass or less, more preferably 5% by mass or less. , 1% by mass or less is more preferable, and it is particularly preferable not to contain.

<熱硬化性樹脂組成物>
複合層の形成に用いられる熱硬化性樹脂組成物としては、熱硬化性樹脂を含有するものであれば特に制限されず、必要に応じて、硬化剤、硬化促進剤、無機充填材等を含有していてもよい。以下、熱硬化性樹脂組成物に含有される各成分について説明する。
<Thermosetting resin composition>
The thermosetting resin composition used for forming the composite layer is not particularly limited as long as it contains a thermosetting resin, and if necessary, it contains a curing agent, a curing accelerator, an inorganic filler, etc. You may have Each component contained in the thermosetting resin composition will be described below.

(熱硬化性樹脂)
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、変性シリコーン樹脂、トリアジン樹脂、メラミン樹脂、尿素樹脂、フラン樹脂等が挙げられる。これらの中でも、変性シリコーン樹脂、エポキシ樹脂が好ましい。
熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Thermosetting resin)
Thermosetting resins include epoxy resins, phenolic resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, and modified silicone resins. , triazine resin, melamine resin, urea resin, furan resin and the like. Among these, modified silicone resins and epoxy resins are preferred.
Thermosetting resins may be used alone or in combination of two or more.

〔変性シリコーン樹脂〕
変性シリコーン樹脂は、第1級アミノ基を有するシロキサン化合物(A)(以下、「シロキサン化合物(A)」ともいう)と、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(B)(以下、「マレイミド化合物(B)」ともいう)とを反応させてなるものが好ましく、さらに、酸性置換基を有するアミン化合物(C)及び1分子中に少なくとも2個の第1級アミノ基を有するアミン化合物(D)(以下、「アミン化合物(D)」ともいう)からなる群から選択される1種以上を反応させてなるものがより好ましい。
[Modified silicone resin]
The modified silicone resin includes a siloxane compound (A) having a primary amino group (hereinafter also referred to as "siloxane compound (A)") and a maleimide compound having at least two N-substituted maleimide groups in one molecule ( B) (hereinafter also referred to as "maleimide compound (B)") is preferably reacted, and furthermore, an amine compound (C) having an acidic substituent and at least two primary amino groups in one molecule More preferably, one or more selected from the group consisting of amine compounds (D) having groups (hereinafter also referred to as "amine compounds (D)") are reacted.

-シロキサン化合物(A)-
シロキサン化合物(A)は、第1級アミノ基を有するシロキサン化合物であり、下記一般式(A-1)で表される化合物が好ましい。
- Siloxane compound (A) -
The siloxane compound (A) is a siloxane compound having a primary amino group, and is preferably a compound represented by the following general formula (A-1).

Figure 0007136389000001

(式中、R~Rは、各々独立に、炭素数1~5のアルキル基、フェニル基又は置換フェニル基を示し、X及びXは、各々独立に、2価の有機基を示す。nは、2~100の整数を示す。)
Figure 0007136389000001

(In the formula, R 1 to R 4 each independently represent an alkyl group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group, and X 1 and X 2 each independently represent a divalent organic group. , and n is an integer of 2 to 100.)

上記一般式(A-1)中、R~Rが示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、メチル基が好ましい。
~Rが示す置換フェニル基の置換基としては、炭素数1~5のアルキル基、水酸基、アミノ基、ビニル基、カルボキシ基等が挙げられる。
及びXが示す2価の有機基としては、炭素数1~5のアルキレン基等が挙げられる。該アルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。これらの中でも、1,3-トリメチレン基が好ましい。
シロキサン化合物(A)のアミン当量は、500~3,000g/molが好ましく、600~2,000g/molがより好ましく、700~1,500g/molがさらに好ましい。
In general formula (A-1) above, the alkyl group having 1 to 5 carbon atoms represented by R 1 to R 4 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group and the like. Among these, a methyl group is preferred.
Substituents of the substituted phenyl group represented by R 1 to R 4 include alkyl groups having 1 to 5 carbon atoms, hydroxyl groups, amino groups, vinyl groups, carboxy groups and the like.
Examples of the divalent organic group represented by X 1 and X 2 include an alkylene group having 1 to 5 carbon atoms. Examples of the alkylene group include methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group and 1,5-pentamethylene group. Among these, a 1,3-trimethylene group is preferred.
The amine equivalent of the siloxane compound (A) is preferably from 500 to 3,000 g/mol, more preferably from 600 to 2,000 g/mol, even more preferably from 700 to 1,500 g/mol.

-マレイミド化合物(B)-
マレイミド化合物(B)は、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物であり、下記一般式(B-1)~(B-4)のいずれかで表される化合物が好ましい。
-Maleimide compound (B)-
Maleimide compound (B) is a maleimide compound having at least two N-substituted maleimide groups in one molecule, and a compound represented by any one of the following general formulas (B-1) to (B-4) preferable.

Figure 0007136389000002

(式中、R11~R13は、各々独立に、炭素数1~5の脂肪族炭化水素基を示す。X11は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-又はスルホニル基を示す。p、q及びrは、各々独立に、0~4の整数である。mは、0~10の整数である。)
Figure 0007136389000002

(wherein R 11 to R 13 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms; X 11 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms; , —O— or a sulfonyl group, p, q and r are each independently an integer of 0 to 4. m is an integer of 0 to 10.)

上記一般式(B-1)~(B-4)中、R11~R13が示す炭素数1~5の脂肪族炭化水素基としては、上記一般式(A-1)中のRと同じものが挙げられる。
11が示す炭素数1~5のアルキレン基としては、上記一般式(A-1)中のXと同じものが挙げられる。
11が示す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
In the general formulas (B-1) to (B-4), the aliphatic hydrocarbon groups having 1 to 5 carbon atoms represented by R 11 to R 13 include R 1 in the general formula (A-1) and The same can be mentioned.
Examples of the alkylene group having 1 to 5 carbon atoms represented by X 11 include the same groups as X 1 in general formula (A-1) above.
Examples of the alkylidene group having 2 to 5 carbon atoms represented by X 11 include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group and the like.

マレイミド化合物(B)としては、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等が挙げられる。これらの中でも、ビス(4-マレイミドフェニル)メタンが好ましい。 Examples of the maleimide compound (B) include bis(4-maleimidophenyl)methane, polyphenylmethane maleimide, bis(4-maleimidophenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3′-dimethyl-5,5 '-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, m-phenylenebismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, etc. mentioned. Among these, bis(4-maleimidophenyl)methane is preferred.

-酸性置換基を有するアミン化合物(C)-
酸性置換基を有するアミン化合物(C)としては、下記一般式(C-1)で表されるアミン化合物が好ましい。
-Amine compound (C) having an acidic substituent-
As the amine compound (C) having an acidic substituent, an amine compound represented by the following general formula (C-1) is preferred.

Figure 0007136389000003

(式中、R21は、各々独立に、水酸基、カルボキシ基又はスルホン酸基を示す。R22は、各々独立に、炭素数1~5のアルキル基又はハロゲン原子を示す。xは1~5の整数
、yは0~4の整数であり、且つ、1≦x+y≦5を満たす。)
Figure 0007136389000003

(wherein each R 21 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group; each R 22 independently represents an alkyl group having 1 to 5 carbon atoms or a halogen atom; x represents 1 to 5 and y is an integer of 0 to 4, and satisfies 1 ≤ x + y ≤ 5.)

上記一般式(C-1)中、R21が示す炭素数1~5のアルキル基としては、上記一般式(A-1)中のRと同じものが挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。In general formula (C-1) above, examples of the alkyl group having 1 to 5 carbon atoms represented by R 21 include the same groups as those for R 1 in general formula (A-1) above. Halogen atoms include fluorine, chlorine, bromine, and iodine atoms.

酸性置換基を有するアミン化合物(C)としては、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等が挙げられる。これらの中でも、溶解性及び反応性の観点から、m-アミノフェノール、p-アミノフェノールが好ましい。 Amine compounds (C) having an acidic substituent include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, and o-aminobenzene. sulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like. Among these, m-aminophenol and p-aminophenol are preferred from the viewpoint of solubility and reactivity.

-アミン化合物(D)-
アミン化合物(D)は、1分子中に少なくとも2個の第1級アミノ基を有するアミン化合物(D)であり、下記一般式(D-1)~(D-3)のいずれかで表される化合物が好ましい。
-Amine compound (D)-
The amine compound (D) is an amine compound (D) having at least two primary amino groups in one molecule and is represented by any one of the following general formulas (D-1) to (D-3). are preferred.

Figure 0007136389000004

(式中、X13は、単結合、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-、スルホニル基、ケト基、フルオレンジイル基又はフェニレンジオキシ基を示す。R14及びR15は、各々独立に、炭素数1~5の脂肪族炭化水素基、メトキシ基又は水酸基を示す。s及びtは、各々独立に、0~4の整数である。X14~X16は、各々独立に、単結合、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-又はスルホニル基を示す。)
Figure 0007136389000004

(In the formula, X 13 represents a single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, a sulfonyl group, a keto group, a fluorenediyl group, or a phenylenedioxy group. R 14 and R 15 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a methoxy group or a hydroxyl group, s and t each independently represent an integer of 0 to 4. X 14 ~X16 each independently represents a single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, -O- or a sulfonyl group.)

13~X16が示す炭素数1~5のアルキレン基及び炭素数2~5のアルキリデン基としては、上記一般式(B-2)のX11と同じものが挙げられる。
14及びR15が示す炭素数1~5の脂肪族炭化水素基としては、上記一般式(A-1)中のRと同じものが挙げられる。これらの中でも、メチル基、エチル基が好ましい。
Examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X 13 to X 16 include the same groups as X 11 in general formula (B-2) above.
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R 14 and R 15 include the same groups as those for R 1 in general formula (A-1) above. Among these, a methyl group and an ethyl group are preferable.

アミン化合物(D)としては、m-フェニレンジアミン、p-フェニレンジアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノ-3,3’-ビフェニルジオール、ベンゾグアナミン等が挙げられる。これらの中でも、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましい。 Examples of the amine compound (D) include m-phenylenediamine, p-phenylenediamine, 1,4-bis(4-aminophenoxy)benzene, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4' -diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-diaminobenzophenone, 4,4'- Diaminodiphenyl ether, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, bis[4-(4-aminophenoxy)phenyl]sulfone, benzidine, 4,4'-bis(4-aminophenoxy)biphenyl , 4,4′-diaminodiphenyl sulfide, 4,4′-diamino-3,3′-biphenyldiol, benzoguanamine and the like. Among these, 3,3'-diethyl-4,4'-diaminodiphenylmethane is preferred.

変性シリコーン樹脂は、上記(A)~(D)成分を、例えば、70~150℃で反応させることによって調製することができる、上記反応時には、必要に応じて、プロピレングリコールモノメチルエーテル、シクロヘキサノン等の有機溶媒;反応触媒などを用いてもよい。 The modified silicone resin can be prepared by reacting the components (A) to (D) above at, for example, 70 to 150°C. Organic solvent; reaction catalyst and the like may be used.

(各成分の使用量)
(A)~(D)成分の反応における各成分の使用量は、(A)成分、(C)成分及び(D)成分が有する第1級アミノ基の総和と、(B)成分のマレイミド基中の炭素-炭素二重結合基の総和との当量比〔C=C基/NH基〕は、0.1~10が好ましく、1~9がより好ましく、2~5がさらに好ましい。当量比が0.1以上であると、ゲル化及び耐熱性の低下を抑制でき、10以下であると、有機溶媒への溶解性及び耐熱性の低下を抑制できる。
(D)成分の使用量は、上記関係式を満たしつつ、(A)成分100質量部に対して、20~500質量部が好ましく、30~200質量部がより好ましく、40~100質量部がさらに好ましい。
(C)成分の使用量は、上記関係式を満たしつつ、(A)成分100質量部に対して、1~500質量部が好ましく、4~200質量部がより好ましく、7~100質量部がさらに好ましく、10~50質量部が特に好ましい。
(Use amount of each component)
The amount of each component used in the reaction of components (A) to (D) is the sum of the primary amino groups of component (A), component (C) and component (D), and the maleimide group of component (B). The equivalent ratio [C═C group/NH 2 group] to the total sum of carbon-carbon double bond groups in the group is preferably 0.1-10, more preferably 1-9, even more preferably 2-5. When the equivalent ratio is 0.1 or more, gelation and deterioration of heat resistance can be suppressed, and when it is 10 or less, deterioration of solubility in an organic solvent and heat resistance can be suppressed.
The amount of component (D) used is preferably 20 to 500 parts by mass, more preferably 30 to 200 parts by mass, more preferably 40 to 100 parts by mass with respect to 100 parts by mass of component (A) while satisfying the above relational expression. More preferred.
The amount of component (C) used is preferably 1 to 500 parts by mass, more preferably 4 to 200 parts by mass, more preferably 7 to 100 parts by mass, relative to 100 parts by mass of component (A) while satisfying the above relational expression. More preferably, 10 to 50 parts by mass is particularly preferable.

熱硬化性樹脂組成物中における変性シリコーン樹脂の含有量は、耐熱性、低吸水性及び熱膨張率の観点から、熱硬化性樹脂組成物の固形分100質量部中、5~80質量部が好ましく、10~60質量部がより好ましく、20~40質量部がさらに好ましい。
なお、本明細書において、「固形分」とは、溶媒等の揮発する物質を除いた不揮発分のことであり、樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
The content of the modified silicone resin in the thermosetting resin composition is 5 to 80 parts by mass based on 100 parts by mass of the solid content of the thermosetting resin composition from the viewpoint of heat resistance, low water absorption and thermal expansion coefficient. It is preferably 10 to 60 parts by mass, even more preferably 20 to 40 parts by mass.
In the present specification, the term "solid content" refers to the non-volatile content excluding volatile substances such as solvents. Also includes liquid, starch syrup and wax. Here, room temperature indicates 25° C. in this specification.

〔エポキシ樹脂〕
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物及びこれらにリン化合物を導入したリン含有エポキシ樹脂などが挙げられる。これらの中でも、耐熱性、難燃性の観点から、ビフェニルアラルキル型エポキシ樹脂が好ましい。
〔Epoxy resin〕
Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, stilbene. type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolmethane-type epoxy resin, biphenyl-type epoxy resin, xylylene-type epoxy resin, biphenylaralkyl-type epoxy resin, naphthalene-type epoxy resin, dicyclopentadiene-type epoxy resin , alicyclic epoxy resins, diglycidyl ether compounds of polyfunctional phenols and polycyclic aromatics such as anthracene, and phosphorus-containing epoxy resins obtained by introducing phosphorus compounds into these compounds. Among these, biphenyl aralkyl type epoxy resins are preferred from the viewpoint of heat resistance and flame retardancy.

熱硬化性樹脂組成物がエポキシ樹脂を含有する場合、その含有量は、耐熱性、低吸水性及び熱膨張率の観点から、熱硬化性樹脂組成物の固形分100質量部中、2~60質量部が好ましく、5~40質量部がより好ましく、8~20質量部がさらに好ましい。 When the thermosetting resin composition contains an epoxy resin, its content is 2 to 60 in 100 parts by mass of the solid content of the thermosetting resin composition from the viewpoint of heat resistance, low water absorption and thermal expansion coefficient. Parts by weight are preferred, 5 to 40 parts by weight are more preferred, and 8 to 20 parts by weight are even more preferred.

〔アクリルポリマー〕
熱硬化性樹脂組成物は、アクリルポリマーと熱硬化性樹脂とを含む樹脂組成物であってもよい。その場合、熱硬化性樹脂組成物は、アクリルポリマーを含む第1相と、熱硬化性樹脂を含む第2相との相分離構造を形成している樹脂組成物であってもよい。
アクリルポリマーは、通常、(メタ)アクリル酸エステルをモノマーとする重合体である。
アクリルポリマーは1種を単独で用いてもよいし、2種以上を併用してもよい。
[Acrylic polymer]
The thermosetting resin composition may be a resin composition containing an acrylic polymer and a thermosetting resin. In that case, the thermosetting resin composition may be a resin composition forming a phase-separated structure of a first phase containing an acrylic polymer and a second phase containing a thermosetting resin.
Acrylic polymers are usually polymers containing (meth)acrylic acid esters as monomers.
One type of acrylic polymer may be used alone, or two or more types may be used in combination.

アクリルポリマーは、下記一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位を含むアクリルポリマーであることが好ましい。
なお、本実施形態において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
The acrylic polymer is preferably an acrylic polymer containing a structural unit derived from a (meth)acrylic acid ester represented by the following general formula (1).
In addition, in this embodiment, "(meth)acrylic acid" indicates both "acrylic acid" and "methacrylic acid", and the same applies to other similar terms.

Figure 0007136389000005

(式(1)中、R32はアルキル基、シクロアルキル基、シクロアルキルアルキル基、アリール基又はアラルキル基を示す。R31は水素原子又はメチル基を示す。)
Figure 0007136389000005

(In formula (1), R32 represents an alkyl group, cycloalkyl group, cycloalkylalkyl group, aryl group or aralkyl group. R31 represents a hydrogen atom or a methyl group.)

32で示されるアルキル基の炭素数は、1~20が好ましく、1~15がより好ましく、2~10がさらに好ましい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、2-エチルヘキシル基等が挙げられる。これらのアルキル基は置換基を有していてもよい。アルキル基の置換基としては、例えば、脂環式炭化水素基、水酸基、ハロゲン、含酸素炭化水素基、含窒素環状基等が挙げられる。
32で示されるシクロアルキル基の炭素数は、6~13が好ましく、6~12がより好ましく、7~10がさらに好ましい。シクロアルキル基としては、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、イソボルニル基、アダマンチル基等が挙げられ、これらの中でも、ノルボルニル基、トリシクロデカニル基、イソボルニル基が好ましい。
32で示されるシクロアルキルアルキル基の炭素数は、6~13が好ましく、6~12がより好ましく、7~10がさらに好ましい。シクロアルキルアルキル基としては、ノルボルニルメチル基、トリシクロデシルエチル基等が挙げられる。
32で示されるアリール基の炭素数は、6~13が好ましく、6~12がより好ましく、6~10がさらに好ましい。アリール基としては、フェニル基、ノニルフェニル基等が挙げられる。
32で示されるアラルキル基の炭素数は、7~15が好ましく、7~13がより好ましく、7~11がさらに好ましい。アラルキル基としては、ベンジル基、4-メチルベンジル基等が挙げられる。
The number of carbon atoms in the alkyl group represented by R 32 is preferably 1-20, more preferably 1-15, even more preferably 2-10. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, 2-ethylhexyl group and the like. These alkyl groups may have a substituent. Examples of substituents on the alkyl group include alicyclic hydrocarbon groups, hydroxyl groups, halogens, oxygen-containing hydrocarbon groups, nitrogen-containing cyclic groups, and the like.
The number of carbon atoms in the cycloalkyl group represented by R 32 is preferably 6-13, more preferably 6-12, even more preferably 7-10. Cycloalkyl groups include cyclohexyl, norbornyl, tricyclodecanyl, isobornyl, and adamantyl groups, and among these, norbornyl, tricyclodecanyl, and isobornyl groups are preferred.
The number of carbon atoms in the cycloalkylalkyl group represented by R 32 is preferably 6-13, more preferably 6-12, even more preferably 7-10. The cycloalkylalkyl group includes a norbornylmethyl group, a tricyclodecylethyl group and the like.
The number of carbon atoms in the aryl group represented by R 32 is preferably 6-13, more preferably 6-12, even more preferably 6-10. The aryl group includes a phenyl group, a nonylphenyl group, and the like.
The number of carbon atoms in the aralkyl group represented by R 32 is preferably 7-15, more preferably 7-13, even more preferably 7-11. The aralkyl group includes benzyl group, 4-methylbenzyl group and the like.

(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸エチレングリコールメチルエーテル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシクロ[5.2.1,0(2,6)]デカ-8イル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸アリル、(メタ)アクリル酸ノルボルニルメチル、(メタ)アクリル酸トリシクロデシルエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ノニルフェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-4-メチルベンジル等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 (Meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, and (meth)acrylic acid 2 - Ethylhexyl, isobutyl (meth)acrylate, ethylene glycol methyl ether (meth)acrylate, cyclohexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth)acrylate isobornyl acrylate, tricyclo[5.2.1,0(2,6)]dec-8yl (meth)acrylate, isodecyl (meth)acrylate, octadecyl (meth)acrylate, lauryl (meth)acrylate, (meth)allyl acrylate, norbornylmethyl (meth)acrylate, tricyclodecylethyl (meth)acrylate, phenyl (meth)acrylate, nonylphenyl (meth)acrylate, benzyl (meth)acrylate, ( and 4-methylbenzyl meth)acrylate. These may be used individually by 1 type, and may use 2 or more types together.

(無機充填材)
無機充填材としては、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、ガラス短繊維、ガラス微粉末、中空ガラス等が挙げられる。これらの中でも、耐熱性及び難燃性の観点から、シリカが好ましく、溶融球状シリカ等の溶融シリカがより好ましい。
無機充填材の平均粒子径は、0.1~10μmが好ましく、0.1~5μmがより好ましく、0.2~1μmがさらに好ましい。平均粒子径が0.1μm以上であると、流動性を良好に保つことができ、また、10μm以下であると、粗大粒子に起因する不良の発生を抑制できる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
無機充填材は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Inorganic filler)
Inorganic fillers include silica, alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, boron Examples include aluminum oxide, potassium titanate, short glass fibers, fine glass powder, hollow glass, and the like. Among these, from the viewpoint of heat resistance and flame retardancy, silica is preferable, and fused silica such as fused spherical silica is more preferable.
The average particle size of the inorganic filler is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, even more preferably 0.2 to 1 μm. When the average particle size is 0.1 µm or more, good fluidity can be maintained, and when it is 10 µm or less, the occurrence of defects caused by coarse particles can be suppressed. Here, the average particle size is the particle size at the point corresponding to 50% volume when the cumulative frequency distribution curve by particle size is obtained with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device or the like.
An inorganic filler may be used individually by 1 type, and may use 2 or more types together.

熱硬化性樹脂組成物が無機充填材を含有する場合、その含有量は、熱膨張率を低減すると共に、弾性率を高める観点から、熱硬化性樹脂組成物の固形分100質量部中、10~80質量部が好ましく、30~75質量部がより好ましく、50~70質量部がさらに好ましい。 When the thermosetting resin composition contains an inorganic filler, its content is 10 in 100 parts by mass of the solid content of the thermosetting resin composition from the viewpoint of reducing the coefficient of thermal expansion and increasing the elastic modulus. 80 parts by mass is preferable, 30 to 75 parts by mass is more preferable, and 50 to 70 parts by mass is even more preferable.

(硬化促進剤)
硬化促進剤としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩;イミダゾール化合物及びその誘導体;有機リン系化合物;第二級アミン、第三級アミン及び第四級アンモニウム塩などが挙げられる。これらの中でも、耐熱性及び難燃性の観点から、イミダゾール化合物及びその誘導体が好ましい。
硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
熱硬化性樹脂組成物が硬化促進剤を含有する場合、その含有量は、耐熱性及び難燃性の観点から、熱硬化性樹脂組成物の固形分100質量部中、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上がさらに好ましく、また、5質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましい。
(Curing accelerator)
Curing accelerators include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III); imidazole compounds and derivatives thereof. organic phosphorus compounds; secondary amines, tertiary amines and quaternary ammonium salts; Among these, imidazole compounds and derivatives thereof are preferred from the viewpoint of heat resistance and flame retardancy.
A hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
When the thermosetting resin composition contains a curing accelerator, its content is 0.01 parts by mass or more in 100 parts by mass of the solid content of the thermosetting resin composition from the viewpoint of heat resistance and flame retardancy. is preferred, 0.05 parts by mass or more is more preferred, 0.1 parts by mass or more is even more preferred, 5 parts by mass or less is preferred, 3 parts by mass or less is more preferred, and 1 part by mass or less is even more preferred.

熱硬化性樹脂組成物は、必要に応じて、難燃剤、機能性樹脂、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、密着性向上剤及び有機溶媒からなる群から選択される1種以上を含有していてもよく、含有していなくてもよい。 The thermosetting resin composition is optionally selected from the group consisting of flame retardants, functional resins, ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent whitening agents, adhesion improvers and organic solvents. may or may not contain one or more of the

熱硬化性樹脂組成物は、プリプレグ等の製造に用い易くするため、各成分が有機溶媒中に溶解又は分散されたワニスの状態であってもよい。
該有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
ワニスの固形分濃度は、40~90質量%が好ましく、45~85質量%がより好ましく、50~80質量%がさらに好ましい。ワニスの固形分濃度が前記範囲内であると、塗工性を良好に保ち、熱硬化性樹脂組成物の含有量が適切なプリプレグを得ることができる。
The thermosetting resin composition may be in the form of a varnish in which each component is dissolved or dispersed in an organic solvent in order to facilitate its use in the production of prepregs and the like.
Examples of the organic solvent include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; butyl acetate and propylene glycol monomethyl. ester solvents such as ether acetate; ether solvents such as tetrahydrofuran; aromatic solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfur atoms such as dimethyl sulfoxide Contained solvent etc. are mentioned. These may be used individually by 1 type, and may use 2 or more types together.
The solid content concentration of the varnish is preferably 40 to 90% by mass, more preferably 45 to 85% by mass, even more preferably 50 to 80% by mass. When the solid content concentration of the varnish is within the above range, good coatability can be maintained, and a prepreg having an appropriate content of the thermosetting resin composition can be obtained.

[積層板の製造方法]
本実施形態の積層板の製造方法は、
第1のガラス繊維から構成される繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(a)と、
第2のガラス繊維から構成される繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(b)と、
を積層成形する、積層板の製造方法である。
本実施形態の積層板の製造方法に使用するガラス繊維、繊維基材、熱硬化性樹脂組成物等の態様は、上記した通りである。
[Method for producing laminate]
The method for manufacturing the laminate of this embodiment includes:
A prepreg (a) obtained by impregnating a fiber base material composed of a first glass fiber with a thermosetting resin composition;
a prepreg (b) obtained by impregnating a fiber base material composed of a second glass fiber with a thermosetting resin composition;
is a method for manufacturing a laminate, in which
Aspects of the glass fiber, the fiber base material, the thermosetting resin composition, and the like used in the method for manufacturing the laminate of the present embodiment are as described above.

本実施形態の製造方法に用いるプリプレグ(a)及び(b)は、熱硬化性樹脂組成物を繊維基材に含浸させてなるものであり、例えば、ワニス状の熱硬化性樹脂組成物を繊維基材に含浸した後、100~200℃の温度で1~30分加熱乾燥することによって半硬化(Bステージ化)させて、製造することができる。
プリプレグ(a)及び(b)中における熱硬化性樹脂組成物由来の固形分含有量は、20~90質量%が好ましく、30~70質量%がより好ましく、40~60質量%がさらに好ましい。
The prepregs (a) and (b) used in the production method of the present embodiment are obtained by impregnating a fiber base material with a thermosetting resin composition. After impregnating the substrate, it is semi-cured (B-staged) by heating and drying at a temperature of 100 to 200° C. for 1 to 30 minutes.
The content of solids derived from the thermosetting resin composition in the prepregs (a) and (b) is preferably 20 to 90% by mass, more preferably 30 to 70% by mass, and even more preferably 40 to 60% by mass.

次に、得られたプリプレグ(a)とプリプレグ(b)を所望する積層板の構成となるように適宜重ね、必要に応じて片面又は両面に、銅、アルミニウム等の金属箔を配置した構成で積層成形することによって、本実施形態の積層板を製造することができる。金属箔は、電気絶縁材料用積層板の用途で用いられるものであれば特に制限されない。なお、本実施形態の積層板の片面又は両面に金属箔を配したものを金属張積層板と称し、その中でも、銅箔を配したものを銅張積層板と称する。
積層板を製造する際の成形条件は、電気絶縁材料用積層板及び多層板の手法が適用でき、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、例えば、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の条件とすることができる。
Next, the obtained prepreg (a) and prepreg (b) are appropriately stacked so as to form a desired laminate structure, and if necessary, a metal foil such as copper or aluminum is arranged on one or both sides. The laminate of the present embodiment can be manufactured by lamination molding. The metal foil is not particularly limited as long as it is used for laminates for electrical insulating materials. In addition, the laminate of the present embodiment in which metal foil is applied on one side or both sides is called a metal-clad laminate, and among these, a laminate in which copper foil is applied is called a copper-clad laminate.
As for the molding conditions for manufacturing the laminate, the technique for laminates for electrical insulating materials and multilayer boards can be applied, and multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc. are used, and the temperature is, for example, 100 to 250. C., pressure of 0.2 to 10 MPa, and heating time of 0.1 to 5 hours.

[プリント配線板]
本実施形態のプリント配線板は、本実施形態の積層板を含有してなるプリント配線板である。
本実施形態のプリント配線板は、例えば、本実施形態の積層板の表面に回路を形成して製造することができる。また、本実施形態の積層板の導体層を通常のエッチング法によって配線加工してから、該配線加工した積層板同士を、プリプレグを間に配しながら複数積層した後、加熱プレス加工することによって一括して多層化することもできる。その後、ドリル加工又はレーザー加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経てプリント配線板を製造することができる。
[Printed wiring board]
The printed wiring board of this embodiment is a printed wiring board containing the laminate of this embodiment.
The printed wiring board of this embodiment can be manufactured by forming a circuit on the surface of the laminate of this embodiment, for example. In addition, after wiring the conductor layer of the laminate of the present embodiment by a normal etching method, a plurality of the wiring-processed laminates are laminated with prepreg interposed therebetween, and then hot-pressed. Multilayering can also be performed collectively. After that, a printed wiring board can be manufactured through the formation of through holes or blind via holes by drilling or laser processing and the formation of interlayer wiring by plating or conductive paste.

[半導体パッケージ]
本実施形態の半導体パッケージは、本実施形態のプリント配線板に半導体を搭載してなるものである。本実施形態の半導体パッケージは、本実施形態のプリント配線板に半導体チップ、メモリ等を搭載して製造することができる。
[Semiconductor package]
The semiconductor package of this embodiment is obtained by mounting a semiconductor on the printed wiring board of this embodiment. The semiconductor package of this embodiment can be manufactured by mounting a semiconductor chip, memory, etc. on the printed wiring board of this embodiment.

次に、下記の実施例によって本実施形態をさらに詳しく説明するが、これらの実施例は本実施形態を制限するものではない。
各例で得られたプリプレグ及び銅張積層板は、以下の方法で性能を測定及び評価した。
Next, the present embodiment will be described in more detail by the following examples, but these examples are not intended to limit the present embodiment.
The performance of the prepreg and copper-clad laminate obtained in each example was measured and evaluated by the following methods.

[評価方法]
(1)熱膨張率
各例で得た銅張積層板を銅エッチング液に浸漬することによって銅箔を取り除き、縦(X方向)5mm×横(Y方向)5mmの評価基板を作製した。該評価基板を測定対象として、TMA試験装置(デュポン社製、商品名:TMA2940)を用いて圧縮法で熱機械分析を行った。評価基板を前記装置にX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における30℃から100℃までの平均熱膨張率を算出し、これを熱膨張率の値とした。
[Evaluation method]
(1) Coefficient of Thermal Expansion The copper-clad laminate obtained in each example was immersed in a copper etchant to remove the copper foil to prepare an evaluation board of 5 mm length (X direction)×5 mm width (Y direction). Thermomechanical analysis was performed by a compression method using a TMA testing device (manufactured by DuPont, trade name: TMA2940) using the evaluation substrate as a measurement object. After the evaluation substrate was mounted on the apparatus in the X direction, the measurement was continuously performed twice under the measurement conditions of a load of 5 g and a temperature increase rate of 10° C./min. The average coefficient of thermal expansion from 30° C. to 100° C. in the second measurement was calculated and used as the coefficient of thermal expansion.

(2)曲げ弾性率
各例で得た銅張積層板を銅エッチング液に浸漬することによって銅箔を取り除いた50mm×25mmの評価基板を作製した。該評価基板を測定対象として、オリエンテック株式会社製の5トンテンシロンを用い、クロスヘッド速度1mm/分、スパン間距離20mmで曲げ弾性率を測定した。
(2) Flexural modulus The copper-clad laminate obtained in each example was immersed in a copper etchant to remove the copper foil to prepare an evaluation board of 50 mm x 25 mm. The flexural modulus of elasticity of the evaluation substrate was measured using a 5-ton Tensilon manufactured by Orientec Co., Ltd. at a crosshead speed of 1 mm/min and a span distance of 20 mm.

(3)接続信頼性
各例で得た銅張積層板を用いて、マザーボードとの接続信頼性を評価するため回路形成したパッケージ基板とマザーボード基板を作製した後、このパッケージ基板とマザーボード基板をはんだボールを用いて電気的に接続した。次いで、これを温度サイクル試験機(-55~125℃)に投入してから、接続抵抗値を所定サイクル数ごとに計測した。抵抗値が20%以上変動したときをはんだボール破断サイクル数とし、ワイブルプロットによる20%累積故障率時のサイクル数から接続信頼性を評価した。
(3) Connection Reliability Using the copper-clad laminate obtained in each example, a circuit-formed package board and a motherboard board were prepared to evaluate the connection reliability with the motherboard, and then the package board and the motherboard board were soldered. An electrical connection was made using a ball. Next, after putting this into a temperature cycle tester (-55 to 125°C), the connection resistance value was measured for each predetermined number of cycles. When the resistance value fluctuated by 20% or more, the number of solder ball breakage cycles was defined, and connection reliability was evaluated from the number of cycles at 20% cumulative failure rate by Weibull plot.

<銅張積層板の製造>
[実施例1]
(銅張積層板1:図6に示す積層板の両面に銅箔を配した銅張積層板)
(1)ワニスの作製
温度計、撹拌装置及び還流冷却管を備えた加熱及び冷却可能な容積1リットルの反応容器に、シロキサンジアミン(東レ・ダウコーニング株式会社製、商品名:X-22-161A、アミノ基の官能基当量:800g/mol)を19.4g、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンを13.0g、N,N’-(4,4’-ジフェニルメタン)ビスマレイミドを122.9g、p-アミノフェノールを4.7g、プロピレングリコールモノメチルエーテルを240.0g投入した。これらを115℃で反応させた後、樹脂濃度が60質量%になるまで常圧濃縮を行い、さらに、90℃でシクロヘキサノンを53.3g添加して30分間撹拌することによって、中間体ワニスを得た。
この中間体ワニス303.5gと、シリカのメチルイソブチルケトン溶液(平均粒子径0.25μmの球状シリカ700gを、7gの3-アミノプロピルトリメトキシシランを加えた300gのメチルイソブチルケトン溶液に撹拌しながら加えて作製したもの)601.0gと、硬化促進剤(四国化成工業株式会社製、商品名:C17Z)1.2gと、ビフェニルアラルキルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名:NC-3000-H)65.6gと、を混合した。さらに、希釈溶媒としてメチルエチルケトンを追加することによって、固形分濃度65質量%の均一なワニスを得た。
<Production of copper-clad laminate>
[Example 1]
(Copper clad laminate 1: copper clad laminate in which copper foil is arranged on both sides of the laminate shown in FIG. 6)
(1) Preparation of varnish A siloxane diamine (manufactured by Dow Corning Toray Co., Ltd., trade name: X-22-161A, manufactured by Dow Corning Toray Co., Ltd., trade name: X-22-161A , Functional group equivalent of amino group: 800 g / mol) 19.4 g, 3,3'-diethyl-4,4'-diaminodiphenylmethane 13.0 g, N,N'-(4,4'-diphenylmethane) bis 122.9 g of maleimide, 4.7 g of p-aminophenol and 240.0 g of propylene glycol monomethyl ether were added. After reacting these at 115 ° C., atmospheric concentration is performed until the resin concentration reaches 60% by mass, and 53.3 g of cyclohexanone is added at 90 ° C. and stirred for 30 minutes to obtain an intermediate varnish. rice field.
303.5 g of this intermediate varnish and a silica methyl isobutyl ketone solution (700 g of spherical silica having an average particle size of 0.25 μm were added to 300 g of methyl isobutyl ketone solution containing 7 g of 3-aminopropyltrimethoxysilane while stirring. Additionally prepared) 601.0 g, a curing accelerator (manufactured by Shikoku Kasei Co., Ltd., trade name: C17Z) 1.2 g, and a biphenyl aralkyl novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC -3000-H) and 65.6 g were mixed. Furthermore, by adding methyl ethyl ketone as a diluting solvent, a uniform varnish having a solid content concentration of 65% by mass was obtained.

(2)プリプレグの作製
次に、上記ワニスを、0.1mmのSガラスクロス(25℃における引張弾性率が85.3GPa、SiO及びAlの合計含有量が82~90質量%、熱膨張率が2.9ppm/℃)と、0.1mmのEガラス(25℃における引張弾性率が73GPa、SiO及びAlの合計含有量が64~72質量%、SiOの含有量に対するAlの含有量の比(質量基準)が0.28、熱膨張率が5.5ppm/℃)とに、それぞれ含浸塗工した後、130℃で3分間加熱乾燥した。これによって熱硬化性樹脂組成物由来の固形分含有量が48質量%である、Sガラスクロスを含有するプリプレグと、Eガラスクロスを含有するプリプレグをそれぞれ得た。さらに、同様の手順で後述する積層板の作製に必要な枚数のプリプレグを作製した。
( 2 ) Prepreg production thermal expansion coefficient of 2.9 ppm / ° C.) and 0.1 mm E glass (tensile modulus at 25 ° C. of 73 GPa, total content of SiO 2 and Al 2 O 3 is 64 to 72% by mass, SiO 2 content Al 2 O 3 content ratio (mass basis) to the amount of Al 2 O 3 was 0.28, thermal expansion coefficient was 5.5 ppm/°C), and then impregnated and coated, and then dried by heating at 130°C for 3 minutes. As a result, a prepreg containing S glass cloth and a prepreg containing E glass cloth having a thermosetting resin composition-derived solid content of 48% by mass were obtained. Further, the same number of prepregs as required for manufacturing a laminated plate, which will be described later, were manufactured.

(3)積層板の作製
次に上記で作製したプリプレグを、両側の最表層1層ずつがEガラスクロスを含有するプリプレグ、内側12層がSガラスクロスを含有するプリプレグとなる構成で積層した。さらに、その両側に、厚さ12μmの電解銅箔を配置してから、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板1を得た。
(3) Production of Laminate Next, the prepregs produced above were laminated in such a manner that the outermost layer on each side was a prepreg containing E glass cloth, and the inner 12 layers were prepreg containing S glass cloth. Further, an electrolytic copper foil having a thickness of 12 μm was placed on both sides of the plate, and then pressed at a pressure of 2.5 MPa and a temperature of 240° C. for 60 minutes to obtain a copper-clad laminate 1 .

[実施例2]
(銅張積層板2:図4に示す積層板の両面に銅箔を配した銅張積層板)
実施例1において、プリプレグの積層構成を、両側の最表層2層ずつがEガラスクロスを含有するプリプレグ、内側10層がSガラスクロスを含有するプリプレグとなる構成で積層したこと以外は、実施例1と同様にして銅張積層板2を得た。
[Example 2]
(Copper clad laminate 2: copper clad laminate in which copper foil is arranged on both sides of the laminate shown in FIG. 4)
In Example 1, except that the prepreg lamination structure was such that the two outermost layers on both sides were prepreg containing E glass cloth, and the inner 10 layers were prepreg containing S glass cloth. A copper-clad laminate 2 was obtained in the same manner as in 1.

[実施例3]
(銅張積層板3:図7に示す積層板の両面に銅箔を配した銅張積層板)
実施例1において、プリプレグの積層構成を、Sガラスクロスを含有するプリプレグ6層、Eガラスクロスを含有するプリプレグ2層、Sガラスクロスを含有するプリプレグ6層との順になる構成に変更したこと以外は、実施例1と同様にして銅張積層板3を得た。
[Example 3]
(Copper clad laminate 3: copper clad laminate in which copper foil is arranged on both sides of the laminate shown in FIG. 7)
Except that in Example 1, the laminated structure of the prepreg was changed to a structure in which 6 layers of prepreg containing S glass cloth, 2 layers of prepreg containing E glass cloth, and 6 layers of prepreg containing S glass cloth were arranged in this order. obtained a copper-clad laminate 3 in the same manner as in Example 1.

[比較例1]
(銅張積層板4:繊維基材としてSガラスクロスのみを含有する銅張積層板)
実施例1において、プリプレグの積層構成を、Sガラスクロスを含有するプリプレグ14層に変更したこと以外は、実施例1と同様にして銅張積層板4を得た。
[Comparative Example 1]
(Copper-clad laminate 4: Copper-clad laminate containing only S glass cloth as a fiber base material)
A copper-clad laminate 4 was obtained in the same manner as in Example 1, except that the prepreg lamination structure was changed to 14 layers of prepreg containing S glass cloth.

[比較例2]
(銅張積層板5:繊維基材としてEガラスクロスのみを含有する銅張積層板)
実施例1において、プリプレグの積層構成を、Eガラスクロスを含有するプリプレグ14層に変更したこと以外は、実施例1と同様にして銅張積層板5を得た。
[Comparative Example 2]
(Copper-clad laminate 5: Copper-clad laminate containing only E-glass cloth as a fiber base material)
A copper-clad laminate 5 was obtained in the same manner as in Example 1, except that the prepreg lamination structure was changed to 14 layers of prepreg containing E-glass cloth.

上記で作製した積層板の評価結果を表1に示す。 Table 1 shows the evaluation results of the laminates produced above.

Figure 0007136389000006
Figure 0007136389000006

表1に示す通り、本実施形態の実施例1~3の積層板は、高弾性率及び低熱膨張性を有しながらも接続信頼性に優れることが確認された。 As shown in Table 1, it was confirmed that the laminates of Examples 1 to 3 of the present embodiment had excellent connection reliability while having a high elastic modulus and a low thermal expansion property.

(X) 複合層(X)
(Y) 複合層(Y)
1 複合層
2 繊維基材
2a 経糸
2b 緯糸
3 熱硬化性樹脂組成物の硬化物
4A、4B サンドイッチ積層部
10~13 積層板
(X) composite layer (X)
(Y) composite layer (Y)
1 Composite layer 2 Fiber base material 2a Warp 2b Weft 3 Cured product of thermosetting resin composition 4A, 4B Sandwich laminate 10-13 Laminate

Claims (14)

繊維基材と熱硬化性樹脂組成物の硬化物とを含有する、複合層(X)及び複合層(Y)を含有する積層板であり、
少なくとも1層の複合層(X)が、2層の複合層(Y)の間に配されてなり、
複合層(X)の層数と、複合層(Y)の層数との差〔複合層(X)-複合層(Y)〕が6層以上であり、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維が、前記第2のガラス繊維よりも、25℃における引張弾性率が高いものである、積層板。
A laminate containing a composite layer (X) and a composite layer (Y) containing a fiber base material and a cured product of a thermosetting resin composition,
At least one composite layer (X) is arranged between two composite layers (Y),
The difference between the number of layers of the composite layer (X) and the number of layers of the composite layer (Y) [composite layer (X) - composite layer (Y)] is 6 or more,
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
The laminate, wherein the first glass fiber has a higher tensile modulus at 25° C. than the second glass fiber.
前記第1のガラス繊維の25℃における引張弾性率が、80GPa以上であり、
前記第2のガラス繊維の25℃における引張弾性率が、80GPa未満である、請求項1に記載の積層板。
The first glass fiber has a tensile modulus at 25° C. of 80 GPa or more,
2. The laminate according to claim 1, wherein the second glass fiber has a tensile modulus at 25[deg.]C of less than 80 GPa.
前記第1のガラス繊維と前記第2のガラス繊維の25℃における引張弾性率の差が、10GPa以上である、請求項1又は2に記載の積層板。 3. The laminate according to claim 1, wherein a difference in tensile elastic modulus at 25[deg.] C. between said first glass fiber and said second glass fiber is 10 GPa or more. 繊維基材と熱硬化性樹脂組成物の硬化物とを含有する、複合層(X)及び複合層(Y)を含有する積層板であり、
少なくとも1層の複合層(X)が、2層の複合層(Y)の間に配されてなり、
複合層(X)の層数と、複合層(Y)の層数との差〔複合層(X)-複合層(Y)〕が6層以上であり、
複合層(X)が、第1のガラス繊維から構成される第1の繊維基材を含有する層であり、
複合層(Y)が、第2のガラス繊維から構成される第2の繊維基材を含有する層であり、
前記第1のガラス繊維中におけるSiO及びAlの合計含有量が、前記第2のガラス繊維中におけるSiO及びAlの合計含有量よりも高いものである、積層板。
A laminate containing a composite layer (X) and a composite layer (Y) containing a fiber base material and a cured product of a thermosetting resin composition,
At least one composite layer (X) is arranged between two composite layers (Y),
The difference between the number of layers of the composite layer (X) and the number of layers of the composite layer (Y) [composite layer (X) - composite layer (Y)] is 6 or more,
The composite layer (X) is a layer containing the first fiber base material composed of the first glass fiber,
The composite layer (Y) is a layer containing a second fiber base material composed of a second glass fiber,
A laminate, wherein the total content of SiO2 and Al2O3 in the first glass fibers is higher than the total content of SiO2 and Al2O3 in the second glass fibers.
前記第1のガラス繊維が、Sガラスである、請求項1~4のいずれか1項に記載の積層板。 The laminate according to any one of claims 1 to 4, wherein said first glass fibers are S-glass. 前記第2のガラス繊維が、Eガラスである、請求項1~5のいずれか1項に記載の積層板。 A laminate according to any one of claims 1 to 5, wherein said second glass fibers are E-glass. 複合層(X)の層数と、複合層(Y)の層数との差〔複合層(X)-複合層(Y)〕が15層以下である、請求項1~6のいずれか1項に記載の積層板。Any one of claims 1 to 6, wherein the difference between the number of composite layers (X) and the number of composite layers (Y) [composite layer (X) - composite layer (Y)] is 15 or less. A laminate according to any one of the preceding paragraphs. 前記積層板の両面の最表層が複合層(Y)である、請求項1~7のいずれか1項に記載の積層板。The laminate according to any one of claims 1 to 7, wherein the outermost layer on both sides of said laminate is a composite layer (Y). 複合層(Y)の層数が、2層である、請求項1~8のいずれか1項に記載の積層板。The laminate according to any one of claims 1 to 8, wherein the composite layer (Y) has two layers. 前記熱硬化性樹脂組成物が、無機充填材を含有する、請求項1~9のいずれか1項に記載の積層板。The laminate according to any one of claims 1 to 9, wherein the thermosetting resin composition contains an inorganic filler. プリント配線板用である、請求項1~10のいずれか1項に記載の積層板。The laminate according to any one of claims 1 to 10, which is for printed wiring boards. 請求項1~11のいずれか1項に記載の積層板を含有してなるプリント配線板。 A printed wiring board comprising the laminate according to any one of claims 1 to 11. 請求項12に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。 A semiconductor package comprising the printed wiring board according to claim 12 and a semiconductor element mounted thereon. 請求項1~11のいずれか1項に記載の積層板を製造する方法であって、
前記第1のガラス繊維から構成される第1の繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(a)と、
前記第2のガラス繊維から構成される第2の繊維基材に熱硬化性樹脂組成物が含浸されてなるプリプレグ(b)と、
を積層成形する、積層板の製造方法。
A method for producing a laminate according to any one of claims 1 to 11,
A prepreg (a) obtained by impregnating a thermosetting resin composition into a first fiber base material composed of the first glass fiber;
a prepreg (b) obtained by impregnating a second fiber base material composed of the second glass fiber with a thermosetting resin composition;
A method for producing a laminate, comprising laminating and molding.
JP2022523252A 2020-06-17 2021-06-16 Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate Active JP7136389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022130410A JP2022171670A (en) 2020-06-17 2022-08-18 Laminate, printed wiring board, semiconductor package and method for producing laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020104375 2020-06-17
JP2020104375 2020-06-17
PCT/JP2021/022910 WO2021256516A1 (en) 2020-06-17 2021-06-16 Laminated board, printed wiring board, semiconductor package, and method for manufacturing laminated board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022130410A Division JP2022171670A (en) 2020-06-17 2022-08-18 Laminate, printed wiring board, semiconductor package and method for producing laminate

Publications (2)

Publication Number Publication Date
JPWO2021256516A1 JPWO2021256516A1 (en) 2021-12-23
JP7136389B2 true JP7136389B2 (en) 2022-09-13

Family

ID=79268020

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022523252A Active JP7136389B2 (en) 2020-06-17 2021-06-16 Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate
JP2022130410A Pending JP2022171670A (en) 2020-06-17 2022-08-18 Laminate, printed wiring board, semiconductor package and method for producing laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022130410A Pending JP2022171670A (en) 2020-06-17 2022-08-18 Laminate, printed wiring board, semiconductor package and method for producing laminate

Country Status (5)

Country Link
JP (2) JP7136389B2 (en)
KR (1) KR20230025395A (en)
CN (1) CN115835956A (en)
TW (1) TW202212119A (en)
WO (1) WO2021256516A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140907A (en) 2012-01-06 2013-07-18 Ibiden Co Ltd Printed wiring board and manufacturing method of the same
JP2015076589A (en) 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Laminate sheet
WO2015079820A1 (en) 2013-11-29 2015-06-04 日東紡績株式会社 Glass fiber fabric-resin composition laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740990B2 (en) 1991-11-26 1998-04-15 株式会社日立製作所 Low thermal expansion resin composition for pressure molding
JPH05261861A (en) * 1992-03-19 1993-10-12 Shin Kobe Electric Mach Co Ltd Laminated sheet
JPWO2013042752A1 (en) * 2011-09-22 2015-03-26 日立化成株式会社 LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE
JP6844298B2 (en) * 2017-02-17 2021-03-17 昭和電工マテリアルズ株式会社 Manufacturing method of prepreg, laminated board, printed wiring board, coreless board, semiconductor package and coreless board
WO2020130007A1 (en) * 2018-12-18 2020-06-25 日立化成株式会社 Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140907A (en) 2012-01-06 2013-07-18 Ibiden Co Ltd Printed wiring board and manufacturing method of the same
JP2015076589A (en) 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Laminate sheet
WO2015079820A1 (en) 2013-11-29 2015-06-04 日東紡績株式会社 Glass fiber fabric-resin composition laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
南条尚志,日本複合材料学会誌,2007年,Vol.33, No.4,p.141-149

Also Published As

Publication number Publication date
JPWO2021256516A1 (en) 2021-12-23
CN115835956A (en) 2023-03-21
KR20230025395A (en) 2023-02-21
WO2021256516A1 (en) 2021-12-23
JP2022171670A (en) 2022-11-11
TW202212119A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR102561771B1 (en) Thermosetting resin composition and prepreg including the same, metal clad laminate and printed circuit board
JP2022171669A (en) Laminate, printed wiring board, semiconductor package and method for producing laminate
JP6065437B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
EP2412743A1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
KR20180121679A (en) Prepreg, and laminate board and printed wiring board using same
JP3821728B2 (en) Prepreg
JP5633382B2 (en) Thermosetting resin composition and prepreg, laminate and multilayer printed wiring board using the same
KR102463619B1 (en) Prepreg for coreless substrate, coreless substrate, method for manufacturing coreless substrate and semiconductor package
JP4400191B2 (en) Resin composition and substrate using the same
JP2014012751A (en) Thermosetting resin composition, and prepreg, laminated sheet and printed wiring board including the same
JP2012236920A (en) Thermosetting resin composition, and prepreg, laminate and printed-wiring board using the composition
CN110662793B (en) Prepreg for coreless substrate, and semiconductor package
JP2004277671A (en) Prepreg and printed circuit board using the same
JP7136389B2 (en) Laminate, printed wiring board, semiconductor package, and method for manufacturing laminate
JP2017193614A (en) Prepreg, metal-clad laminate, and printed wiring board
WO2018151287A1 (en) Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for producing coreless substrate
JP6040605B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP2022164680A (en) Prepreg, method for manufacturing the same, laminate, printed wiring board and semiconductor package
JP7420071B2 (en) Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
JP7243077B2 (en) Prepregs, cured prepregs, laminates, printed wiring boards and semiconductor packages
EP3744788B1 (en) Resin composition, prepreg, laminate, and metal foil-coated laminate
JP2019192343A (en) Resin film for interlayer insulating layer, laminate, printed wiring board, semiconductor device, and method of manufacturing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7136389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350